Tetrahedron Letters 52 (2011) 668-670

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Formation of N-sulfonylamidines by copper-catalyzed coupling of sulfonyl azides, terminal alkynes, and trialkylamines

minal alkynes, and trialkylamines is reported.

Issa Yavari*, Salome Ahmadian, Majid Ghazanfarpur-Darjani, Yazdan Solgi

Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran

ARTICLE INFO

ABSTRACT

Article history Received 24 August 2010 Revised 14 November 2010 Accepted 26 November 2010 Available online 2 December 2010

Keywords: Terminal alkyne Trialkylamine Sulfonyl azide Copper catalyst N-Sulfonylamidine

Amidines have fascinating chemical properties by virtue of their structures, and they have been widely applied in medicinal and synthetic chemistry.¹ Substituted amidines are useful intermediates for the synthesis of heterocyclic compounds and metal complexes.^{2,3} Traditional methods for the preparation of amidine derivatives are based on functional group transformation of precursors such as thioamides,⁴ isocyanides,⁵ and aldoximes.⁶

Tandem reactions of sulfonyl azides, terminal alkynes, and secondary amines have been reported and the structures of the resulting amidines were confirmed unambiguously by an X-ray crystallographic analysis, which disclosed the *E*-form of the C=N double bond.⁷ In this Letter, we report a one-pot synthesis of Nsulfonylamidines via the Cu-catalyzed three-component coupling of trialkylamines, sulfonyl azides, and terminal alkynes. Trialkylamines are frequently applied as bases, but rarely used as the nucleophile in these reactions.⁸⁻¹⁰

The formation of ketenimine intermediates from terminal alkynes, sulfonyl azides, and triethylamine, as the base, in the presence of copper catalysts,^{11,12} has encouraged us to trap these intermediates using trialkylamines. It should be mentioned that the ketenimine intermediate can be generated using activated azides such as sulfonyl, carbonyl, and phosphoryl azides.^{13,14} Thus, the reaction of phenylacetylene (1a), *p*-toluenesulfonyl azide (2a), and triethylamine (**3a**) gave N^1 , N^1 -diethyl-2-phenyl- N^2 -tosylacetamidine (4a) in 83% yield (Scheme 1). This result prompted us to optimize the reaction conditions for the synthesis of other sulfonylamidine derivatives¹⁵ (Table 1).

A copper-catalyzed synthesis of N-sulfonylamidines via three-component coupling of sulfonyl azides, ter-

While only a trace of product was obtained at ambient temperature, heating at 60 °C was found to be effective for complete conversion. Also, an increased loading of the tertiary amine gave better yields. Several catalysts such as CuI, CuBr, CuCl, Cu₂O, and copper powder were tested with CuI and CuBr giving the best results. Among several solvents screened. THF was the best: nonpolar solvents such as toluene and hexane were not suitable for the formation of sulfonylamidine derivatives. Thus, the optimized reaction conditions used were 10 mol % of CuI relative to the alkyne and 3 equiv of the trialkylamine in THF at 60 °C.

Phenylacetylene readily participates in the coupling to furnish the corresponding amidine in good yields (Table 1, entries 1–3). Aliphatic acetylenes served as low-vielding substrates compared to phenylacetylene (Table 1, entries 4-8). Aromatic sulfonyl azides reacted efficiently with 1a and the corresponding products were obtained in good yields. Several types of aliphatic acyclic trialkylamines were utilized successfully.

© 2010 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.:+98 21 82883465; fax: +98 21 82883455. E-mail address: yavarisa@modares.ac.ir (I. Yavari).

Table 1
Copper-catalyzed three-component coupling

Entry	Alkyne	Sulfonyl azide	Amine	Amidine	Yield (%)
1	Ph-==== 1a	p-Tolyl ^N 3 2a	Et ₃ N	Ph, Et 4a	83
2	1a	2a	(ⁱ Pr) ₂ NEt	Ph ^j Pr ^j Pr ^j Pr ^j Pr	86
3	1a	O Ph ^S N ₃ 2b	(ⁱ Pr) ₂ NEt	Ph Ph Nr Pr Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph	73
4	<i>n</i> -Pr— — 1b	P-Tolyl ^S N ₃ 2a	Et ₃ N	n-Pr L Et Ad	31
5	1b	2a	(ⁱ Pr) ₂ NEt	n-Pr N iPr ⁱ Pr ⁱ Pr	34
6	<i>n</i> -Bu— <u></u> 1с	2a	Et ₃ N	n-Bu ↓ NTs ↓ Lt 4f	51
7	1c	2a	(ⁱ Pr) ₂ NEt	n-Bu NTs n-Bu N [/] Pr 4g	45
8	1c	21a	(ⁱ Pr)NMe ₂	n-Bu NTs n-Bu N ^{Me} 4h Pr	42

Scheme 2. A plausible mechanism for the reaction.

