

DOI: 10.1002/ejoc.201201158

Dihydropyridazine Derivatives with Cyclopenta-, Benzo-, Furo-, Thiopyranoand Pyrido-Annulation

Miriam Penning^[a] and Jens Christoffers^{*[a]}

Keywords: Synthetic methods / Nitrogen heterocycles / Ketones / Hydrazones / Amines

Regioisomeric [c]annulated pyridazines were prepared from arylhydrazines and carbocyclic or heterocyclic β -oxo esters with an α -phenacetyl moiety. With AcOH/EtOH, the hydrazones were preferentially formed at the endocyclic ketone, which are further cyclized with trifluoroacetic acid (TFA)/CH₂Cl₂ to give 2,4a-dihydropyridazines. Use of TFA/CH₂Cl₂

Introduction

Following on from our discovery that 1,4-dicarbonyl compounds 1 ($X = CH_2$) react in a bismuth-catalyzed ring expansion reaction with primary amines to furnish eightmembered ring lactams 2 (Scheme 1),^[1] we have used this reaction for the preparation of a model library of hexahydroazocinones 4 (X = CH_2). The interconversion of the five-membered ring in starting materials 1 to an eight-membered ring in products 2 is assumed to proceed through intermediate 3 with a bicyclo [3.3.0] skeleton. Apart from R_A originating from the amine R_A-NH₂ and R_B introduced by 1,4-diketone 1, a third point of diversity R_C was installed by saponification and amidation of the carboxylate function (Scheme 1).^[2] Furthermore, we have been able to convert tetrahydrothiophenes 1 (X = S) and pyrrolidines (X = N-PG) to respective thiazocinones 4 $(X = S)^{[3]}$ and diazocinones $(X = N-R_D)$,^[4] the latter having a fourth point of diversity R_D, which was introduced after deprotection of secondary amine N-PG. Attempts for the preparation of benzoannulated congeners were however of limited success.^[5] In the course of our ongoing search for heterocyclic scaffolds suitable for the development of combinatorial libraries,^[6] we envisioned cyclic 1,4-diketones 1 could also be converted with hydrazines 5 to give annulated dihydropyridazines. Because hydrazines as unsymmetrical 1,2-dinucleophiles could preferentially attack one of the two carbonyl groups of 1,4-dielectrophiles 1, we were expecting to face a regioselectivity problem during this transformation. In contrast to fully-unsaturated aromatic cogeners,^[7] annulated led hydrazones at the exocyclic benzoyl group, which reacted further to give 1,4-dihydro-4aH-pyridazines. In this investigation, examples of the rare or unknown heterocyclic systems furo[3,4-c]-, thiopyrano[4,3-c]- and pyrido[4,3-c]pyridazine were prepared.

aliphatic partially saturated pyridazines have been rarely reported in the literature,^[8] despite their simple retrosynthetic breakdown into hydrazines and 1,4-dicarbonyl compounds. Moreover, the aromatic or partially-hydrogenated pyridazine moiety could be regarded of a privileged structural motif in medicinal chemistry.^[9] Therefore we would like to report the scope and limitations, as well as the envisioned regiochemistry problems, of dihydropyridazine formation from various 1,4-diketones of general formula 1 and a number of different hydrazines **5**.

Scheme 1. Synthesis of eight-membered-ring lactam libraries 4 from 1,4-diketones 1 and amines.

Results and Discussion

In preliminary studies we had prepared cyclopenta-annulated 2,5-dihydropyridazine **8a** in two steps from oxo ester **1a**, which was first converted under acidic conditions in po-

 [[]a] Institut f
ür Chemie, Carl von Ossietzky-Universit
ät Oldenburg, 26111 Oldenburg, Germany Fax: +49-441-798-3873

E-mail: jens.christoffers@uni-oldenburg.de

Homepage: www.christoffers.chemie.uni-oldenburg.de

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201201158.

