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Abstract 

The 3'-C-carboxymethyl Le X derivative carrying the 2-(tetradecyl)hexadecyl residue was 
synthesized by employing 3'-C-carboxymethyl galactose as a key intermediate, which was 
prepared from the suitably protected galactose by Swern oxidation and Wittig-Horner 
carboxymethylenation, followed by stereoselective reduction of the double bond. The com- 
pound obtained showed much more potent activity as a selectin blocker than the sialyl Le ~ 
derivative with 2-(tetradecyl)hexadecyl residue. © 1997 Elsevier Science Ltd. 
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Sialyl Lewis X (sLe x) is found as the terminal 
tetrasaccharide structure in both cell-membrane gly- 
colipids and glycoproteins. Since it was found that 
selectin-sLe × interaction is involved in various in- 
flammatory diseases [2], many mimetics (e.g. ref, [3]) 
as well as analogues (e.g. ref. [4]) of sLe × have been 
designed and synthesized as potential anti-inflamma- 
tory agents. 

In our continuing efforts to elucidate the struc- 
ture-function relationship of sLe ~, we have reported 
the synthesis [5] of sulfo-Le x analogues containing a 
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ceramide or a 2-(tetradecyl)hexadecyl residue and 
their strong inhibitory activity [6] against the se- 
lectin-sLe X interaction. In view of these facts, we 
describe herein the synthesis of 3'-C-carboxymethyl 
Le x carrying the 2-(tetradecyl)hexadecyl residue, 
which is expected not only to be a potential substitute 
of sLe X ganglioside, but also to be more stable than 
either sialyl- or sulfo-Le x for both chemical and 
enzymatic degradations. 

For the synthesis of the required 3-C-carbo- 
xymethyl galactose, the readily available 2- 
(trimethylsilyl)ethyl 2,4,6-tri-O-benzyl-/3-D-galacto- 
pyranoside [7] was chosen as a starting material. 
Oxidation [8] of the starting material with oxalyl 
chloride and dimethyl sulfoxide furnished the 3-ulose 
derivative 1, which, on treatment [9] with diethyl 
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phosphonoacetate in the presence of sodium methox- 
ide, afforded the methyl ester of the 3-deoxy-3-C- 
carboxymethylene derivative 2 3 (82%) as a 1:1 mix- 
ture of E,Z-isomers. Transesterification from ethyl to 
methyl was caused by sodium methoxide used in the 
reaction (2 h). It is of interest to note that catalytic 
hydrogenation of 2 over 10% palladium-on-charcoal 
(10% Pd-C)  in methanol (Caution! Severe fire haz- 
ard!) at 50 °C stereoselectively gave the desired 
3-C-carboxymethyl galactoside 3, while the same 
reaction conditions at room temperature gave a 1:1 
mixture of 3 and the corresponding guloside. Treat- 
ment of 3 with benzoyl chloride in pyridine gave 
2,4,6-tribenzoate 4 {66% in two steps, [a] o - 4 3  ° 
(CHC13)}. In the 1H NMR spectrum of 4, H-2 (dd, 
Jl,2 7.9, J2,3 11.5 Hz) was observed at 6 5.36, 
showing the configuration of the substituent at C-3 to 
be equatorial. 

O-benzyl-l-thio-/3-L-fucopyranoside (10) [12] in the 
presence of dimethy!(methylthio)sulfonium triflate 
(DMTST) [13] and 4 A molecular sieves (MS-4A) in 
benzene for 10 h at 6 °C, gave the desired disaccha- 
ride 11 {86%, [oz] D - 4 9  ° (CHC13)} , showing in the 
~H NMR spectrum a signal at 6 5.22 (d, Ji,2 3.6 Hz) 
that is characteristic of an a-L-fucopyranosyl unit. It 
was then converted into the glycosyl acceptor 12 in 
an 86% yield by reductive ring-opening of the ben- 
zylidene group [ 14]. 

phil-- . -  O ----~ 

OR 1 

7 R I = H , R 2 = B z  
8 R I = B n , R 2 = B z  
9 R I = B n , R 2 = H  
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2 X = CHCO2Me (E, Z) 

SE = 2-(trimethylsilyl)ethyl 
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4 OSE H Bz 
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Compound 4 was converted into the corresponding 
a-trichloroacetimidate 6 in good yield by selective 
removal of the 2-(trimethylsilyl)ethyl group with tri- 
fiuoroacetic acid and subsequent imidate formation 
[10,11]. 

