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Abstract: We designed and synthesized photochromic fluorescent poly 

(MMA-co-SPO-co-TPE) nanoparticles with pendant spirooxazine (SPO) dye and 

tetraphenylethylene (TPE) fuorophores attached to poly (methyl methacrylate) (MMA) 

backbone by semi-continuous polymerization. The polymerization reactions were 

accomplished in water with randomly methylated-β-cyclodextrin (β-CD) at 80ć in 

the presence of potassium peroxodisulfate which can be used as free radical initiator. 

This new synthetic method leads to uniform and smooth nanoparticles with a narrow 

particle size distribution. In addition, the poly (MMA-co-SPO-co-TPE) nanoparticles 

exhibit aggregation induced emission (AIE) properties and excellent photochemical 

properties because of spirooxazine dyes convert reversibly to merocyanine form upon 

ultraviolet (UV) irradiation, which active the intramolecular energy transfer pathway 

and quench the fluorescence of TPE in polymers. Consequently, the fluorescence of 

the poly (MMA-co-SPO-co-TPE) nanoparticles can be reversibly switched “on” and 

“off” upon UV and visible light, which maybe have potential application in biological 

fluorescent labeling as well as in optical fields like individually light–addressable 

nanoscale devices. 

 

Keywords: spirooxazine dye; photochromism; polymeric nanoparticles; 

aggregation-induced emission; tetraphenylethylene derivative.
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1. Introduction  

Photochromic compounds display a reversible molecular structure 

transformation, which result in significant absorption spectra change upon the 

stimulation of ultraviolet (UV) and visible light.[1, 2] The special optical property 

makes them have high potential application in optical data storage, chemical sensors, 

optical switches, ophthalmic lenses, security documents.[3-7] Among a broad variety 

of photochromic compounds, spirooxazines have received considerable attention 

because of their fast response speed and good fatigue resistant.[8-10] 

Photochromic molecules can be engineered to control the emission of 

fluorephore-photochrome dyads by energy transefer that caused by reversible 

photoinduced transformation.[11-18] So far, a number of photoswitchable fluorescent 

polymers containing spirooxazine have been reported[19-23] and their development 

have been extended micrometer/nanometersized level.[24] Photoswitchable 

fluorescent nanoparticles (PFNs) has been widely studied because of their potential 

biological application, such as ultrahigh-resolution imaging,[25] two photon 

imaging.[26] Many strategies have been developed to prepare PFNs, such as 

precipitation, self-assemble method, and emulsion polymerization. However, the 

self-assembly strategy maybe involves a complicated synthesis and the precipitation 

strategy often obtained PFNs via doping fluorescence dyes with photochromic 

molecules or polymer, which will lead to the leakage and aggregation of dyes over 

time.[27-29] In order to overcome these defects, semi-continuous emulsion 

polymerization, a facile and simple route was adopted. 
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Photoswitchable fluororescent materials are often utilized in their solid states, 

however, most of the luminophores will lead to aggregation-caused quenching (ACQ). 

Fortunately, Tang group[30] firstly discovered a new type of fluorescent molecular 

with Aggregation-induced emission. The AIE effect is opposite to the ACQ effect,[31] 

which makes it more valuable in practical application. In fact, the studies of polymers 

exhibit photochromic fluorescent properties and AIE properties are rarely reported. 

Here, we utilized photochromic molecules spirooxazine (SPO) derivative and the 

typical AIE molecule tetraphenylethylene (TPE ) derivative to prepare a series of 

polymeric nanoparticles with AIE and photochromic properties via semi-continuous 

emulsion polymerization. The fluorescence of the polymer nanoparticle can be 

switched “on” and “off” with UV and visible light. 

2.Experimental 

2.1 Materials and instruments 

Potassium persulfate (KPS, 99%, Aladdin) was recrystallized from deionized 

water three times and dried under vacuum. Methyl methacrylate (MMA, 99.5%, 

Aladdin) was washed five times with 5% sodium hydroxide solution to remove the 

phenolic inhibitor and then washed with deionized water until the pH was 7. In 

addition, it was further purified upon distillation under reduced pressure and keep 

refrigerated for later experiment. Methylated-β-cyclodextrin, bromotriphenylethylene, 

2-bromoethanol, methacryloylchloride, tetrabutylammonium bromide, tetrakis 

(triphenylphosphine) palladium (0) were purchased from Aladdin company. 2, 

7-dihydroxynaphthalen, 1 ˈ 3 ˈ 3-trimethyl-2-methyleneindoline, 
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4-formylphenylboromic, allyl cyanoacetate were purchased from TCI company. 