FULL PAPER

lar protic solvent to give hydrazone 6a in 94% yield after crystallization (Scheme 2).^[1] In contrast to our proposed mechanism of azocanone formation through intermediate 3 (see Scheme 1), hydrazine 5a preferentially reacted with the endocyclic carbonyl group of compound 1a. Subsequent treatment of hydrazone 6a in strongly-acidic polar aprotic medium gave annulation product 8a in 54% yield.^[1] Our attempts to transfer that earlier result to hydrazone 6b, which was obtained from cyclohexanone derivative 1b in 74% yield, led to indole annulation product 9b instead of a pyridazine. This was not surprising, because the reaction conditions were typical for a Fischer indolization.^[10] Because we were aiming to avoid the latter process, we started to look for alternative conditions. Finally, the conversion of oxo ester 1b with hydrazine 5a under acidic conditions in polar aprotic solvent and without isolation of any hydrazone gave 1,4-dihydro-5*H*-pyridazine derivative 7b in excellent yield. The formation of compound 7b was the result of a first attack of hydrazine 5a to the benzoyl group of compound 1b. Because the reaction time was prolonged relative to the preparation of hydrazone 6b, which crystallized from the reaction mixture, we assumed several equilibrating species within the reaction mixture and formation of compound 7b as the thermodynamic product. Conversion of cyclopentanone derivative 1a under similar reaction conditions led to the formation of regioisomer 7a, the isolated yield of this compound was however rather low and could not be increased by varying the reaction conditions.

Scheme 2. Preliminary studies towards dihydropyridazine formation. Conditions for **7a**: (a) 1.5 equiv. **5a**, 0.5 equiv. AcOH, CH_2Cl_2 , 23 °C, 3 h; then + 0.5 equiv. TFA, 23 °C, 2.5 h. For **7b**: (b) 1.1 equiv. **5a**, 0.6 equiv. TFA, CH_2Cl_2 , 23 °C, 3 h.

Regioisomers 7 and 8 could be clearly distinguished by ¹H NMR spectroscopy. Elucidation of their constitution was also accomplished by NMR spectroscopy, as outlined for compounds **6a**, **7a**, and **8a**. For compound **1a**, the ¹³C-NMR signals of both ketones could be assigned by comparison to literature values:^[11] 197 ppm for the benzoyl group and 215 ppm for the alicyclic C=O. Upon formation of hydrazone **6a**, the arylketone moiety was retained (δ = 198 ppm), whereas the signal previously at δ = 215 ppm was

replaced by an imine resonance at $\delta = 143$ ppm (NMR spectroscopic data of 1a, 6a and 8a are known but are listed in the experimental section for reference). This actually proved the regiochemistry of hydrazone formation at the alicyclic ketone. Furthermore, ¹H NMR spectra of compounds 1a and 6a showed an AX-system for the diastereotopic methylene protons next to the benzoyl moiety ($\delta_A = 3.5, 3.2$ ppm, $\delta_{\rm X}$ = 3.8, 4.1 ppm, $J_{\rm AX}$ = 18.5, 18.1 Hz for 1a and 6a, respectively). Compound 7a showed the same signals shifted to higher field: $\delta_A = 2.5$ ppm, $\delta_X = 3.8$ ppm, $J_{AX} =$ 16.8 Hz. An additional sp²-CH resonance was detected in the ¹H NMR spectrum of compound **7a** (δ = 2.5 ppm) with coupling (t, 2.5 Hz) to the adjacent CH₂ group, as established by a ¹H,¹H-COSY experiment. In contrast, compound 8a had a CH₂-CH₂-CH₂ unit (established by HMBC, HMQC and ¹H, ¹H-COSY) with complex *J*(¹H, ¹H) coupling patterns and an olefinic singlet at $\delta = 4.8$ ppm with a ${}^{2}J({}^{1}H, {}^{13}C)$ -correlation (by HMBC) to the quaternary aliphatic signal indicating the depicted constitution. The diagnostic spectroscopic features of compounds 7a and 8a appeared in all compounds 7 (a characteristic AX-system with $J_{AX} = 17$ Hz at $\delta_A = 2.4$ –2.8 and $\delta_X = 3.4$ –3.8 ppm) as well as compounds 8 (singlet at 4.4-4.7 ppm) confirming the assignment of the respective regioisomers.

