Efficient Synthesis of DNA Conjugates by Strain-Promoted Azide–Cyclooctyne Cycloaddition in the Solid Phase

Ishwar Singh,*^[a] Colin Freeman,^[a] and Frances Heaney*^[a]

Keywords: Medicinal chemistry / Oligonucleotides / DNA / Solid-phase synthesis / Click reaction / Azides / Alkynes / Cycloaddition / Bioconjugation

Conjugation of ligands to DNA oligonucleotides has been achieved in the solid phase by strain-promoted azide–alkyne cycloaddition (SPAAC). The oligonucleotide, modified with a simple nonfluroinated, monocyclic octyne, efficiently forms conjugates with a range of azide dipoles with varying steric

Introduction

The application of functionalised oligonucleotides in key areas including diagnostics and therapeutics has created the need for reliable chemical methods for postsynthetic conjugation.^[1] The high chemical stability and orthogonal reactivity of azides and alkynes has made the copper-catalysed 1,3-dipolar cycloaddition a highly attractive conjugation strategy in materials science and biotechnology.^[2] However, in spite of its vast successes, this reaction it is not ideal for oligonucleotide applications; Cu^I-mediated oxidative DNA degradation can be problematic, and copper ion contamination of the final product can culminate in issues of cytotoxicity and nucleic acid hydrolysis.^[3,4] Recent developments indicate that careful selection of CuI-stabilizing ligands can avoid DNA degradation and even facilitate Cupromoted azide-alkyne click (CuAAC) modifications in living organisms.^[5] However, toxicity may remain an issue when oligonucleotide therapeutics are desired, and, in search of alternative bioconjugation methodologies, we and others have developed catalyst-free nitrone and nitrile oxide cycloadditions.^[6-11] Additional, metal-free bioorthogonal conjugation strategies include Diels-Alder cycloadditions and photoinduceable cycloadditions of tetrazines or nitrile imines to alkenes.^[12–14] More recent advances in this area include strain-promoted azide-alkyne cycloadditions (SPAAC). These reactions, first observed more than 50 years ago,^[15] exploit the intrinsic ring strain of cyclooctynes.^[16] First generation substrates had relatively sluggish reactivity, and incremental improvements followed from the

E-mail: ishwar.singh@nuim.ie

mary.f.heaney@nuim.ie

and electronic characteristics. The reaction is clean and easily executed in a copper free environment at room temperature. It provides a variety of triazole-linked nucleic acid conjugates and is potentially useful in biotechnology and cell biology.

incorporation of a ring heteroatom, steric encumberments or electron-attracting substituents; more recent rate enhancements have been observed with diaryl fused cyclooctynes and their aza analogues.^[17–25] Although azides have been the dipole of choice in most cases, more attractive kinetics have been observed with nitrile oxides.^[26] Applications of strain-promoted conjugation are numerous and span diverse areas including bioimaging,^[17,27,28] quantum dot formation,^[29] peptide conjugation,^[30] drug discovery,^[18] drug delivery,^[31] synthetic chemistry^[23] and surface and materials science.^[22,24]

We have previously reported the postsynthetic modification of oligonucleotides by strain-promoted nitrile oxide cycloaddition chemistry (SPNOC),^[8] and Filippov^[32] and Manoharan^[33] independently demonstrated conjugate formation by cycloaddition of azides to oligonucleotide cyclic alkynes. In their elegant studies, Filippov and Manoharan have concentrated on solution rather than solid phase conjugation. The attractions of solid-phase synthesis include the ease of purification and the possibility of automation, thus, we wished to develop resin-supported conjugation as a robust, technically accessible platform for postsynthetic oligonucleotide modification. As an additional improvement to existing methods, we wished to demonstrate the synthetic utility of a simple nonfluorinated, monocyclic octyne, in preference to an enhanced diarylcyclooctyne, as the strained alkyne partner. From a synthetic standpoint, the attractions of a cyclooctyne substrate include ease of access^[8] and the possibility for superior kinetics with bulky azides. The reduced lipophilicity and the limited steric bulk are potentially attractive for applications in drug delivery, biomedicine and imaging where aqueous solubility and a reduced tendency to interact with hydrophobic proteins are important. Finally, advanced applications involving living systems, e.g. genetic encoding of alkynes are expected to proceed more smoothly.^[34] The objective of the current

[[]a] Department of Chemistry, National University of Ireland Maynooth, Co. Kildare, Republic of Ireland Fax: +353-1-708-3815

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201101045.

= benzyl, cinnamyl, gluocosyl, biotin, coumarin, cholesterol, fluorescein

Scheme 1. Resin-supported postsynthetic oligonucleotide conjugation by SPAAC.

work, summarised in Scheme 1, was to develop postsynthetic oligonucleotide conjugation on the solid phase by strain-promoted cycloaddition between azide dipoles and simple monocyclic octynes.