Tetrahydrofuran (THF, A.R) was distilled over CaH2. Deionized water was used for 

all experiments. Other solvents were analytical pure and without any further drying or 

purification. 

Molecular weight of the polymers were obtained by using gel permeation 

chromatography (GPC). 1H NMR spectra were obtained by a Bruker Avance 400 

NMR spectrometer̠ UV-Vis spectra were carried out on Agilent 8453 UV-visible 

spectroscopy system̠Fluorescence spectra were measured by Agilent Cary Eclipse 

Fluorescence Spectrophotometer. The polymeric nanoparticles diameter distribution 

and morphology was determined by Zetasizer Nano-ZS MPT and Hitachi S-4800 

scanning electron microscope (SEM). 

2.2 Synthesis of compound 4: 

Intermediate 3 was prepared according to the literature procedure,[32] the 

preparation method of spirooxazine derivative 4 was follow: adding 3 (1.07 g, 3.1 

mmol), anhydrous K2CO3 (1.28 g, 9.3 mmol), 2-bromoethyl methacrylate (1.8 g, 9.3 

mmol) and KI (0.515 g, 3.1 mmol) in 50 mL DMF, and the mixture was stirred for 

48h at 85 oC. Then dropping them into ice water and filtered. The precipitate was 

dissolved into ethyl acetate and washed with water three times. The organic phase was 

dried over anhydrous magnesium sulfate. The purified product was obtained by 

column chromatography with petroleum ether/ethyl acetate (v/v=10/1) as eluent, 

white solid (0.6 g, 42% yield). 1H NMR (400 MHz, CDCl3) δ 7.93 (s, 1H), 7.75 (s, 

1H), 7.68 (d, J = 8.9 Hz, 1H), 7.61 (d, J = 8.7, 1H), 7.32-7.21 (m, 1H), 7.11 (t, J = 7.1 
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Hz, 2H), 6.99-6.84 (m, 2H), 6.61 (d, J = 7.7 Hz, 1H), 6.22 (s, 1H), 5.63 (s, 1H), 4.63 

(t, J = 4.7 Hz, 2H), 4.49 (t, J = 4.7 Hz, 2H), 2.80 (s, 3H), 2.01 (s, 3H), 1.39 (t, J = 3.6 

Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 167.39, 157.88, 150.35, 147.62, 144.91, 

136.05, 135.88, 132.28, 129.97, 129.58, 128.04, 126.10, 124.81, 122.41, 121.51, 

119.86, 117.10, 114.30, 107.15, 100.68, 98.59, 66.00, 63.16, 51.81, 29.66, 25.47, 

20.82, 18.38. 

2.3 Synthesis of compound 6 

2.3.1 Synthesis of 4-(1, 2, 2-triphenylvinyl)benzaldehyde 5 

Bromotriphenylethylene (3.35 g, 0.01 mol), 4-formylphenylboronicacid (2.25 g, 

0.015 mol), 60mL toluene, anhydrous K2CO3 (4.9 8g, 0.036 mol), TBAB (0.3 g, 0.01 

mol) were added to 100mL three-necked, round-bottomed flask in order. The mixtrue 

stirred at room temperature under nitrogen atmosphere for 30min. Then, Pd(pph3)4 

was added to the flask and the solution was heated to 90oC over 24h. The mixture 

solution was extracted with dichloromethane and the extract was dried with 

anhydrous magnesium sulfate. Further purification was accomplished by silica gel 

column chromatography with petroleum ether/ethyl acetate (v/v=20/1) as eluent, 

yellow solid (3.16 g, 87.8% yield). 

2.3.2 Synthesis of allyl 2-cyano-3-(4-(1, 2, 2-triphenylvinyl) acrylate 6 

5 (1.08 g, 3 mmol), allylcyanoacetate (1.13 g, 9 mmol), NH4OH (0.7 g, 9 mmol), 

ACOH 15mL were reflux for 24h in 50mL of toluene. The mixture solution was 

extracted with dichloromethane and the extract was washed three times with water, 

than dried with anhydrous magnesium sulfate. The purified product was obtained by 
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column chromatography with petroleum ether/ethyl acetate (v/v=30/1) as eluent, 

yellow solid (2 g, 90% yield). 1H NMR (400 MHz, CDCl3) δ 8.17 (s, 1H), 7.78 (d, J = 

