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A copper-catalyzed synthesis of N-sulfonylamidines via three-component coupling of sulfonyl azides, ter-
minal alkynes, and trialkylamines is reported.
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Amidines have fascinating chemical properties by virtue of their
structures, and they have been widely applied in medicinal and
synthetic chemistry.1 Substituted amidines are useful intermedi-
ates for the synthesis of heterocyclic compounds and metal com-
plexes.2,3 Traditional methods for the preparation of amidine
derivatives are based on functional group transformation of pre-
cursors such as thioamides,4 isocyanides,5 and aldoximes.6

Tandem reactions of sulfonyl azides, terminal alkynes, and sec-
ondary amines have been reported and the structures of the result-
ing amidines were confirmed unambiguously by an X-ray
crystallographic analysis, which disclosed the E-form of the C@N
double bond.7 In this Letter, we report a one-pot synthesis of N-
sulfonylamidines via the Cu-catalyzed three-component coupling
of trialkylamines, sulfonyl azides, and terminal alkynes. Trialkyl-
amines are frequently applied as bases, but rarely used as the
nucleophile in these reactions.8–10

The formation of ketenimine intermediates from terminal al-
kynes, sulfonyl azides, and triethylamine, as the base, in the pres-
ence of copper catalysts,11,12 has encouraged us to trap these
intermediates using trialkylamines. It should be mentioned that
the ketenimine intermediate can be generated using activated
azides such as sulfonyl, carbonyl, and phosphoryl azides.13,14 Thus,
the reaction of phenylacetylene (1a), p-toluenesulfonyl azide (2a),
and triethylamine (3a) gave N1,N1-diethyl-2-phenyl-N2-tosylace-
tamidine (4a) in 83% yield (Scheme 1). This result prompted us
ll rights reserved.
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to optimize the reaction conditions for the synthesis of other sulf-
onylamidine derivatives15 (Table 1).

While only a trace of product was obtained at ambient temper-
ature, heating at 60 �C was found to be effective for complete con-
version. Also, an increased loading of the tertiary amine gave better
yields. Several catalysts such as CuI, CuBr, CuCl, Cu2O, and copper
powder were tested with CuI and CuBr giving the best results.
Among several solvents screened, THF was the best; nonpolar sol-
vents such as toluene and hexane were not suitable for the forma-
tion of sulfonylamidine derivatives. Thus, the optimized reaction
conditions used were 10 mol % of CuI relative to the alkyne and
3 equiv of the trialkylamine in THF at 60 �C.

Phenylacetylene readily participates in the coupling to furnish
the corresponding amidine in good yields (Table 1, entries 1–3).
Aliphatic acetylenes served as low-yielding substrates compared
to phenylacetylene (Table 1, entries 4–8). Aromatic sulfonyl azides
reacted efficiently with 1a and the corresponding products were
obtained in good yields. Several types of aliphatic acyclic trialkyl-
amines were utilized successfully.
Scheme 1. Copper-catalyzed three-component coupling of phenyacetylene, p-
toluenesulfonyl azide, and triethylamine.
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Table 1
Copper-catalyzed three-component coupling
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Scheme 2. A plausible mechanism for the reaction.
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A plausible rationalization for the formation of compounds 4 is
given in Scheme 2. The yellow copper acetylide 5, formed from 1
and CuI,7 undergoes a 1,3-dipolar cycloaddition reaction with sul-
fonyl azide 2 to generate the triazole derivative 6.16,17 This inter-
mediate can then be converted into the ketenimine derivative
7,18 which is attacked by the trialkylamine to afford the zwitterion
8. This intermediate is converted into salt 9, presumably by mois-
ture. Dealkylation of intermediate 9 by the trialkylamine would
produce the desired product 4.

In conclusion, ketenimine intermediates generated by the addi-
tion of copper acetylides to tosyl azides are trapped by trialkyl-
amines to yield N-sulfonylamidine derivatives. The present
method may be considered a practical route for the synthesis of
functionalized N-sulfonylamidines.

Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.tetlet.2010.11.135.
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