We aimed to transfer the formation of dihydropyridazines 7 with $PhNHNH_2$ (5a) to other 1,4-diketones 1 (Scheme 3, Table 1). Starting with variations of the ring size and introduction of heteroatoms, two out of several investigated reaction conditions turned out to be privileged, because most of the optimal results were obtained with them [(a) and (b) as specified in Table 1]. Results with starting materials 1a and 1b are given in Table 1, Entries 1 and 2. With seven-membered ring congener 1c, no unique product was isolated (Table 1, Entry 3). Introduction of heteroatoms in the five-membered ring gave only for tetrahydrofuran derivative 1d a respective product 7d in poor yield (15%) and containing small amounts of regioisomer 8d (2%; Table 1, Entry 4). Furo[3,4-c]pyridazine derivatives, like compound 7d, are rarely reported in the literature.^[12] Starting with tetrahydrothiophene 1e and pyrrolidines 1f and 1g, no unique products were isolated (Table 1, Entries 5-7). We then investigated oxa-, thia-, and azacyclohexanone derivatives 1h-1k. For tetrahydropyran 1h, no unique product was isolated (Table 1, Entry 8). Tetrahydrothiopyran 1i gave product 7i together with its regioisomer 8i, both in moderate yields (35% and 20%, respectively; Table 1, Entry 9). Compounds 7i and 8i were not separable by column chromatography. The thiopyrano[4,3-c]pyridazine ring system, as in compounds 7i and 8i, was not reported in the literature before, but with another pyrido[3',2':5,6]-annulation.^[13] Piperidine derivatives with either a Boc or Cbzprotective group at nitrogen gave both pyridopyridazines 7j and 7k (Table 1, Entries 10 and 11). As expected, the yield for Cbz-protected compound 7k was higher (43%) than for Boc-protected product 7j (15%), because the latter protecting group was expected to be labile under the reaction conditions. Pyrido[4,3-c]pyridazine derivatives, like compounds 7j and 7k, are rarely reported in the literature.^[14]

Table 1. Formation of regioisomeric annulated 1,4-dihydropyridazines 7 and 8. Residues X, R and Ar, conditions and yields.

Entry	Starting material	X	R	Ar	Conditions ^[a]	Products (yield) ^[b]
1	1a	CH ₂	Et	Ph	(a)	7a (40%)
2	1b	CH_2CH_2	Et	Ph	(b)	7b (96%)
3	1c	$CH_2CH_2CH_2$	Me	Ph	(a) or (b)	_[c]
4	1d	0	Me	Ph	(a)	7d (15%), 8d (2%) ^[d]
5	1e	S	Me	Ph	(a) or (b)	_[c]
6	1f	N(Boc)	Me	Ph	(a) or (b)	_[c]
7	1g	N(Cbz)	Me	Ph	(a) or (b)	_[c]
8	1ĥ	CH ₂ O	Et	Ph	(a) or (b)	_[c]
9	1i	CH_2S	Me	Ph	(b)	7i (35%), 8i (20%) ^[d]
10	1j	$CH_2N(Boc)$	Me	Ph	(b)	7j (15%)
11	1k	$CH_2N(Cbz)$	Me	Ph	(b)	7k (43%)
12	11	CH_2CH_2	Et	$4-MeOC_6H_4$	(b)	71 (78%)
13	1m	CH ₂ CH ₂	Et	$4-BrC_6H_4$	(b)	7m (48%), 8m (15%) ^[d]
14	1n	CH_2CH_2	Et	$4-NO_2C_6H_4$	(b)	7n (46%), 8n (10%) ^[d]
15	10	CH_2CH_2	Et	$2,4-(MeO)_2C_6H_3$	(b)	80 (45%)

[a] Conditions: (a) 1.5 equiv. **5a**, 0.5 equiv. AcOH, CH_2Cl_2 , 23 °C, 3 h; then + 0.5 equiv. TFA, 23 °C, 2.5 h; (b) 1.1 equiv. **5a**, 0.6 equiv. TFA, CH_2Cl_2 , 23 °C, 3 h. [b] Yields of isolated products. [c] No unique product isolated. [d] Regioisomers **7** and **8** were not separated.