A plausible rationalization for the formation of compounds 4 is given in Scheme 2. The yellow copper acetylide 5, formed from 1 and Cul,⁷ undergoes a 1,3-dipolar cycloaddition reaction with sulfonyl azide **2** to generate the triazole derivative **6**.^{16,17} This intermediate can then be converted into the ketenimine derivative **7**¹⁸ which is attacked by the trialkylamine to afford the zwitterion 8. This intermediate is converted into salt 9, presumably by moisture. Dealkylation of intermediate 9 by the trialkylamine would produce the desired product 4.

In conclusion, ketenimine intermediates generated by the addition of copper acetylides to tosyl azides are trapped by trialkylamines to yield *N*-sulfonylamidine derivatives. The present method may be considered a practical route for the synthesis of functionalized N-sulfonylamidines.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.11.135.

References and notes

- Sienkiewich, P.; Bielawski, K.; Bielawska, A.; Palka, J. Environ. Toxicol. 1 Pharmacol. 2005, 20, 118.
- Boyd, G. V. In The Chemistry of Amidines and Imidates; Patai, S., Rappoport, Z., 2. Eds.; Wiley: New York, 1991; Vol. 2,. Chapter 8.
- 3 Barker, J.; Kilner, M. Coord. Chem. Rev. 1994, 133, 219.
- Kumagai, N.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2004, 43, 478. 4. Lange, U. E. W.; Schafer, B.; Baucke, D.; Buschmann, E.; Mack, H. Tetrahedron 5.
- Lett. 1999, 40, 7067.
- 6 Takuwa, T.; Minowa, T.; Onishi, J. Y.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2004, 77. 1717.
- Bae, I.; Han, H.; Chang, S. *J. Am. Chem. Soc.* **2005**, *127*, 2038. Xu, X.; Li, X. Org. Lett. **2009**, *11*, 1027. 7
- 8.
- 9 Xu, X.; Li, X.; Ma, L.; Ye, N.; Weng, B. J. Am. Chem. Soc. 2008, 130, 14048.
- 10. Liu, N.; Tang, B.; Chen, Y.; He, L. Eur. J. Org. Chem. 2009, 2059.
- Chang, S.; Yoo, E.; Bae, I.; Cho, S.; Han, H. Org. Lett. 2006, 8, 1347. 11.
- Chang, S.; Yoo, E.; Bae, I.; Cho, S.; Han, H. J. Am. Chem. Soc. 2005, 127, 12. 16046.

- 13. Fokin, V.; Cassidy, M.; Raushel, J. Angew. Chem., Int. Ed. 2006, 45, 3154.
- 14. Chang, S.; Kim, S.; Jung, D. J. Org. Chem. 2007, 72, 9769.
- 15. General procedure. To a mixture of azide **2** (1.2 mmol), alkyne **1** (1 mmol), and Cul (0.1 mmol) in THF (2 mL) was slowly added the tertiary amine (3 mmol). The mixture was stirred at 60 °C. After completion of the reaction [about 12 h; TLC (AcOEt/hexane 1:4) monitoring], the mixture was diluted with CH₂Cl₂ (2 mL) and aqueous NH₄Cl solution (3 mL), stirred for 30 min, and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 mL × 3) and the combined organic fractions were dried (NaSO₄) and concentrated under reduced pressure. The residue was purified by flash column chromatography [silica gel (230–400 mesh; Merck), hexane/AcOEt 5:1] to give the product. *N*-sulfonylamidines **4b** and **4g** are known.⁷

