
ELSEVIER Carbohydrate Research 300 (1997) 119-125 

CARBOHYDRATE 
RESEARCH 

Mechanistic studies on the stereoselective 
formation of glycosyl iodides: first characterization 

of ¢l-D-glycosyl iodides 

Jacquelyn Gervay *, Truc N. Nguyen, Michael J. Hadd 
Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA 

Received 10 September 1996; accepted 15 November 1996 

Abstract 

Treatment of glycosyl acetates with one equivalent of iodotrimethylsilane at low tempera- 
ture results in the quantitative formation of glycosyl iodides. Carbohydrates that possess a 
participating group at the C-2 position initially form /3-o-glycosyl iodides, which quickly 
equilibrate to the o~-iodo anomers. The /3 anomer of peracetylated glucose reacts faster than 
the ce anomer, presumably because the C-2 acetate can assist in displacing the silylated 
anomeric acetate. In contrast, the o~ anomer reacts faster than the /3 anomer in substrates 
lacking a participating group at C-2. For example, activation of 1-O-acetyl-2,3,4,6-tetra-O- 
benzyl-o~-D-glucopyranose leads to formation of the /3 iodide, while the corresponding /3 
acetate produces the ce iodide. Although the /3 iodides quickly equilibrate to the o~ anomers, 
they can be prepared in sizable quantities at low temperatures where equilibration is slow. 
This report describes the first stereoselective formation and characterization of /3-D-glycosyl 
iodides. © 1997 Elsevier Science Ltd. 
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I. Introduction 

Glycosyl iodides were first prepared by reaction of 
glycosyl bromides with sodium iodide in acetone [1]. 
More than 50 years later, Thiem and Meyer reported 
that glycosyl acetates, methyl glycosides, 1,6- 
anhydrosugars, and glycosyl acetals react with 
iodotrimethylsilane (Me3SiI) to produce a-D-glycosyl 
iodides [2]. Other protocols for producing a-o-glyco- 
syl iodides include reaction of anomeric hydroxyls 
with iodoenamines [3], and reaction of anomeric ac- 
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etates with iodic acid in glacial acetic acid [4]. Puri- 
fied a-D-glycosyl iodides have served as glycosyl 
donors in only a few cases [5,6], and the general 
consensus has been that these compounds are too 
reactive to be generally useful [7]. In situ generation 
of glycosyl iodides, from activated donors, and their 
subsequent glycosylation is an alternative approach 
[8]. In these reactions, both c~- and /3-D-glycosyl 
iodides have been proposed as intermediates, depend- 
ing upon the stereochemical outcome. However, until 
this report /3-D-glycosyl iodide formation had never 
been directly observed. Clearly, the inherent instabil- 
ity of anomeric iodides poses challenges in develop- 
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ing useful glycosylation protocols. These compounds 
are susceptible to both thermal and photochemical 
homolytic bond cleavage, creating the possibility for 
competing radical reactions [9]. However, we rea- 
soned that if the iodides could be generated under 
mild conditions, then perhaps nucleophilic displace- 
ment with various glycosyl acceptors could be ef- 
fected. Furthermore, stereoselective formation of ei- 
ther the a- or /3-D-glycosyl iodides could lead to 
stereoselective glycosylation protocols. Reported 
herein are mechanistic studies on the stereoselective 
generation of various glycosyl iodides and the first 
NMR characterization of the /3-iodo anomers. 

2. Results and discussion 

We began our studies by reinvestigating the reac- 
tions of peracetylated sugars with Me3SiI. Thiem and 
Meyer performed these reactions at 80 °C in toluene 
with yields ranging from 68-80% [2]. We were 
concerned that even small amounts of decomposition 
products could adversely affect subsequent glycosyla- 
tions; therefore, our experiments were performed at 
low temperatures in deuterated solvents in order to 
monitor the reaction course using NMR spectroscopy. 