Scheme 3. Conversion of 1,4-diketones **1a–1o** with phenylhydrazine (**5a**).

We then continued by varying the aromatic residue Ar of the 1,4-diketone motif by introducing electron accepting and donating substituents (for the synthesis of starting materials 1 vide infra). For this purpose we chose X =CH₂CH₂, because cyclohexanone derivative **1b** was the compound with be best result so far (96% yield of pyridazine 7b; Table 1, Entry 2). A para-methoxy substituent in starting material 11 did not significantly influence the outcome of the reaction (78% yield of product 71; Table 1, Entry 12). In contrast, para-bromo and -nitro groups (starting materials 1m and 1n) shifted the regioselectivity slightly towards formation of byproducts 8m (15%) and 8n (10%; Table 1, Entries 13 and 14), which was actually hardly understood from an electronic point of view, because preferential initial attack of hydrazine 5a at the benzoyl moiety would be assumed with an electron withdrawing aromatic system Ar. With two donor substituents (starting material 10; Table 1, Entry 15), one of them even sterically congesting, attack of hydrazine 5a at the benzoyl group seems to be completely blocked, thus, no regioisomer 70 was observed, only product 80 was isolated.

In addition, conversion of cyclohexanone derivative **1b** with several phenylhydrazine derivatives **5b–5i** was investigated (Scheme 4, Table 2; for the synthesis of starting materials **5** vide infra). For comparison, formation of product **7b** is listed as Table 2, Entry 1. In all cases (except Table 2, Entry 9) only the formation of regioisomer **7** was observed, although products **7q** and **7v** contained small amounts of regioisomers **8q** and **8v** (3% and 4%, respectively). Whereas *ortho*-chloro and -methoxy substituents seemed to have no

significant negative influence on the yield (Table 2, Entries 2–4), an *ortho*-methyl group gave a low yield of product **7t** (18%; Table 2, Entry 6). This effect was not clearly understood, because *para*-methoxy and -methyl groups (Table 2, Entries 5 and 7) had opposite effects. *para*-Iodophenyl derivative **7v** (77% yield; Table 2, Entry 8) was ready for further diversifying transformations through cross-coupling reactions. In contrast to hydrazines **5a**–**5h**, 2,3-dinitro congener **5i** led to no isolable materials under standard conditions (a), but after heating in THF as solvent, hydrazone **6w** was obtained from the reaction mixture (72%; Table 2, Entry 9).

Scheme 4. Conversion of 1,4-diketone 1b with various arylhydrazines 5a-5i.

Table 2. Formation of annulated 1,4-dihydropyridazines 7 from 1,4-diketone **1b**. Residues Ar, conditions and yields.

Entry	Hydrazine	Ar	Conditions ^[a]	Products (yield) ^[b]
1	5a	Ph	(a)	7b (96%)
2	5b	$2-ClC_6H_4$	(a)	7 p (75%)
3	5c	3,4-Cl ₂ C ₆ H ₃	(a)	7q (78%), 8q (3%) ^[c]
4	5d	2-MeOC ₆ H ₄	(a)	7r (53%)
5	5e	4-MeOC ₆ H ₄	(a)	7s (35%)
6	5f	2-MeC ₆ H ₄	(a)	7t (18%)
7	5g	4-MeC ₆ H ₄	(a)	7u (66%)
8	5h	$4-IC_6H_4$	(a)	7v (77%), 8v (4%) ^[c]
9	5i	2,4-(NO ₂) ₂ C ₆ H ₃	(b)	6w (72%)

[a] Conditions: (a) 1.1 equiv. **5**, 0.6 equiv. TFA, CH_2Cl_2 , 23 °C, 3 h; (b) 1.0 equiv. **5**, 0.6 equiv. TFA, THF, 67 °C, 3 h. [b] Yields of isolated products. [c] Regioisomers **7** and **8** were not separated.