Results and Discussion

The design and synthesis of the resin-supported DNA cyclooctynes 1 and 2 has been detailed elsewhere.^[8] We selected a range of azide partners, Figure 1, including small organic azides for proof of concept studies viz. benzyl azide (3) and cinnamyl azide (4) as well as those with potential for biomedical^[35] or imaging^[36] applications viz. glucose azide (5) as a mixture of α - and β -isomers, coumarin azide (6), biotin azide (7), cholesterol azide (8) and fluorescein azide (9).

Azides 3 and 5 are commercially available, and $4^{[37]}$ and $6^{[38]}$ were prepared according to literature methods. 2-Azidoacetohydrazide (10), prepared from ethyl 2-azidoacetate^[37] by reaction with hydrazine hydrate, was coupled with biotin NHS ester (11) to yield 7. The analogous 8 was accessed from a parallel route starting from cholesterol chloroformate (12, Scheme 2). Direct coupling of fluorescein methyl ester (13) and 1-azido-4-bromobutane^[39] furnished 9 in 69% yield (Scheme 3).

The attendant advantages of solid over solution phase chemistry^[40] guided our research, and we initially explored the reaction between CPG (controlled pore glass)-supported T₁₀-cyclooctyne 1 with 3 and 4. Reactions were conducted on a scale employing 0.2 µm 1 and, in the interest of expediency, we initially employed 90 equiv. of azide in an effective dipole concentration of ca. 133 mm. To assist with azide solubility, aqueous dimethylsulfoxide (DMSO) was selected as the solvent and reactions were conducted at room temp. (Scheme 4). Work up of the supported products 14, involving deprotection and cleavage from the resin, afforded 16, Figure 2. HPLC analysis indicated complete consumption of 1 within 30 min and the formation of two new products. In each case, the retention time of the products was only marginally greater than cleaved 15. SPAAC is not a perfect reaction and the formation of regioisomeric triazoles is deemed as an acceptable trade off for the avoidance of a copper catalyst in azide-alkyne bioconjugations. Consistent with triazole formation with little regard for regioselectivity,^[32,35] two product peaks were observed for both 16a and 16b; a minimal bias was seen for the regioisomer with slightly longer retention time.

Figure 1. Resin supported DNA-cyclooctynes and azide reaction partners for solid-phase SPAAC.

To optimise the reaction, the ratio of the reacting dipole to the CPG-alkyne was reduced to 20:1 maintaining the di-

Scheme 2. Synthesis of 8 and 9; i. anhydr. DMF, NEt₃, Ar, 18 h, room temp., 86%; ii. CH₂Cl₂, NEt₃, Ar, 18 h, room temp., 34%.

Scheme 3. Synthesis of 9.

Scheme 4. Solid-supported SPAAC of 1 with 3 and 4.

Figure 2. Structures of cleaved and deprotected oligonucleotides $T_{10}\mbox{-}cyclooctyne$ 15 and $T_{10}\mbox{-}conjugates$ 16a and 16b.

pole concentration at ca. 140 mm. Aqueous DMSO (70%) was an ideal solvent for reaction with 3, however, because of limited solubility, 90% DMSO was preferable for reaction with 4. Gratifyingly, despite the reduced number of dipole equivalents, reaction with 3 was complete within 20 min as indicated by HPLC. An additional 10 min reaction time was required for the full consumption of starting material by 4 (Table 1). The products were readily purified by HPLC and MALDI-TOF mass spectrometry confirmed the structural integrity of the benzyl- and cinnamyl-conjugated T_{10} -derivatives 16a and 16b. The optimised experiments indicate that it is possible to compensate for the sluggish kinetics of strain-promoted cycloaddition of azides, with respect to nitrile oxide dipoles,^[26] simply by increasing the effective concentration of reacting dipole from about 30 to 140 mм.^[8]

Having proven that resin-supported DNA bearing a cyclooctyne is a suitable substrate for SPAAC we turned to structurally complex, yet potentially more valuable, azides 5, 6 and 7. As a consequence of limited dipole solubility in aqueous DMSO, reactions with 5 and 6 were conducted in

FULL PAPER

Azide	Solvent	Reaction time	Product
3	70% aq. DMSO	20 min	16a
4	90% aq. DMSO	30 min	16b
5	DMSO	4 h	16c
6	DMSO	25 min	16d
7	90% aq. DMSO	4 h	16e
8	CHCl ₃	16 h	16f

Table 1. Reaction conditions for 1 with 3-8.

the absence of water, and aqueous DMSO (90%) was effective for solubilisation of 7. Reactions were conducted at room temp., with 20 equiv. of dipole. HPLC analysis of the cleaved reaction products indicate that a reaction time of between 25 min and 4 h was required for complete consumption of 1 (Table 1). For the conjugates, the peak splitting of 16c, arising from the reaction with 5, is consistent with a mixture of anomers in the starting azide. Products arising from 6 and 7, 16d and 16e, respectively, are represented by two sharp peaks. The DNA conjugated triazoles were easily separated from impurities in the starting material. MALDI-TOF mass analysis of 16c indicated deacetylation of the glucose moiety during the standard protocol for cleavage of the oligonucleotide from the resin; mass data confirmed the structural integrity of 16d and 16e (Figure 3).