8.2 Hz, 2H), 7.17 (dd, J = 9.3, 5.4 Hz, 12H), 7.06 (d, J = 7.1 Hz, 6H), 6.01 (m, J = 

16.4, 10.8, 5.6 Hz, 1H), 5.45 (d, J = 17.1 Hz, 1H), 5.34 (d, J = 10.4 Hz, 1H), 4.82 (d, 

J = 5.5 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 162.46, 154.86, 149.82, 143.40, 

143.02, 142.95, 142.81, 139.62, 132.22, 131.39, 131.33, 131.30, 131.25, 131.13, 

130.75, 129.32, 128.01, 127.99, 127.74, 127.23, 126.94, 119.19, 115.64, 101.42, 

66.90. 

2.4 Preparation of the poly (MMA-co-SPO-co-TPE) nanoparticles: 

10mL water and methylated β-cyclodextrin (β-CD) was added into 50mL flask 

equipped with magnetic stirring bars. The solution was heated to 80ć and deaerated 

by bubbling with nitrogen for 10min.Then KPS was added and the solution was 

heated under stirring for 30min. The spirooxazine compound 4 (SPO), 

tetraphenylethylene (TPE) compound 6 were dissolved in MMA and added dropwise 

via syringes over a period of 2h to the stirred solution at 80ć. After the addition of 

the monomers were completed, the reaction solution were heated at 85ć for another 

five hours. 

Scheme.1 

Table.1 

Fig.1 

3. Result and discussion: 

3.1 Synthesis 
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The synthetic route of the monomers spirooxazine compound 4 (SPO), 

tetraphenylethylene (TPE) compound 6 were presented in Scheme.1, and the 

preparation of polymer nanoparticles was shown in Fig. 1. The copolymers were 

consisted of three parts: photochrome, fluorogen and connection chains MMA, all the 

chemicals and their amounts were listed in Table 1. Among them, the photochrome act 

as energy receptor and the fluorogen act as energy donor, thereby the fluorescence of 

the polymer can be modulated by the energy transfer. In order to synthesize 

photochromic polymeric nanoparticles, we firstly prepared the photochromic 

spirooxazine nanoparticles with aggregation-induced emission by semi-continuous 

emulsion polymerization. In this preparation, MMA, TPE 6 and SPO 4 act as 

copolymerization monomers, KPS act as the initiator, β-CD is a ring moleculer 

consisting of a hydrophobic cavity and hydrophilic out side. This structure made it be 

able to form host-guest compounds with hydrophobic molecules, the formation 

complexs will increase the solubility of guest moleculer in aquese solution 

considerably.[33, 34] When the monomers were added to the β-CD aqueous solution 

semicontinuously, the concentration ratio of β-CD/monomers was kept in a high level, 

which enables fast complexation, and the complexes would become 

polymerizationsites. The β-CD plays an important role in increasing the rates of 

monomers conversation and polymerization in emulsion polymerization. In addition, 

due to the presence of β-CD in all steps only homogeneous nucleation occurs, which 

was contributes to the formation of stable uniform colloidal particles with a narrow 
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PSD.[35, 36] The structures of products were confirmed by NMR, IR spectroscopy 

and mass spectrometry. 

3.2 Size and morphological of the poly (MMA-co-SPO-co-TPE) nanoparticles 

Paticle size and size distribution of P1 to P4 were obtained by dynamic light 

scattering (DLS) analysis and shown in Fig. 2. Their size increased from 355 nm to 

657 nm with the increased in SPO monomer ratio. Morphology was determined by 

scanning electron microscopy and displayed in Fig. 3. The results indicated that all 

the samples were smooth and uniform. Fig. 4a and Fig.4b showed the images of P2 

under general microscope and fluorescence microscope, respectively. The fluorescent 

photo illustrated that the AIE fluorophore was incorporated to the nanoparticles 

successfully. We can believe that the semi-continous emulsion polymerization is an 

appropriate method to preparation nanoparticle polymer. 

Fig.2 

Fig.3 

Fig.4 

3.3 Thermal properties of the poly (MMA-co-SPO-co-TPE) nanoparticles 

Thermal properties of the four polymers were evaluated by thermogravimetric 

analysis (TGA). The decomposition temperature (Td) of these polymers 

(corresponding to 5% weight loss occurs during heating in nitrogen) were 284.7�, 

287.02�, 276.05�, 280.72�, respectively (Fig. 5). The results indicate that the 

polymers have a relatively high thermal stability, to the best of our knowledge, a 

relatively high Td is crucial for emissive materials used for optoelectronic applications. 
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Hence, the synthesized polymers might be used as potential meterials for applications 

in fabricated photoelectric devices. 