The glycosyl acceptor 12 was prepared as follows. 
Selective 3-O-benzoylation of 2-(trimethylsilyl)ethyl 
4,6-O-benzylidene-/3-o-galactopyranoside [10] with 
benzoyl chloride in pyridine-dichloromethane at - 50 
°C (86%), and subsequent 2-O-benzylation with ben- 
zyl bromide in the presence of silver oxide (80%) 
afforded the selectively protected galactoside deriva- 
tive 8 {[a] o - 1 8  ° (CHC13)}. Debenzoylation of 8, 
followed by glycosylation of 9 with phenyl 2,3,4-tri- 

3 All new compounds were fully characterized by ele- 
mental analyses and by IR and I H NMR spectroscopy. 
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11 R 1 : R 2 = benzylidene 
12 R1=H, R2= Bn 

Glycosylation [15] of 12 with 6 in acetonitrile in 
the presence of DMTST for 2 days at - 1 0  °C 
afforded the desired trisaccharide 13 {67%, [c~] D 
- 0 . 9  ° (CHC13)}. The /3-configuration of 13 was 
assigned from the I H NMR datum that showed the 
signal at 6 5.19 (dd, Ji.2 11.8, J2.3 7.8 Hz) for H-2 
of the galactose residue. 

Removal of the benzyl groups from 13 by catalytic 
hydrogenation over 10% Pd-C in ethanol for 6 h at 
room temperature, and subsequent benzoylation gave 
the per-O-benzoylated trisaccharide 15 {96%, [ a ]  D 
- 27 ° (CHCI3)}. Selective removal [10] of the 2-(tri- 
methylsilyl)ethyl group from 15 as described in the 
preparation of 5 gave the corresponding 1-hydroxy 
compound 16. Treatment [11] of 16 with trichloroace- 
tonitrile in the presence of 1,8-diazabicyclo[5.4.0]un- 
dec-7-ene (DBU) for 1 h at - 5 0  °C gave the 
trichloroacetimidate 17 {quant. [a]t~ - 8 . 6  ° (CHCI3)} 
in the ce-form. Glycosylation of 2-(tetradecyl)hexa- 
decanol with 17 thus obtained in dichloromethane in 
the presence of boron trifluoride etherate gave only 
the desired /3-glycoside 18 {62%, [ a ]  D - 2 8  ° 
(CHC13)}. 
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A significant signal in the I H NMR spectrum of 
18 was a one-proton doublet at 6 4.28 (d, J1,2 8.6 
Hz, H-1 of Glc), showing the newly formed glyco- 
sidic linkage to be /3. O-Debenzoylation of 18 with 
NaOMe in MeOH, with subsequent saponification of 
the methyl ester group by addition of water, yielded 
the desired 3'-C-carboxymethyl Le x derivative 19 
{quant. [ a ]D -- 20° (1 : 1 CHC13-MeOH)}. 

M ~ , ~ O H  19 R 1 = OH R 2 = CH2COOH 

HO~ 'OH 20 R 1 = NHAc R 2 = O-Neu5Ac 

Compound 19 was much more potent (IC5o, 6 # M  
for E-selectin, 3 /~M for P-selectin, 2 tzM for L- 
selectin) 4 than the corresponding sialyl Le x deriva- 
tive 20 (ICs0, 330 /zM for E-selectin, 250 /zM for 
P-selectin, 40 /zM for L-selectin) [6] in the ligand- 
selectin competitive binding assay. 

4 Detailed studies on the biological activities will be 
published elsewhere. 
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