Figure 3. Triazole-ligated conjugates 16c-f, prepared by solid-supported SPAAC.

It is reported that strain-promoted cycloaddition is relatively insensitive to the electronic structure of the azide^[19] and we judge the increased steric demands of **5** and **7**, compared to **3**, **4** and **6**, to account for the fall in the rate of reaction (Table 1). However, it is significant that the rates of formation of **16a–e**, by cycloaddition to cyclooctyne, compare favourably with those observed for conjugates formed by cycloaddition to RNAs bearing strained alkynes of enhanced reactivity, viz. dibenzocyclooctyne.^[32,33]

It is known that lipid conjugation facilitates both cellular uptake and intracellular delivery of oligonucleotides and so provides hope for a nontoxic alternative to the cationic lipophilic or polymeric siRNA delivery systems,^[41,42] and we wished to extend the scope of the SPAAC reaction to include steroidal examples. However, despite the advances in methodologies for the postsynthetic modification of oligonucleotides, the synthesis of steroidal conjugates remains nontrivial. In two recent reports, CuAAC modifications have been demonstrated. In one, conjugation at the monomeric level preceded oligonucleotide synthesis,^[43] and in the other, microwave-assisted conjugation to a resin-supported oligonucleotide-alkyne has been reported (60 °C, 45 min).^[41] For pharmaceutical applications the minimal acceptable copper concentration in the final product is 15 ppm.^[44] thus syntheses avoiding copper catalysis have obvious advantages. Solubilisation of 8 was optimal in CHCl₃, which was employed as the solvent for its reaction with 1, CHCl₃ was also used in place of the traditional MeCN for washing excess reagents from the resin during the work up. HPLC analysis of the raw products indicates complete consumption of 1 after 16 h at room temp. (Table 1). Due to the lipophilicity of the steroidal moiety, HPLC analysis of the crude products and separation of the cholesterol conjugates (16f, Figure 3) were performed on a Spherisorb C8 column.

Having verified the potential of resin-supported 1 as a click partner with azide dipoles, we wished to demonstrate compatibility with the CPG-supported dodecamer 2 (DNA = 5'-TCG CAC ACA CGC-3'), which carries all four nucleobases with their standard protecting groups. Exposure of 2 to 3 or 4 (20 equiv., 140 mM) in aqueous DMSO (50%) resulted in the formation of conjugates 17a and 17b (Figure 4) as judged by HPLC. As observed for all the T_{10} -cyclooctyne-azide conjugates 16, except 16f, similarities in the polarity characteristics of the parent 15/18 and the conjugated oligonucleotides 16a-e/17a-b resulted in HPLC profiles with relatively little difference between the retention time of reacted and unreacted cyclooctynes. However, coinjection of a reference sample of 18 with the reaction products indicated almost complete conversion to the conjugates 17a and 17b after 20 min at room temperature. As expected, the reactions proceeded almost without regiochemical preference and MALDI-TOF mass spectrometry confirmed the structural integrity of the new conjugates. Conjugation to 7 required 4 h to reach completion in aqueous DMSO, whereas reaction with 8 progressed smoothly in CHCl₃ after agitation overnight at room temp. (Table 2). In each case, HPLC analysis confirmed virtually full consumption of 2. Purified samples of the regioisomeric triazole conjugates 17c and 17d were obtained following separation by HPLC.

Figure 4. Triazole-ligated DNA-conjugates **17a-d** prepared by so-lid-supported SPAAC.

Table 2. Reaction conditions for 2 with 3, 4, 7, 8 and 9.

Azide	Solvent	Reaction time	Product
3	50% aq. DMSO	30 min	17a
4	50% aq. DMSO	30 min	17b
7	90% aq. DMSO	4 h	17c
8	CHCl ₃	16 h	17d
9	90% aq. DMF	16 h	17e
9 ^[a]	90% aq. DMF	16 h	17f

[a] This reaction was conducted in the solution phase.