Fig.5 

3.4 Photochromism of spirooxazine 4 and AIE properties of the compound 6 

Fig. 6 showed the absorption spectra and color change of spirooxazine (SPO) 4  

in DMF (2.0×10-5 mol L-1) irradiation with UV and visible light. Before irradiation 

with UV light, the spirooxazine (SPO) 4 in DMF solution was colorless and has no 

absorbance at about 600 nm. By UV irradiation (365 nm), the sample become blue 

and with an increased absorbance intensity at 602 nm, when it was left in the dark or 

irradiated with visible light at ambient temperature, the color was fading and the 

absorbance was decreased again. The reason is that the structure of spirooxazine (SPO) 

4 change from orthogonal closed cycle to opened merocyanine form. The opened 

form is usually thermally unstable and spontaneously underwent thermal bleaching to 

the close cycle form. 

The corresponding emission spectra of the compound 6 in water/DMF mixtures 

with different water fraction (fw) are shown in Fig. 7a. As can be seen from the figure, 

the PL signals of compound 6 in a dilute solution of DMF almost couldn’t be detected 

and the luminescence intensity almost unchanged when fw was increased to 60%. 

However, a dramatic enhancement in luminescence was occured when fw was beyond 

60%, and it boosted to 530.7 a.u. at the water fraction of 90% while the highest PL 

intensity value was measured only about 3.1 a.u. in pure DMF, the maximum increase 

in the emission intensity is∼170-fold. Because there is not so solvable for compound 
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6 in water, the molecular become aggeregation formation in the mixtures with higher 

water content. Hence, the PL intensity was enhanced remarkably by restricted 

intramolecular rotations (RIR) process in the crowed invironment. The absorption 

spectra of compound 6 in the DMF/water mixtures were shown in Fig. 7b. The spectra 

were significant changed when water fraction was up to 70% or higher. Fig. 7c 

showed the images of the compound 6 were taken under room light (top) and 365 nm 

UV light (bottom) at room temperature in DMF/water mixtures with different water 

fractions. 

Fig.6 

Fig.7 

3.5 Photochromic properties of the poly (MMA-co-SPO-co-TPE) nanoparticles 

The spectra changes of polymers (P1, P2, P3, P4) in DMF solution (2.5mg/mL) 

upon UV and visible light irradiation were shown in Fig. 8. With the irradiation of UV 

light (365 nm) at room temperature, a new absorption band with λmax= 605 nm was 

observed and the solution was changed from colorless to blue, corresponding to the 

generation of the opened merocyanine form in SPO units. In addition, these studies 

also revealed that the absorption intensity increased with the increase of SPO/TPE 

ratio. Fig.9a showed the changes in the absorption spectra of P2 in an aqueous 

suspension before and after UV illumination. The absorbance band occurs at 525 to 

675 nm upon UV irradiation, The inset figure showed the color change of P2 latex, 

with the irradiation of UV light the latex was turned to blue from milk white. The 

absorption spectra change of P2 in film was shown in Fig. 9b. The reversible 
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bleaching process of film was similar to that in the DMF solution. After the irradiation 

of UV light an absorption peak appeared at 605 nm, then the peak disappeared upon 

the irradiation of the visible light. The polymer film has excellent photochromic 

fatigue resistance. Because of the steric effects in solid powder, the photochromic 

stability of the polymer powder was enhanced significantly than that of in DMF 

solution. The inset figure showed the color change of P2 in solid powder. 

Fig.8 

Fig.9 

3.6 AIE Properties of the poly (MMA-co-SPO-co-TPE) nanoparticles  

We detected the fluorescent emission of all the polymers in a mixture of water 

and DMF with different water fractions, and the corresponding emission spectra of P1 

and P2 are shown in Fig. 10. The fluorescence intensity change of P1 with the 

increasingin water fraction was very different from the monomer TPE, when fw was 

increased to 20%, the PL intensity of the solutions stared increase obviously (Fig. 