The /3 anomer of peracetylated o-galactose (1) was 
reacted with 1.2 equiv of Me3SiI in dichloromethane- 
d 2 at - 20 °C. After 60 min, evidence of the starting 
material and two new products was seen in the NMR 
spectrum (product ratio 17:1). The anomeric proton 
of the major product appeared as a doublet at 6 5.79 
( J  9.5 Hz), while that of the minor product appeared 
at ~ 7.09 ( J  4.2 Hz). As the reaction progressed the 
starting material completely reacted leaving two 
products which equilibrated over several hours 
(Scheme 1). The NMR spectrum of 2,3,4,6-tetra-O- 
acetyl-a-D-galactopyranosyl iodide (5) had been re- 
ported by Thiem [2], and it matched the spectrum of 
the minor product. The major product was deter- 
mined to be 2,3,4,6-tetra-O-acetyl-/3-D-galacto- 
pyranosyl iodide (4). After careful experimentation it 
was found that compound 4 could be prepared in 
large quantities at - 4 0  °C (1 equiv Me3SiI) where 
equilibration was slow enough to afford an approxi- 
mately 30:1 mixture of /3: a anomers. 

We next looked at the reactions of the ce and /3 
anomers of peracetylated glucose (2 and 3, respec- 
tively). Compound 2 ( t l / 2  ~ 8 h)  reacted much slower 
than did 1 (tl/2 ~ 8 min). The /3 iodide 6 was the 
first product to form, and over time it equilibrated to 
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Fig. 1. First-order rate plot for 1. 

the a iodide 7. These rates are approximated assum- 
ing a unimolecular rate-determining step, although 
the data suggest competing processes are at play 
(vide infra). In order to assure that the rate differ- 
ences were not due to the stereochemistry at the C-4 
position, 3 was subjected to the reaction conditions. 

The /3 anomer of peracetylated glucose 3 ( t l /2 ~ 17 
min) reacted similarly to 1 (3 ~ 6 ~ 7) suggesting 
that they follow similar reaction pathways. 

A proposed mechanism of glycosyl iodide forma- 
tion from peracetylated sugars is illustrated in Scheme 
1. The rate data for reaction of the/3 acetates 1 and 3 
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Fig. 2. First-order rate plot for 3. 
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Table 1 
Rate data for compounds 1, 2, and 3 

Compound Rate (k) 

1 1.42 × 10 - 3  

3 6.73 × 10 - 4  

2 (lst order) 2.38 × 10 -5 
2 (2nd order) 3.25 × 10- 5 

tl/2 (S) R 2 
4.94× 102 0.99 
1.04× l 0  3 0.99 
2.88 × 10 4 0.96 
not determined 0.98 

support a unimolecular rate-determining step (see 
Figs. 1 and 2 and Table 1). The reaction is thought to 
proceed through displacement of the silylated 
anomeric acetate ( l a  and 3a) by the C-2 acetate to 
form a stabilized oxonium intermediate ( lb  and 3b). 
Iodide can then attack the oxonium intermediates to 
produce the /3 glycosyl iodides (4 and 6) [10]. The 

First-Order Rate Determination for 2 

t " "  
m 

0.0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 
0 

y = - 0.13615 - 2.3817e-5x R"2 = 0.960 

m 

[] 

B B 

mDBD m 

10000 20000  

time (s) 

Second-Order Rate Determination for 2 

1.7 

1.6 

1.5 

1.4 ¸ 

1,3' 

1.2' 

1.1 

1.0 

y = 1.1363 + 3.2488e-5x R"2 = 0.979 m m ~ , , , , ~ "  

m 

m B m ~  ''' 
D [ ] m y  

"El 

i 

10000 

t ime  (s) 

Fig. 3. First- and second-order rate plots for 2. 

20000 



J. Gervay et al. / Carbohydrate Research 300 (1997) 119-125 123 

.OBn 

80Bn6A c 

Me3SiI 

.OBn 

BnBOnO ~ O A c  Me3Sil 
OBn 10 

.OBn 

BnO " ~ - - 0  
B n O ~  

OBn I 

.OBn OSiMe3 

BnO ~-.~ 
B n O - ~ ~  

8b OBn 

i 

Bno.~B~ + 
BnO~~oBn O ~  Me 

10a OSiMe3 

""-. I- 

BRO----C  
B n O ~  I 

9 OBn 

,_ I I 
OBn 

OBnl 11 I 

Scheme 2. 

rate data for reaction of 2 is less definitive, suggest- 
ing that competing reactions are occurring (see Fig. 3 
and Table 1). Once the a-trimethylsilylacetoxonium 
intermediate 2a is formed, it can react by either a 
unimolecular or bimolecular pathway. The unimolec- 
ular process involves displacement of the anomeric 
acetate to form the oxonium intermediate 2b, which 
can be stabilized by the C-2 acetate to form 3b, and 
subsequently 5. Alternatively, iodide can directly at- 
tack 2a giving 6 in a bimolecular process. Both of the 
reaction pathways are orders of magnitude slower 
than the reaction pathway of the /3 acetates. The 
a-iodide 7 results from either iodide trapping of the 
oxonium species (2b) or by direct displacement of 
the /3 iodide 6. 