Fluorescent tags have largely taken over from radioactive labels in unravelling molecular pathways and we wished to demonstrate the potential of resin-supported SPAAC with 9 to furnish fluorescent oligonucleotide probes. A range of solvents, including aqueous N,N-dimethylformamide (DMF), DMSO and CHCl₃ (90%), were selected for experiments between 9 and 2. In all cases, following washing of excess reagents, the resin-supported products retained an intense yellow colour and displayed fluorescence. However, during the cleavage/deprotection protocol, the colour began to fade before disappearing completely. We supposed that this concurred with a prevalence of the nonfluorescent lactone form of the hydrolysed ester.^[45] Although the HPLC traces of the crude reaction products indicated significant consumption of the starting material ($\approx 85-100\%$) and the emergence of a double peak characteristic of regioisomeric triazole conjugates, MALDI-TOF mass analysis of a purified product sample found m/z = 4262, which is consistent with the spirolactone structure 17e (Figure 5).

The failure of the fluorescein methyl ester to remain inert under the standard ammomium hydroxide mediated cleavage/deprotection protocol of solid phase oligonucleotide synthesis suggested that conjugation to 9 may be more suited to solution chemistry. DNA-cyclooctyne 18, obtained from 2 following deprotection and cleavage from the resin, was exposed to an aqueous DMF solution of 9. The reaction progressed cleanly, judged by HPLC, however, even after 18 h at room temp. consumption of the starting oligonucleotide was modest ($\approx 35\%$). This rose to an acceptable 80% by doubling the number of azide equivalents. The identity and integrity of the conjugate, which retained the yellow colour characteristic of molecules incorporating a tetracyclic fluorescein skeleton, was confirmed as 17f by HPLC and MALDI-TOF mass analysis (17f m/z requires 4278; found 4277).

Conclusions

We have demonstrated that SPAAC in the solid phase offers a robust and reliable method for oligonucleotide con-

Figure 5. Triazole-ligated 17e and 17f prepared from the reaction of 9 with 2 or in the solution phase with DNA-cyclooctyne 18, respectively.

FULL PAPER

jugation. It has been shown that, for reaction in the solid phase, it is not necessary to have an alkyne partner with enhanced reactivity and that a simple DNA-cyclooctyne is a suitable substrate for bioconjugation. Our success with the monocyclic strained alkyne will be deemed beneficial by those interested in conjugates of large azido partners or conjugates with reduced lipophilicity. Compatibility is demonstrated with azides of varying steric bulk and electronic demands, including biotin and cholesterol, the conjugates of which have potential application in cell biology and drug delivery. In circumstances where the azido partner carries functionalities incompatible with solid phase chemistry, it has been demonstrated that conjugation to DNA-cyclooctynes can be efficiently executed in solution.

Experimental Section

General: Analytical TLC was performed on precoated (250 µm) silica gel 60 F-254 plates from Merck. All plates were visualised by UV irradiation and/or staining with 5% H₂SO₄ in ethanol followed by heating. Flash chromatography was performed using silica gel 32-63 µm, 60 Å. Mass analysis was performed with a LASER-TOF LT3 or Applied Biosystem Voyager with 3-hydroxypicolinic acid or 2',4',6'-trihydroxyacetophenone as matrix or recorded by Metabion, Germany. NMR spectra were obtained with a Bruker instrument at 25 °C (1H at 300 MHz; 13C at 75 MHz). Chemical shifts are reported in ppm downfield from TMS as standard. NMR spectra are recorded in CDCl₃ unless otherwise stated. UV analysis was performed with a Jasco V-630BIO spectrophotometer at 25 °C. HPLC was carried out with a Gilson instrument equipped with a diode array detector and a Nucleosil C18 column (4.6×250 mm) or a Phenonmex C8 column $(4.6 \times 250 \text{ mm})$; a Dionex Ultimate 3000 instrument equipped with a Clarity Oligo RP C18 (4.6 \times 250 mm) or a Spherisorb C8 (4.6×250 mm) column was also used. DNA was desalted with illustra[™] NAP[™]-10 Sephadex[™] G-25 DNA grade columns purchased from GE Healthcare.

2-Azidoacetohydrazide (10): To a solution of ethyl 2-azidoacetate^[37] (2.0 g, 15.5 mmol) in ethanol (10 mL) was added hydrazine hydrate (1.3 mL, 25.3 mmol). The mixture was allowed to stir at room temperature for 2 h after which TLC analysis (CH₂Cl₂/MeOH, 9:1) indicated complete consumption of the starting material. Following removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography (CH₂Cl₂/MeOH, 9:1) to yield a colourless oil (1.6 g, 90%). ¹H NMR: δ = 8.14 (br. s, 1 H), 4.06 (br. s, 2 H), 4.01 (s, 2 H) ppm. ¹³C NMR: δ = 167.5, 51.6 ppm. HRMS (ESI): calcd. for C₂H₅N₅ONa [M + Na]⁺ 138.0386; found 138.0390.