The synthesis of starting materials 1 was achieved by alkylation of respective β -oxo esters 10 with α -bromoacetophenones 11 as shown in Scheme 5. Compounds 1a–1c,^[15] 1d, 1e,^[3] and 1f^[4] were known from the literature and pre-

FULL PAPER

Entry	Oxo ester ^[a]	X	R	Bromo ketone [equiv.]	Ar	Conditions ^[b]	Product [yield]
1	10g	N(Cbz)	Me	11a (1.1)	Ph	(a)	1g (44%)
2	10h	CH ₂ O	Et	11a (1.1)	Ph	(a)	1h (72%)
3	10i	CH_2S	Me	11a (1.1)	Ph	(a)	1i (49%)
4	10j	$CH_2N(Boc)$	Me	11a (1.1)	Ph	(a)	1j (74%)
5	10k	$CH_2N(Cbz)$	Me	11a (1.1)	Ph	(a)	1k (70%)
6	10b	CH_2CH_2	Et	111 (2.0)	$4-MeOC_6H_4$	(a)	11 (54%)
7	10b	CH_2CH_2	Et	11m (1.2)	$4-BrC_6H_4$	(b)	1m (44%)
8	10b	CH_2CH_2	Et	11n (1.2)	$4-NO_2C_6H_4$	(a)	1n (13%)
9	10b	CH_2CH_2	Et	110 (1.1)	$2,4-(MeO)_2C_6H_3$	(a)	1o (47%)

Table 3. Conditions and yields for the α -alkylation of β -oxo esters 10 with α -bromo ketones 11.

[a] 1.0 equiv. was used. [b] Conditions: (a) K_2CO_3 , acetone, 40 °C, 19 h; (b) NaH, THF, 60 °C, 17 h; K_2CO_3 or NaH were used in equimolar amounts relative to respective bromo ketone 11.

pared accordingly. Results and reaction conditions for products 1g-1o are collected in Table 3. In general, K_2CO_3 in acetone was used, except for product 1m (Table 3, Entry 7) were we used NaH in THF. Yields ranged from 45–75%, except for *para*-nitro substituted product 1n, were it was lower (13%; Table 3, Entry 8).

Scheme 5. Synthesis of 1,4-diketones 1 by α -alkylation of β -oxo esters 10 with α -bromoacetophenones 11. For conditions and yields see Table 3.

Oxo esters 10i,^[16] 10j,^[17] and 10k,^[18] were literature known and were prepared accordingly. Compound 10g had not been reported before, thus, we prepared it by conjugate addition of *N*-Cbz methyl gycinate $(12)^{[19]}$ to methyl acrylate followed by Dieckmann condensation as reported for the *N*-Boc-protected congener.^[4] The conversion was performed as a two-step-, one-flask-protocol and product 10g was isolated in 68% yield after chromatographic purification (Scheme 6).

Scheme 6. Synthesis of oxo ester **10g** by conjugate addition of *N*-Cbz-GlyOMe (**12**) to methyl acrylate followed by Dieckmann condensation.

Compound **10h** was known in the literature,^[20] reported protocols for acylation of tetrahydropyranone were however not reproducible. We therefore prepared oxo ester **10h** by Dieckmann condensation of diethyl ester **14** in analogy to a procedure reported for the dipropyl ester (Scheme 7).^[21] Diethyl ester **14** was obtained by esterification from diacid **13**.^[22]

Scheme 7. Synthesis of tetrahydropyranonecarboxylate **10h** from diacid **13**. Reagents, conditions and yields: (a) cat. H_2SO_4 , EtOH, CHCl₃, Dean–Stark trap, 95 °C, 20 h, 50%; (b) 2.2 equiv. LDA, THF, –78 °C, 15 min, 18%.

 α -Bromo ketones 111,^[23] 11m^[24] and 11n^[25] were known from the literature and are commercially available. During the bromination of 2,4-dimethoxyacetophenone, bromination of the aromatic ring cannot be avoided,^[26] thus, bromo ketone 11o was prepared by Friedel–Crafts acylation of 1,3dimethoxybenzene with bromoacetyl bromide.^[27]

Hydrazines **5a** and **5i** were commercially available. Hydrazines **5b**,^[28] **5c**,^[29] **5d**,^[30] **5e**,^[31] **5f**,^[32] **5g**^[33] and **5h**^[34] were reported in the literature. We prepared compounds **5b**, **5d**, **5e**, **5f** and **5g** according to a reported procedure^[35] and compounds **5c** and **5h** following a slightly different procedure.^[36]