*N*¹,*N*¹-*Diethyl*-2-*phenyl*-*N*²-tosylacetamidine (**4a**). Colorless solid, mp 136–139 °C, 0.28 g, yield: 83%. IR (KBr) (ν_{max} , cm⁻¹): 2977, 1549, 1455, 1360, 1272, 1142, 1090, 761, 589. Anal. Calcd for C₁₉H₂₄N₂O₂S (344.47): C, 66.25; H, 7.02; N, 8.13%. Found: C, 66.23; H, 6.99; N, 8.11%. MS (EI, 70 eV): *m/z* (%): 345.5 (M+1, 3), 238 (7), 190 (9), 162 (2), 155 (33), 91 (100), 72 (59), 44 (63). ¹H NMR (500.1 MHz, CDCl₃): δ_{H} = 0.95 (3H, t, ³*J* = 7.0 Hz, Me), 1.15 (3H, t, ³*J* = 7.0 Hz, Me), 2.36 (3H, s, Me), 3.20 (2H, q, ³*J* = 7.0 Hz, Me), 1.15 (3H, t, ³*J* = 7.0 Hz, Me), 4.38 (2H, s, CH₂), 7.11 (2H, d, ³*J* = 7.9 Hz, Ar), 7.16-7.26 (5H, m, Ph), 7.77 (2H, d, ³*J* = 7.9 Hz, Ar), 7.16-7.26 (5H, m, Ph), 7.77 (2H, d, ³*J* = 7.9 Hz, Ar), 7.16-7.26 (2H, 128.7 (2CH), 132.4 (CH₂)), 36.5 (CH₂N), 41.8 (CH₂N), 126.2 (CH), 126.8 (2CH), 128.7 (2CH), 129.4 (2CH), 131.7 (2CH), 139.4 (C), 141.6 (C), 143.6 (C), 164.5 (C=N). N¹,N¹-Diethyl-N²-tosylpentanamidine (**4d**). Colorless solid, mp 107–108 °C, 0.09 g, yield: 31%. IR (KBr) (ν_{max} , cm⁻¹): 2928, 1567, 1432, 1317, 1287, 1129, 1074, 755, 541. Anal. Calcd for C₁₆H₂₆N₂O₂S (310.45): C, 61.90; H, 8.44; N, 9.01%. MS (EI, 70 eV): *m/z* (%): 311.5 (M+1, 2), 204 (5), 156 (10), 155 (63), 128 (43), 91 (100), 72 (81), 44 (51). ¹H NMR

 $\begin{array}{l} (500.1 \text{ MHz}, \text{ CDCl}_3): \ \delta_{\text{H}} = 0.92 \ (3\text{H}, \ t_i \ ^3J = 7.2 \ \text{Hz}, \ \text{Me}), \ 1.10 \ (3\text{H}, \ t_i \ ^3J = 7.0 \ \text{Hz}, \ \text{Me}), \ 1.23 \ (3\text{H}, \ t_i \ ^3J = 7.0 \ \text{Hz}, \ \text{Me}), \ 1.40 - 1.46 \ (2\text{H}, \ m, \ \text{CH}_2), \ 1.58 - 1.63 \ (2\text{H}, \ m, \ \text{CH}_2), \ 2.39 \ (3\text{H}, \ s_i \ ^3J = 7.0 \ \text{Hz}, \ \text{Me}), \ 1.40 - 1.46 \ (2\text{H}, \ m, \ \text{CH}_2), \ 1.58 - 1.63 \ (2\text{H}, \ m, \ \text{CH}_2), \ 2.39 \ (3\text{H}, \ s_i \ ^3J = 7.0 \ \text{Hz}, \ \text{Me}), \ 1.40 - 1.46 \ (2\text{H}, \ m, \ \text{CH}_2), \ 1.58 - 1.63 \ (2\text{H}, \ m, \ \text{CH}_2), \ 2.39 \ (3\text{H}, \ s_i \ ^3J = 7.0 \ \text{Hz}, \ \text{CH}_2), \ 2.39 \ (3\text{H}, \ s_i \ ^3J = 7.0 \ \text{Hz}, \ \text{CH}_2), \ 2.39 \ (2\text{H}, \ q_i \ ^3J = 7.0 \ \text{Hz}, \ \text{CH}_2), \ 2.39 \ (2\text{H}, \ q_i \ ^3J = 7.0 \ \text{Hz}, \ \text{CH}_2), \ 2.31 \ (2\text{H}, \ q_i \ ^3J = 7.0 \ \text{Hz}, \ \text{CH}_2), \ 2.31 \ (2\text{H}, \ q_i \ ^3J = 7.0 \ \text{Hz}, \ \text{CH}_2), \ 2.31 \ (2\text{H}, \ q_i \ ^3J = 7.0 \ \text{Hz}, \ \text{CH}_2), \ 2.31 \ (2\text{H}, \ q_i \ ^3J = 7.0 \ \text{Hz}, \ \text{CH}_2), \ 2.31 \ (2\text{H}_2), \ (2\text{H}_2), \ (2\text{H}_2), \ (2\text{H}$

(a) 100 (c) 110 (c) 1

- 16. Meldal, M.; Tornøe, Ch. Chem. Rev. 2008, 108, 2952.
- 17. Recently, Sharpless and co-workers [Yoo, E. J.; Ahlquist, M.; Kim, S. H.; Bae, I.; Fokin, V. V.; Sharpless, K. B.; Chang, S. Angew. Chem., Int. Ed. 2007, 46, 1730] established anhydrous conditions with Cul in CHCl₃/2,6-lutidine at 0 °C to prevent intermediate 6 from decomposing and provide selective formation of the desired 1-sulfonyltriazoles.
- 18. Although a 1,3-dipole or a carbene (without migration of the Cu) would fit the data, we prefer the mechanism shown in Scheme 2.