10a). The possible reason was that polymer chains were more hydrophobic and have a 

higher tendency to aggregate in a polar medium when compared with the monomer 

molecules. So the light emission of P1 significantly enhanced in water fraction as low 

as 20% by aggregate formation. The emission intensity reached a maximum with 

water fraction upto 30%, then PL intensities decreased with higher water content. As 

can be seen from Fig. 10b, when fw varies from 0% to 70%, the PL intensity of P2 

increase gradually, however the fw is increased to 80% or higher, the PL intensity 

decreases with increasing water content. This phenomenon was often observed in 
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some compounds with AIE properties, but the reasons remain unclear.[37] There are 

two possible explanations for this phenomenon: First, according to the aggregation 

with the increasing of the water fraction in solvent, only the molecules on the surface 

of the nanoparticles emitted light and contributed to the fluorescent intensity upon 

excitation, leading to the decrease of the fluorescent intensity; but the restriction of 

intramolecular rotations (RIR) of the aromatic rings aroundthe carbon-carbon single 

bonds in the aggregation state would enhance light emission. The net outcome of 

these two antagonistic processes depends on which process plays a predominant role 

in affecting the fluorescent behavior of the aggregated molecules. Second, when water 

is added, the solute molecules may aggregate into crystal and amorphous particles. 

The former leads to an enhancement in the intensity of photoluminescent emission, 

while the latter leads to its reduction. Thus, the measured photoluminescent intensity 

often shows no regularity for the uncontrollable formation of the nanoparticles in 

solutions with high water content.[38-48] 

The inset in Fig. 10 showed that the maximum emission wavelength changes and 

fluorescence intensity changes with increasing water fraction, the maximum emission 

wavelength had a blue shift. Fluorescence emission spectra of P3 in DMF-H2O 

mixture with different fw were demonstrated in the Fig. S9, nearly the same trends 

were observed in the case of P3, however, the maximum PL intensity is weaker than 

P1 and P2. Almost no fluorescence signal was detected for P4 no matter in pure DMF 

solution or in water/DMF mixtures. The weaker emission was ascrible the low content 

of TPECN unit in P3 or P4. UV absorption spectra of all the polymers with different 
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water fraction were displayed in Fig. S10, they all showed a long-wavelength 

absorption tail caused by light-scattering effects in the solution. Fig. 11 showed the 

images of the P1 and P2 were taken under room light (top) and 365 nm UV light 

(bottom) at room temperature in DMF/water mixtures with different water fractions.  

Fig.10 

Fig.11 

3.7 Photocontrolled fluorescence properties of the poly (MMA-co-SPO-co-TPE) 

nanoparticles 

The fluorescence intensity changes of the P1 and P2 in DMF-H2O mixture 

solution were described in Fig. 12a and Fig. 12b. The two figures indicated that 

fluorescence intensity changes were regulated with the irradiation of UV and visible 

light both of P1 and P2. The fluorescence quenching rate of P1 was only about 56% 

and the fluorescence quenching rate of P2 was about 70% upon irradiation with UV, 

which instructed that the fluorescence quenching rate of the polymer may be 

adjusted by changing the ratio of SPO and TPE in polymer. After irradiation with 

visible light, the fluorescence intensity gradually recovered to the original intensity, 

and this process can be recycled many times, which has vast potential application for 

photochromic fluorescence switch. Fig. 12c and Fig. 12d showed the fluorescence 

intensity changes of P1 and P2 in film, the case of fluorescence quenching were 

similar to that of in DMF-H2O mixture solution. 

The absorption of the opened merocyanine form was from 400 nm to 700 nm and 

the emission band of fluorophore unit was from 450 nm to 600 nm, that is to say, 
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their spectra exists overlap in the range of 450 nm to 600 nm. Therefore, when the 

SPO unit of the polymer from closed form to merocyanine with the irradiation of UV, 

it will absorb the emitted light of TPE because of the energy transfer resulting in the 

fluorescence quenching of the polymer. With the irradiation of visible light the 

merocyanine return to closed cycle form, there is no overlap of the absorption 

spectrum and the emission spectrum, the fluorescence intensity recover. 

Fig.12 

4. Conclusions 

In conclusion, four polymeric nanoparticles with spirooxazine derivative and 

AIE fluorescent dye were synthesized by semi-continuous polymerization. All the 

nanopartice polymers are uniform and display a narrow particle size distribution. 