In order to probe the importance of the C-2 acetate 
in enhancing the rate of the /3-peracetylated sugars 
relative to the a anomers, we decided to study the 
reactions of 1-O-acetyl-2,3,4,6-tetra-O-benzyl-a,/3- 
D-glucopyranoses 8 and 10 ~. We reasoned that oxo- 
nium formation should occur more readily from the 
a-trimethylsilylacetoxonium intermediate (ga) due to 
better orbital overlap [12]. Furthermore, the positively 
charged a-anomeric acetate should be more reactive 
toward iodide displacement, due to the reverse 
anomeric effect [12,13]. When compound 8 was 

l These compounds were prepared using an analogous 
procedure for preparing anomeric benzoates [11]. 

treated with Me3SiI at - 4 0  °C in dichloromethane- 
d 2, the reaction was complete before the NMR spec- 
trum could be acquired, and only the a iodide 11 
was observed. This compound had been previously 
prepared using a Finkelstein reaction on the anomeric 
bromide, but no NMR spectral data was reported [5]. 
When the reaction was cooled to - 100 °C, formation 
of the /3 iodide (9) was observed, as well as its 
equilibration to 11. In contrast, the /3 acetate (10) did 
not react at - 100 °C. However, upon warming to 10 
°C 11 began to appear in the spectrum, and the 
reaction was complete within 30 rain. 

Scheme 2 outlines the proposed mechanism of 
glycosyl iodide formation from sugars without C-2 
participating groups. The rate-determining step for 
reaction of 8 is believed to be formation of 8a, which 
subsequently undergoes nucleophilic attack by iodide 
to give 9. Attack of 9 by iodide produces the more 
stable a anomer 11 under the reaction conditions. 
Due to rapid reaction rates, we cannot rule out the 
possibility that oxonium formation (Sb) is a compet- 
ing process that directly leads to the formation of 11. 
Formation of the o~ iodide from 10 is believed to 
occur via direct displacement of the silylated acetate 
(10a --> 11). 

In summary, we have demonstrated that glycosyl 
iodides can be stereoselectively and quantitatively 
generated at low temperatures from anomeric ac- 
etates. The only byproduct of the reaction is 
trimethylsilyl acetate, which can be easily removed in 
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vacuo. Although equilibration of the /3 iodides read- 
ily occurs at room temperature, these compounds can 
be prepared in sizable quantities at low temperatures. 
Glycosylations with /3-D-glycosyl iodide donors is 
currently under investigation in our laboratories. 

3. Experimental 
General methods.--Proton and carbon nuclear 

magnetic resonance spectra were recorded on either a 
Bruker AM 250 or Varian Unity 300 spectrometer. 
Chemical shifts are reported in parts per million 
relative to the residual solvent peak. ~H NMR data 
are reported in the order of chemical shift, number of 
protons, multiplicity (s = singlet, d = doublet, q = 
quartet, m = multiplet, br = broad) and the coupling 
constant in hertz (Hz). 

General procedure for the formation peracetylated 
glycosyl iodides.--The a and /3 anomers of 
1,2,3,4,6-penta-O-acetyl-D-glucose (Aldrich) and the 
/3 anomer of 1,2,3,4,6-penta-O-acetyl-I~-galactose (1) 
were dissolved in dichloromethane-d 2 in 0.26 M 
concentrations and placed in an NMR tube. 
Iodotrimethylsilane (1 equiv, from Geleste) was added 
directly into the NMR tube, and the reaction was 
followed by NMR spectroscopy using either a Bruker 
250 or a Varian 300 spectrometer. These reactions 
were performed at different temperatures as indi- 
cated. Variable-temperature experiments were per- 
formed on the Varian 300 instrument. 