N'-(2-Azidoacetyl)-5-(2-oxohexahydro-1*H*-thieno[3,4-*d*]imidazol-4yl)pentanehydrazide (7): To a solution of $11^{[46]}$ (870 mg, 2.55 mmol) and 10 (352 mg, 3.06 mmol) in anhydrous DMF (20 mL) was added triethylamine (1.5 mL, 20.4 mmol). The resulting mixture was stirred overnight at room temperature under an argon atmosphere. Following removal of particulate matter by filtration, the filtrate was evaporated to yield the crude product as a white solid, which was washed with CH₂Cl₂ (5 × 10 mL) to yield pure 7 (745 mg, 86%). ¹H NMR ([D₆]DMSO): δ = 10.05 (br. s, 1 H), 9.86 (s, 1 H), 6.43 (s, 1 H), 6.36 (s, 1 H), 4.33–4.29 (m, 1 H), 4.16–4.12 (m, 1 H), 3.89 (s, 2 H), 3.14–3.07 (m, 1 H), 2.86–2.80 (m, 1 H), 2.60–2.56 (m, 1 H), 2.14 (t, *J* = 7.2 Hz, 2 H), 1.64–1.30 (m, 6 H) ppm. ¹³C NMR ([D₆]DMSO): δ = 170.9, 166.3, 162.7, 61.0, 59.2, 55.4, 49.3, 32.9, 28.0, 27.9, 25.0 ppm. HRMS (ESI): calcd. for $C_{12}H_{20}N_7O_3S$ [M + H]⁺ 342.1343; found 342.1352.

(8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-17-[(R)-6-methylheptan-2-yl]-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[a]phenanthren-3-yl 2-(2-Azidoacetyl)hydrazinecarboxylate (8): To a solution of **10** (0.62 g, 5.39 mmol) and triethylamine (620 μ L) in CH₂Cl₂ (50 mL) was added a solution of **12** (2.00 g, 4.45 mmol) in CH₂Cl₂ (100 mL). The resulting mixture was stirred at room temperature overnight. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (hexane/ethyl acetate, 7:3) to yield a white solid (800 mg, 34%). ¹H NMR: δ = 8.19 (s, 1 H), 6.75 (s, 1 H), 5.38 (d, J = 5.1 Hz, 1 H), 4.62–4.51 (m, 1 H), 4.08 (s, 2 H), 2.40–2.33 (m, 2 H), 2.03–0.85 (m, 38 H), 0.68 (s, 3 H) ppm. ¹³C NMR: δ = 166.2, 155.5, 139.3, 123.0, 56.7, 56.1, 51.5, 50.0, 42.3, 39.7, 39.5, 38.2, 36.9, 36.5, 36.2, 35.8, 31.9, 31.8, 28.2, 28.0, 27.9, 24.3, 23.8, 22.8, 22.6, 21.0, 19.3, 18.7, 11.9 ppm. C₃₀H₄₉N₅O₃ (527.38): C 68.27, H9.36, N 13.27; found C 68.02, H 9.39, N 13.33.

Methyl 2-[6-(4-Azidobutoxy)-3-oxo-3*H*-xanthen-9-yl]benzoate (9): To a solution of 1-azido-4-bromobutane^[39] (270 mg, 1.26 mmol) in anhydrous DMF (5 mL) was added 13^[47] (314 mg, 0.90 mmol) and potassium carbonate (170 mg, 1.23 mmol). The mixture was heated to 70 °C under an argon atmosphere for 2 h after which TLC analysis (CH₂Cl₂/MeOH, 9:1) indicated complete reaction. The mixture was diluted with EtOAc (20 mL) and washed with water (3 \times 10 mL). The organic layer was dried with MgSO₄, and the solvent was removed under vacuum to yield an orange-brown solid. This was washed with hexane $(6 \times 10 \text{ mL})$ to remove excess starting azide, yielding the product as an orange-brown solid, which was used without further purification (276 mg, 69%). ¹H NMR: δ = 8.25 (d, J = 7.5 Hz, 1 H), 7.77–7.65 (m, 2 H), 7.31 (d, J = 7.2 Hz, 1 H), 6.95–6.83 (m, 3 H), 6.73 (dd, J = 2.1, 8.7 Hz, 1 H), 6.54 (dd, J =1.8, 9.6 Hz, 1 H), 6.45 (d, J = 1.8 Hz, 1 H), 4.10 (t, J = 6.0 Hz, 2 H), 3.64 (s, 3 H), 3.39 (t, J = 6.6 Hz, 2 H) 1.98-1.73 (m, 4 H) ppm. ¹³C NMR: δ = 185.5, 165.6, 163.3, 158.9, 154.2, 150.3, 134.5, 132.7, 131.1, 130.5, 130.2, 130.2, 129.7, 129.7, 128.9, 117.4, 114.8, 113.6, 105.6, 100.8, 68.1, 52.3, 51.03, 26.2, 25.6 ppm. HRMS (ESI): calcd. for $C_{25}H_{22}N_3O_5 [M + H]^+$ 444.1554; found 444.1574.