Conclusions

The reaction of cyclic β -oxo esters 1 bearing an α -phenacetyl moiety with arylhydrazines 5 could lead to two regioisomeric hydrazones. With AcOH in EtOH, hydrazone formation at the endocyclic carbonyl group (products 6) was observed. In two cases, hydrazones 6 could be further transformed with TFA/CH₂Cl₂ to a [c]annulated 2,4a-dihydropyridazine 8a or an indole derivative 9b. With TFA/ CH₂Cl₂ or AcOH/CH₂Cl₂, hydrazones at the exocyclic benzoyl group were formed as intermediate products, which cannot be isolated, but further cyclize under reaction conditions to furnish [c]annulated 1,4-dihydro-4aH-pyridazines 7. We have investigated conversion of 15 different carbocyclic and heterocyclic 1,4-diketones 1 with nine different arylhydrazines 5. New 1,4-dihydro-4aH-pyridazines 7 were isolated in 16 cases. Among them were rare furo [3,4-c]- (7d)and pyrido[4,3-c]pyridazines (7j and 7k) or even unknown

ring systems like thiopyrano[4,3-*c*]pyridazine **7i**. The yields ranged between 15 and 96%, with the majority between 40 and 80%. In four cases regioisomeric 2,4a-dihydropyrid-azines **8** were obtained as byproducts (10–20%) or even the only product (**8o**, 45%). Five of starting materials **1** gave no useful results.

Experimental Section

General: Preparative column chromatography was carried out with Merck SiO₂ (0.035–0.070 mm, type 60 A) with hexane, toluene and *tert*-butyl methyl ether (MTBE) as eluents. TLC was performed with Merck SiO₂ F₂₅₄ plates on aluminum sheets. ¹H- and ¹³C-NMR spectra were recorded with a Bruker Avance DRX 500. Multiplicities of carbon signals were determined with DEPT experiments. MS and HRMS spectra were obtained with a Finnigan MAT 95 (CI) and a Waters Q-TOF Premier (ESI) spectrometer. IR spectra were recorded with a Bruker Tensor 27 spectrometer equipped with a "GoldenGate" diamond ATR unit. Elemental analyses were measured with a Euro EA-CHNS from HEKAtech. Preparation and spectroscopic data of compounds 1a,^[37] 6a^[1] and 8a^[1] were reported by us earlier. NMR spectroscopic data for these three compounds are however listed below for comparison.

Ethyl 1-(Benzoylmethyl)cyclopentane-1-carboxylate (1a): ¹H NMR (CDCl₃, 500 MHz): δ = 1.24 (t, J = 7.1 Hz, 3 H), 2.03–2.17 (m, 3 H), 2.53–2.69 (m, 3 H), 3.48 (d, J = 18.6 Hz, 1 H), 3.86 (d, J = 18.6 Hz, 1 H), 4.17 (q, J = 7.1 Hz, 2 H), 7.43–7.49 (m, 2 H), 7.55–7.60 (m, 1 H), 7.93–7.97 (m, 2 H) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ = 14.00 (CH₃), 19.86 (CH₂), 33.40 (CH₂), 37.76 (CH₂), 43.48 (CH₂), 57.47 (C), 61.66 (CH₂), 128.11 (2 CH), 133.47 (2 CH), 136.31 (C), 170.71 (C), 196.74 (C), 215.11 (C) ppm.