2,3,4,6-Tetra-O-acetyl-/3-D-galactopyranosyl io- 
dide (4).--1H NMR (CD2Clz): 6 5.81 (d, 1 H, J 9.5 
Hz, H-I), 5.50 (t, 1 H, J 9.8 Hz, H-2), 5.45 (dd, 1 H, 
H-4), 4.95 (dd, 1 H, J 9.9, 3.3 Hz, H-3), 4.10 (m, 2 
H), 4.00 (dd, 1 H, J 12.53, 6.43 Hz), 2.16 (s, 3 H), 
2.05 (s, 3 H), 2.02 (s, 3 H), 1.94 (s, 3 H). 13C NMR 
(CD2C12): 6 170.53, 170.40, 170.06, 169.19, 77.24, 
72.29, 70.66, 67.53, 61.72, 57.68, 21.01, 20.66-20.77 
(3 c). 

2,3,4,6-Tetra-O-acetyl-a-D-galactopyranosyl io- 
dide (5).--JH NMR (CD2Clz): 6 7.10 (d, 1 H, J 
4.15 Hz, H-I), 5.47 (dd, 1 H), 5.24 (dd, 1 H, J 
10.53, 3.34 Hz), 4.35 (dd, 1 H, J 10.52, 4.19 Hz), 
4.06-4.27 (m, 3 H), 2.13 (s, 3 H), 2.08 (s, 3 H), 2.03 
(s, 3 H), 1.97 (s, 3 H). 13C NMR (CD2C12): 6 
170.48, 170.05-170.21 (3 C), 76.30, 74.22, 70.01, 
67.83, 66.97, 61.17, 21.06, 20.71-20.76 (3 C). 

2,3, 4,6- Tetra-O-acetyl-/3-D-glucopyranosyl iodide 
(6).--1H NMR (CDzClz): 6 5.82 (d, 1 H, J 9.3 Hz, 
H-l), 5.28 (t, 1 H, J 9.11 Hz), 5.13 (m, 2 H), 4.20 
(dd, 1 H, J 12.62, 4.79 Hz), 4.09 (dd, 1 H, J 10.24, 

2.29 Hz), 3.74-3.81 (m, 1 H, H-5), 2.01 (s, 3 H), 
2.00 (s, 3 H), 1.94 (s, 3 H), 1.92 (s, 3 H). 13C NMR 
(CD2C12): 6 170.22, 169.68, 169.12, 168.72, 77.75 
(C-l), 74.99, 71.50, 67.52, 61.56, 56.58, 20.50, 20.41, 
20.28 (2 C). 

2,3, 4,6- Tetra-O-acetyl-a-D-glucopyranosyl iodide 
(7).--1H NMR (COzfl2): • 6.98 (d, 1 H, J 4.07 
Hz, H-I), 5.39 (dd, 1 H, J 16.31, 9.8 Hz), 5.15 (t, 1 
H, J 9.98 Hz), 4.29 (dd, 1 H J 12.79, 4.25 Hz), 4.18 
(dd, 1 H, J 9.86, 4.23 Hz), 4.04 (m, 2 H), 2.03 (s, 3 
H), 2.01 (s, 3 H), 1.99 (s, 3 H), 1.96 (s, 3 H). J3C 
NMR (CD2C12): 6 170.15, 169.56, 169.35, 169.22, 
74.98 (C-l), 73.74, 71.50, 70.09, 66.71, 60.80, 20.52, 
20.33, 20.28 (2 C). 

1-O-Acetyl-2,3, 4,6-tetra-O-benzyl-o~-D-glucopyra- 
nose (8) and 1-O-acetyl-2,3,4,6-tetra-O- benzyl-fl-D- 
glucopyranose (10).--2,3,4,6-Tetra-O-benzyl-D-glu- 
copyranose (1 g, 1.8 mmol) was dissolved in 5 mL of 
pyridine, and then 0.2 mL (2.8 mmol, 1.6 equiv) of 
acetyl chloride was cautiously added dropwise to the 
mixture. The mixture was refluxed for approximately 
one h and quenched by addition of ethyl acetate and 
washed once with H20. The crude material was 
purified by flash chromatography using 5:1 hexane- 
ethyl acetate to obtain a 55% overall yield of a 4:1 
mixture of the /3 and ce anomers, respectively [11]. 
The anomers were separated by HPLC (Waters 510, 
Millipore HPLC) using a 6:1 hexane-ethyl acetate 
+ 9% acetone solvent system. 