General Procedure for the Azide Click Reactions on 1. Preparation of Conjugates 16: To solid-supported $1^{[8]}$ (0.2 µmol) in an Eppendorf tube was added a solution of the azide in DMSO (20 µL of a 200 mM stock solution, 4 µmol, 20 equiv.) and the final volume was adjusted to 30 µL with DMSO and water according to the solubility of azide (Table 1). The mixture was agitated at room temperature. After completion of the conjugation (Table 1), as monitored by HPLC, the supernatant liquid was removed by syringe and the CPG was washed with CH₃CN (5× 300 µL) and H₂O (5× 300 µL). In the reaction with **8**, chloroform was used as the reaction solvent and in place of CH₃CN during the work up. Cleavage from the resin, deprotection (method i) and HPLC analysis (conditions A) followed according to the procedures described below.

General Procedures for Deprotection and Cleavage of DNA on Solid Phase: For analytical purposes a portion of the DNA was deprotected and cleaved from the CPG by incubating the CPG-DNA under conditions i) 28% aqueous NH₄OH (500 μ L) at 25 °C for 30 min (for substrates 16), or ii) 28% aqueous NH₄OH (500 μ L) diluted to 750 μ L with EtOH at 25 °C for 24 h (for substrates 17). NH₄OH was evaporated using a concentrator. The CPG was washed with H₂O (3 × 150 μ L aliquots), all solutions and washings were combined to afford an aqueous solution of DNA, which was analysed and purified by reversed-phase HPLC.

General Methods for HPLC Analysis and Purification of Oligonucleotide Conjugates: DNA cycloaddition products 16 and 17 were analyzed by reverse-phase HPLC under either conditions A (for products 16) or B (for products 17). Conditions A: 20 µL injection loop. Buffer A: 0.1 M TEAAc, pH 7.5, 1% (v/v) MeCN; Buffer B: 0.1 M TEAAc, pH 7.5, 80% (v/v) MeCN. Gradient for 16a-e: 0- $3 \min, 5\%$ B; 3–23 min, 5–95% B. Gradient for 16f: 0–3 min 10% B, 3-13, $10\rightarrow95\%$ B. Flow rate: 1.0 mL/min. Detection at 260 nm. Column: Clarity Oligo RP C18 (4.6× 250 mm) for 16a-e and a Spherisorb C8 ($4.6 \times 250 \text{ mm}$) column for 16f. Conditions B: 200 µL injection loop. Buffer A: 0.1 M TEAAc, pH 7.5, 5% (v/v) MeCN; Buffer B: 0.1 M TEAAc, pH 7.5, 65% (v/v) MeCN. Gradient: 0-4.3 min, 5% B; 4.3-16.6 min, 5→100% B. Flow rate: 1.0 mL/ min. Detection at 260 nm. Column: Nucleosil C18 column (4.6 \times 250 mm) for 17a-c,e,f or Phenonmex C8 column (4.6 \times 250 mm) for 17d.

General Procedure for Click Reactions on 2 with 3, 4 and 7. Preparation of Conjugates 17a–c: To solid-supported $2^{[8]}$ (0.12 µmol) in an eppendorf tube was added a solution of the azide (10 µL of a 240 mM stock solution in DMSO, 2.4 µmol, 20 equiv.) and the volume was adjusted to 20 µL with DMSO and water according to the solubility of the azide (Table 2). The mixture was agitated at room temperature. After completion of the conjugation (Table 2), as monitored by HPLC, the CPG was washed with CH₃CN (5× 300 µL) and H₂O (1× 300 µL). In the case of 17c, DMSO was used instead of CH₃CN during the work up. Cleavage from the resin, deprotection (method ii) and HPLC analysis (conditions B) followed according to the procedures described above.

Procedure for Click Reaction between 2 and 8. Preparation of Cholesterol Conjugate 17d: To solid-supported $2^{[8]}$ (0.08 µmol) in an eppendorf tube was added a solution of 8 (15 µL of a 107 mM stock solution in CHCl₃, 1.6 µmol, 20 equiv.) and the resulting mixture was agitated at room temperature overnight. After completion of the conjugation, the CPG was washed with CHCl₃ (5 × 300 µL), CH₃CN (1 × 300 µL) and H₂O (1 × 300 µL). Cleavage from the resin, deprotection (method ii) and HPLC analysis (conditions B) followed according to the procedures described above.