Ethyl 1-(Benzoylmethyl)-2-phenylhydrazonocyclopentane-1-carboxylate (6a): ¹H NMR (CDCl₃, 500 MHz): δ = 1.20 (t, *J* = 7.1 Hz, 3 H), 1.83 (ddd, *J* = 7.7, *J* = 9.8, *J* = 13.1 Hz, 1 H), 1.94–2.00 (m, 1 H), 2.16–2.25 (m, 1 H), 2.35–2.42 (m, 1 H), 2.48 (ddd, *J* = 3.9, *J* = 9.4, *J* = 17.2 Hz, 1 H), 2.77 (ddd, *J* = 3.4, *J* = 7.3, *J* = 13.0 Hz, 1 H), 3.23 (d, *J* = 18.1 Hz, 1 H), 4.11 (d, *J* = 18.1 Hz, 1 H), 4.16 (q, *J* = 7.0 Hz, 2 H), 6.80–6.83 (m, 1 H), 6.98–7.01 (m, 2 H), 7.17–7.21 (m, 2 H), 7.36 (s, 1 H), 7.44–7.48 (m, 2 H), 7.54–7.57 (m, 1 H), 7.98–8.00 (m, 2 H) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ = 14.08 (CH₃), 22.46 (CH₂), 26.25 (CH₂), 35.60 (CH₂), 45.69 (CH₂), 54.44 (C), 61.00 (CH₂), 112.90 (2 CH), 119.92 (CH), 128.06 (2 CH), 128.54 (2 CH), 129.11 (2 CH), 133.03 (CH), 137.09 (C), 145.36 (C), 153.46 (C), 173.27 (C), 197.97 (C) ppm.

Ethyl 1-(2-Oxo-2-phenylethyl)-2-(2-phenylhydrazono)cyclohexanecarboxylate (6b): Phenylhydrazine (5a; 111 mg, 1.03 mmol) and AcOH (72 mg, 1.2 mmol) were added to a solution of 1,4-diketone 1b (298 mg, 1.03 mmol) in EtOH (2 mL) and the reaction mixture was stirred for 90 min at 23 °C. The precipitated solid was filtered off and dried to furnish hydrazone 6b (290 mg, 766 µmol, 74%) as a colorless solid. M.p. 153 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.32 (t, J = 6.5 Hz, 3 H), 1.45–1.50 (m, 1 H), 1.64–1.69 (m, 1 H), 1.72–1.81 (m, 2 H), 1.96–1.98 (m, 1 H), 2.45 (d, J = 12.3 Hz, 1 H), 2.50–2.56 (m, 1 H), 2.78 (d, J = 14.6 Hz, 1 H), 3.33 (d, J = 16.6 Hz, 1 H), 3.90 (d, J = 16.6 Hz, 1 H), 4.29–4.32 (m, 2 H), 6.58 (d, J =7.5 Hz, 2 H), 6.68 (t, J = 6.7 Hz, 1 H), 6.92 (t, J = 7.0 Hz, 2 H), 7.20 (br. s, 1 H), 7.52 (t, J = 7.0 Hz, 2 H), 7.63 (t, J = 6.8 Hz, 1 H), 8.06 (d, J = 7.1 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, $CDCl_3$): $\delta = 14.15 (CH_3), 22.16 (CH_2), 23.44 (CH_2), 25.60 (CH_2),$ 37.81 (CH₂), 45.41 (CH₂), 53.31 (CH₂), 60.98 (CH₂), 112.73 (2 CH), 119.34 (CH), 128.23 (2 CH), 128.49 (2 CH), 128.70 (2 CH),

132.76 (CH), 137.39 (C), 145.23 (C), 146.61 (C), 174.75 (C), 197.30 (C) ppm. IR (ATR): $\tilde{v} = 3339$ (m), 3063 (w), 2974 (w), 2955 (w), 2933 (w), 1715 (s), 1687 (m), 1600 (m), 1446 (m), 1236 (m), 1219 (m), 1195 (m), 1141 (m), 1124 (m), 1034 (m), 744 (vs), 689 (vs) cm⁻¹. HRMS (ESI): calcd. for $C_{23}H_{26}N_2NaO_3$ [M + Na⁺] 401.1841; found 401.1848.