Their photochromic properties and AIE properties have been studied detailedly, 

showing that all the polymers exhibit excellent photochromic ability. P1 and P2 

exhibit good AIE properties and their fluorescence intensities could be modulated 

regularly with irradiation of UV and visible light. Thus indicates that P1 and P2 may 

be potential candidate for external stimuli-responsive materials, such as photoswitch, 

bioprobe and so on.  
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Table 1. List of nanoparticles prepared with different ratio of SPO and TPE 

polymer SOMA TPECN MMA RAMEB water K2S2O8 Dm Mn PDI 

 (mmol) (mmol) (mol) (mg) (g) (mg) (nm) (g/mol)  

P1 0.02 0.02 0.01 30 10 30 355.0 64714 2.86 

P2 0.04 0.02 0.01 30 10 30 436.3 59441 2.04 

P3 0.08 0.02 0.01 30 10 30 540.5 45864 1.75 

P4 0.16 0.02 0.01 30 10 30 656.9 54291 2.03 
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Figure captions 

Fig 1 Synthesis and photoswitchable process of polymer nanoparticles. 

Fig 2 The size distribution of P1, P2, P3 and P4 by DLS at room temperature. 

Fig 3 SEM images of P1, P2, P3 and P4. 

Fig 4 The image of P2 under general microscope (a) and fluorescence 

microscope (b). 

Fig 5 TGA curves of the polymers. 

Fig 6 Absorption spectrum and color changes of SPO 6 in DMF solution˄ 2.0×

10-5 mol L-1
˅upon irradiation with UV and visible light. 

Fig 7 (a) PL spectra changes and (b) absorption spectra changes of TPE 6 in 

DMF/water mixtures with different water fractions. Concentration : 2×10-5mol/L, λex 

= 374 nm. (inset: the dependence of the fluorescence emission intensity on the water 

fraction). (c) the images of TPE in DMF/water mixtures with different water fractions 

were taken under room light (top) and 365 nm UV light (bottom). 

Fig 8 Absorption spectra changes of polymers in DMF solution (2.5 mg/mL) 

before and after UV (365 nm) illumination. (a):P1; (b):P2; (c):P3; (d):P4. 

Fig 9 Absorption spectra changes of P2 (a) in an aqueous suspension and P2 (b) 

in film before and after UV illumination. (inset: picture of P2 latexes and P2 solid 

before and after UV irradiation at 365 nm). 

Fig 10 PL spectra change of (a) P1 and (b) P2 in water/DMF mixtures. The inset 

depicts the changes of PL peak intensity and maximum PL emission wavelength 

(0.5mg/mL). 
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Fig 11 the images of P1 (a) and P2 (b) in DMF/water mixtures with different 

water fractions were taken under room light (top) and 365 nm UV light (bottom). 

Fig 12 PLspectra change of (a) P1 in water/DMF mixtures with a water fraction 

of 30% (0.5mg/ml) and (b) P2 in water/DMF mixtures with a water fraction of 80% 

(0.5mg/ml) upon irradiation with UV and visible light (λex=302nm). PL spectra 

change of (c) P1 in film and (d) P2 in film upon irradiation with UV and visible light 

(λex=302nm).  
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Scheme 1 

Scheme 1 Synthetic routes for SPO 4 and TPE 6 
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Fig. 1
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Fig. 2
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Fig. 3 
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Fig. 4  
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Fig. 5 

 

 

Fig. 6  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

32 

 

 

 

 

Fig. 7 
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Fig. 8  
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Fig. 9  
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Fig. 10  
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Fig. 11  
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Fig. 12 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

38 

 

Supporting information 

 

Synthesis and Properties of Photochromic Spirooxazine with 

Aggregation-Induce Emission Fluorophores polymeric nanoparticles 

via Semi-continuous Emulsion Polymerization 

 

Xue Lia,b, Chengpeng Lib, Sheng Wanga,b,*, Huan Dongc, Xiang Mac,**, Derong 
Caoa,** 

 

 

Fig. S1 1H NMR spectrum of SPO in CDCl3 
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Fig. S2 1H NMR spectrum of TPE-CHO in CDCl3 
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Fig. S3 1H NMR spectrum of TPE in CDCl3 
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Fig. S4 13C NMR spectrum of SPO in CDCl3  
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Fig. S5 13C NMR spectrum of TPE in CDCl3 
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Fig. S6 HRMS spectra of SPO and TPE in CDCl3 

 

 

 

Fig. S7 The GPC chromatograms of P1, P2, P3 and P4.  
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 Fig S8. FTIR spectra of P1 and P2 
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Fig.S9 PL spectra of P3 in DMF/water mixtures with different water fractions, concentration 

0.5mg/mL, λex = 300 nm. 
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Fig.S10 Absorption spectra of P1 (a), P2 (b), P3(c) and P4 (d) in different water-DMF (v/v) 

mixtures. Concentration:0.5mg/mL. 

 

 

 

 

 

 

 

 

 

 