Procedure for Click Reaction between 2 and 9. Preparation of Fluorescein Conjugate 17e: To solid-supported $2^{[8]}$ (0.08 µmol) in an eppendorf tube was added a solution of 9 (18 µL of an 89 mM stock solution in CHCl₃, 1.6 µmol, 20 equiv.) and H₂O (2 µL) and the resulting mixture was agitated at room temperature overnight. After completion of the conjugation, the CPG was washed with CHCl₃ (5 × 300 µL), CH₃CN (1 × 300 µL) and H₂O (1 × 300 µL). Cleavage from the resin, deprotection (method ii) and HPLC analysis (conditions B) followed according to the procedures described above.

Procedure for Click Reaction in the Solution Phase between 18 and 9. Preparation of Fluorescein Conjugate 17f: Following deprotection and cleavage from the resin of 2 (method ii), an aqueous solution of 18 (125 μ L, 200 μ M, 0.025 μ mol) was evaporated to dryness under vacuum. To this was added a solution of 9 (9.0 μ L of a 112 mM stock solution in DMF, 1.0 μ mol, 40 equiv.) and H₂O (0.5 μ L). The resulting solution was agitated overnight at room temperature. H₂O (200 μ L) was added and this solution was washed with EtOAc (10 × 300 μ L) to remove the excess azide. Any remaining EtOAc was removed under vacuum and the resulting aqueous solution was analysed and purified by reversed-phase HPLC (conditions B) to furnish 17f.

Supporting Information (see footnote on the first page of this article): Copies of ¹H and ¹³C NMR spectra, HPLC data and MALDI-TOF MS data.

Acknowledgments

Financial support from the Science Foundation of Ireland (Programme code 05/PICA/B838) is acknowledged. C. F. is grateful to NUI Maynooth and the Irish Research Council Science and Engineering for receipt of an Embark Postgraduate Research Scholarship (Programme code RS/2007/48).

- Y. Singh, P. Murat, E. Defrancq, Chem. Soc. Rev. 2010, 39, 2054–2070.
- [2] J. Lahann (Ed.), Click Chemistry for Biotechnology and Materials Science, Wiley, Chichester, United Kingdom, 2009.
- [3] J. Gierlich, G. A. Burley, P. M. E. Gramlich, D. M. Hammond, T. Carell, Org. Lett. 2006, 8, 3639–3642.
- [4] L. M. Gaetke, C. K. Chow, *Toxicology* 2003, 189, 147–163;
 A. J. Link, D. A. Tirrell, J. Am. Chem. Soc. 2003, 125, 11164–11165.
- [5] D. Soriano del Amo, W. Wan, H. Jiang, C. Besanceney, A. C. Yan, M. Levy, Y. Liu, F. L. Marlow, P. Wu, *J. Am. Chem. Soc.* **2010**, *132*, 16893; T. R. Chan, R. Hilgraf, K. B. Sharpless, V. V. Fokin, *Org. Lett.* **2004**, *6*, 2853.
- [6] X. Ning, R. P. Temming, J. Dommerholt, J. Guo, D. B. Ania, M. F. Debets, M. A. Wolfert, G.-J. Boons, F. L. van Delft, Angew. Chem. 2010, 49, 3065–3068.
- [7] I. Singh, F. Heaney, Org. Biomol. Chem. 2010, 8, 451-456.
- [8] I. Singh, F. Heaney, Chem. Commun. 2011, 47, 2706–2708.
- [9] I. Singh, J. S. Vyle, F. Heaney, Chem. Commun. 2009, 3276– 3278.
- [10] K. Gutsmiedl, D. Fazio, T. Carell, Chem. Eur. J. 2010, 16, 6877–6883.
- [11] K. Gutsmiedl, C. T. Wirges, V. Ehmke, T. Carell, Org. Lett. 2009, 11, 2405–2408.
- [12] W. Song, Y. Wang, J. Qu, Q. Lin, J. Am. Chem. Soc. 2008, 130, 9654–9655.
- [13] J. Schoch, M. Wiessler, A. Jaschke, J. Am. Chem. Soc. 2010, 132, 8846–8847.
- [14] D. Graham, A. Enright, Curr. Org. Synth. 2006, 3, 9-17.
- [15] G. Wittig, R. Pohlke, Chem. Ber. 1961, 94, 3276–3286.
- [16] R. B. Turner, A. D. Jarrett, P. Goebel, B. J. Mallon, J. Am. Chem. Soc. 1973, 95, 790–792.
- [17] E. M. Sletten, C. R. Bertozzi, Org. Lett. 2008, 10, 3097-3099.
- [18] Y. Zou, J. Yin, Bioorg. Med. Chem. Lett. 2008, 18, 5664-5667.
- [19] N. J. Agard, J. M. Baskin, J. A. Prescher, A. Lo, C. R. Bertozzi, ACS Chem. Biol. 2006, 1, 644–648.
- [20] J. A. Codelli, J. M. Baskin, N. J. Agard, C. R. Bertozzi, J. Am. Chem. Soc. 2008, 130, 11486–11493.
- [21] S. V. Orski, A. A. Poloukhtine, S. Arumugam, L. Mao, V. V. Popik, J. Locklin, J. Am. Chem. Soc. 2010, 132, 11024–11026.
- [22] L. A. Canalle, S. S. van Berkel, L. T. de Haan, J. C. M. van Hest, *Adv. Funct. Mater.* **2009**, *19*, 3464–3470.
- [23] F. Starke, M. Walther, H.-J. Pietzsch, ARKIVOC 2010, 350– 359.
- [24] A. Kuzmin, A. Poloukhtine, M. A. Wolfert, V. V. Popik, *Bio-conjugate Chem.* 2010, 21, 2076–2085.
- [25] J. C. Jewett, C. R. Bertozzi, Chem. Soc. Rev. 2010, 39, 1272– 1279.
- [26] B. C. Sanders, F. Friscourt, P. A. Ledin, N. E. Mbua, S. Arumugam, J. Guo, T. J. Boltje, V. V. Popik, G.-J. Boons, J. Am. Chem. Soc. 2011, 133, 949–957.
- [27] P. V. Chang, J. A. Prescher, E. M. Sletten, J. M. Baskin, I. A. Miller, N. J. Agard, A. Lo, C. R. Bertozzi, *Proc. Natl. Acad. Sci. USA* **2010**, *107*, 1821–1826.
- [28] P. Kele, G. Mezö, D. Achatz, O. S. Wolfbeis, Angew. Chem. Int. Ed. 2009, 48, 344–347.
- [29] A. Bernardin, A. Cazet, L. Guyon, P. Delannoy, F. Vinet, D. Bonnaffe, I. Texier, *Bioconjugate Chem.* 2010, 21, 583–588.
- [30] M. E. Martin, S. G. Parameswarappa, M. S. O'Dorisio, F. C. Pigge, M. K. Schultz, *Bioorg. Med. Chem. Lett.* **2010**, *20*, 4805– 4807.