1 -O-Acetyl-2, 3, 4, 6-tetra-O-benzyl- ~-D-glucopyra- 
nose (8).--1H NMR (CDC13): 6 7.17-7.32 (m, 20 
H), 6.29 (d, 1 H, J 3.55 Hz, H-l), 4.92 (d, 1 H, J 
11.0 Hz), 4.84 (d, 1 H, J 10.8 Hz), 4.80 (d, 1 H, J 
11 Hz), 4.69 (d, 1 H, J 11.4 Hz), 4.64 (d, 1 H, J 
11.4 Hz), 4.56 (d, 1 H, J 10.9 Hz), 4.54 (d, 1 H, J 
11.9 Hz), 4.46 (d, 1 H, J 11.8 Hz), 3.95-3.83 (m, 2 
H), 3.60-3.76 (m, 4 H), 2.12 (s, 3 H). 

1-O-Acetyl-2,3, 4,6-tetra-O-benzyl-/3-D-glucopyra- 
nose (10).--IH NMR (CDC13): 6 7.16-7.35 (m, 20 
H), 5.59 (d, 1 H, J 8.03 Hz), 4.77-4.92 (m, 5 H), 
4.56 (d, 2 H, J 12.5 Hz), 4.48 (d, 1 H, J 11.79 Hz), 
3.52-3.72 (m, 6 H), 2.06 (s, 3 H). 

General procedure for the formation 2,3,4,6-tetra- 
O-benzyl-I~-glycosyl iodides.--The reactions to form 
the 2,3,4,6-tetra-O-benzyl-o-glucopyranosyl iodides 
were performed similarly to the procedures described 
for the peracetylated analogs except 0.013 M concen- 
trations in CD2C12 were used. The reactions were 
followed by NMR spectroscopy at temperatures rang- 
ing from -100  to 10 °C on the Varian Unity 300 
instrument. 
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2,3,4,6-Tetra-O-benzyl-fl-D-glucopyranosyl iodide 
(9) . - -1H NMR ( - 1 0 0  °C, CD2C12): 6 6.99-7.70 
(m, 20 H), 5.61 (d, 1 H, J 9.04 Hz), 4.32-5.00 (m, 8 
H), 3.39-3.85 (m, 6 H). 

2,3, 4,6- Tetra-O-benzyl-a-D-glucopyranosyl iodide 
(11) [5] . - - IH NMR (CD2C12): 8 7.19-7.40 (m, 20 
H), 6.96 (d, 1 H, J 3.7 Hz, H-l),  4.94 (d, 1 H, J 
10.9 Hz), 4.85 (d, 1 H, J 10.9 Hz), 4.79 (d, 1 H, J 
10.9 Hz), 4.71 (d, 1 H, J 11.46 Hz), 4.60 (d, 1 H, J 
11.5 Hz), 4.56 (d, 1 H, J 10.83 Hz), 4.53 (d, 1 H, J 
11.8 Hz), 4.49 (d, 1 H, J 11.8 Hz), 3.63-3.89 (m, 5 
H), 2.81 (dd, 1 H, J 8.78 and 3.94 Hz). 

Reaction kinetics.--Rate constants for the disap- 
pearance of the starting material for compounds 1, 2, 
and 3 were obtained by following the reaction to at 
least 75% completion except for the per-O-acetyl-o~- 
D-glucose (went to 50% completion) with 1 equiv of 
Me3SiI in CDzC12 at - 4 0  °C over a period of time. 
First- and second-order kinetic plots were graphed for 
each reaction: In[A] versus time (s) and 1/[A] versus 
time (s), respectively (A=per-O-acetyl-D-glucose 
and per-O-acetyl-D-galactose). The concentration of 
the starting material, [A], was obtained by dividing 
the integral value corresponding to the peak of the 
anomeric proton of the starting material over the sum 
of the integrals of the H-1 peaks of the a- and 
/3-iodo sugars formed and the H-1 from the starting 
sugar. The first-order plots gave better correlation 
than did the second-order plots for the /3 sugars. The 
plots for the per-O-acetyl-D-glucose were not as con- 
clusive as to whether first-order or second-order ki- 
netics prevailed, as neither one showed true linearity. 
The R 2 obtained was 0.96 and 0.98 for the In[A] and 
1/[A] plots, respectively. The rate constants were 
obtained from the slope of the plots as shown in 
Table 1. The data in Table 1 indicate that the reac- 
tions proceed fastest for per-O-acetyl-/3-D-galactose 
(1), followed by per-O-acetyl-/3-D-glucose (3) with 
the per-O-acetyl-ce-D-glucose (2) reacting slowest. 
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