FULL PAPER

- [31] E. Lallana, E. Fernandez-Megia, R. Riguera, J. Am. Chem. Soc. 2009, 131, 5748–5750.
- [32] P. van Delft, N. J. Meeuwenoord, S. Hoogendoorn, J. Dinkelaar, H. S. Overkleeft, G. A. van der Marel, D. V. Filippov, *Org. Lett.* 2010, *12*, 5486–5489.
- [33] K. N. Jayaprakash, C.-G. Peng, D. Butler, J. P. Varghese, M. A. Maier, K. G. Rajeev, M. Manoharan, *Org. Lett.* **2010**, *12*, 5410–5413.
- [34] T. Plass, S. Milles, C. Koehler, C. Schultz, E. A. Lemke, Angew. Chem. 2011, 50, 3878–3881.
- [35] D. Castanotto, J. J. Rossi, Nature 2009, 457, 426-433.
- [36] O. S. Wolfbeis, Angew. Chem. Int. Ed. 2007, 46, 2980-2982.
- [37] F. Shi, J. P. Waldo, Y. Chen, R. C. Larock, Org. Lett. 2008, 10, 2409–2412.
- [38] K. Sivakumar, F. Xie, B. M. Cash, S. Long, H. N. Barnhill, Q. Wang, Org. Lett. 2004, 6, 4603–4606.
- [39] L. Yao, B. T. Smith, J. Aubé, J. Org. Chem. 2004, 69, 1720– 1722.
- [40] R. I. Jølck, R. H. Berg, T. L. Andresen, *Bioconjugate Chem.* 2010, 21, 807–810.

- [41] T. Yamada, C. G. Peng, S. Matsuda, H. Addepalli, K. N. Jayaprakash, M. R. Alam, K. Mills, M. A. Maier, K. Charisse, M. Sekine, M. Manoharan, K. G. Rajeev, J. Org. Chem. 2011, 76, 1198–1211.
- [42] M. F. Debets, C. W. J. van der Doelen, F. P. J. T. Rutjes, F. L. van Delft, *ChemBioChem* 2010, 11, 1168.
- [43] G. Godeau, C. Staedel, P. Barthelemy, J. Med. Chem. 2008, 51, 4374–4376.
- [44] J. E. MacDonald, J. A. Kelly, J. G. C. Veinot, *Langmuir* 2007, 23, 9543–9545.
- [45] C. Li, E. Henry, N. K. Mani, J. Tang, J.-C. Brochon, E. Deprez, J. Xie, *Eur. J. Org. Chem.* 2010, 2395–2405.
- [46] X. Jiang, M. Ahmed, Z. Deng, R. Narain, *Bioconjugate Chem.* 2009, 20, 994–1001.
- [47] S. A. P. Guarin, D. Tsang, W. G. Skene, New J. Chem. 2007, 31, 210–217.

Received: July 18, 2011

Published Online: September 19, 2011