Ethyl 2,3-Diphenyl-2,5,6,7-tetrahydrocyclopenta[*c*]pyridazine-4acarboxylate (8a): ¹H NMR (CDCl₃, 500 MHz): δ = 1.14 (t, *J* = 7.1 Hz, 3 H), 1.78–1.86 (m, 1 H), 1.93–2.06 (m, 2 H), 2.64–2.71 (m, 2 H), 2.89 (ddd, *J* = 6.5, *J* = 9.0, *J* = 16.8 Hz, 1 H), 4.05–4.12 (m, 2 H), 4.79 (s, 1 H), 6.85–6.89 (m, 1 H), 7.03–7.05 (m, 2 H), 7.07–7.11 (m, 2 H), 7.18–7.23 (m, 5 H) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ = 14.05 (CH₃), 22.50 (CH₂), 30.17 (CH₂), 37.06 (CH₂), 51.05 (C), 61.17 (CH₂), 101.22 (CH), 121.16 (2 CH), 122.55 (CH), 127.99 (3 CH), 128.20 (2 CH), 128.69 (2 CH), 135.51 (C), 140.38 (C), 143.52 (C), 153.38 (C), 172.89 (C) ppm.

Ethyl 1-(2-Oxo-2-phenylethyl)-2,3,4,9-tetrahydro-1H-carbazole-1carboxylate (9b): TFA (47 mg, 0.40 mmol) was added to a solution of hydrazone **6b** (98 mg, 0.26 mmol) in CH₂Cl₂ (5 mL) and the solution was stirred for 4 h at 23 °C. After removal of all volatile materials in vacuo, the residue was purified by using chromatography (SiO₂, hexane/MTBE = 2:1, $R_{\rm f}$ = 0.37), to yield indole 9b (65 mg, 0.18 mmol, 69%) as a colorless solid. M.p. 125 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.20 (t, J = 7.2 Hz, 3 H), 1.89–1.94 (m, 1 H), 1.98–2.07 (m, 2 H), 2.35–2.39 (m, 1 H), 2.71–2.82 (m, 2 H), 3.59 (d, J = 18.2 Hz, 1 H), 3.89 (d, J = 18.2 Hz, 1 H), 4.14– 4.24 (m, 2 H), 7.05 (t, J = 7.4 Hz, 1 H), 7.13 (t, J = 7.6 Hz, 1 H), 7.30 (d, J = 8.1 Hz, 1 H), 7.40–7.50 (m, 3 H), 7.56 (t, J = 7.4 Hz, 1 H), 7.95 (d, J = 7.6 Hz, 2 H), 8.76 (s, 1 H) ppm. ¹³C{¹H} NMR $(125 \text{ MHz}, \text{ CDCl}_3): \delta = 14.36 (\text{CH}_3), 20.58 (\text{CH}_2), 21.26 (\text{CH}_2),$ 35.42 (CH₂), 44.90 (C), 49.43 (CH₂), 61.53 (CH₂), 111.24 (CH), 111.77 (C), 118.53 (CH), 119.16 (CH), 122.09 (CH), 127.03 (C), 128.33 (2 CH), 128.89 (2 CH), 133.47 (C), 133.83 (CH), 135.94 (CH), 136.68 (CH), 175.28 (C), 199.80 (C) ppm. IR (ATR): \tilde{v} = 3066 (w), 1661 (s), 1596 (m), 1578 (m), 1447 (m), 1329 (m), 1304 (m), 1218 (s), 1178 (m), 1065 (m), 1040 (s), 1015 (s), 799 (m), 714 (s), 689 (m), 644 (m) cm⁻¹. HRMS (ESI): calcd. for C₂₃H₂₃NNaO₃ [M + Na⁺] 384.1576; found 384.1583.

Ethyl 1,3-Diphenyl-4,4a,5,6-tetrahydro-1*H*-cyclopenta[c]pyridazine-4a-carboxylate (7a): Phenylhydrazine (5a; 177 mg, 1.64 mmol) and AcOH (33 mg, 0.55 mmol) were added to a solution of 1,4-diketone 1a (300 mg, 1.09 mmol) in CH_2Cl_2 (3.3 mL) and the reaction mixture was stirred for 3 h at 23 °C. Then TFA (63 mg, 0.55 mmol) was added and stirring was continued for 2.5 h. After removal of all volatile materials in vacuo, the residue was purified by using chromatography (SiO₂, hexane/MTBE = 20:1, $R_{\rm f}$ = 0.22) to yield pyridazine 7a (150 mg, 430 µmol, 40%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): δ = 1.17 (t, *J* = 7.1 Hz, 3 H), 1.93 (td, *J* = 8.9, J = 12.9 Hz, 1 H), 2.41 (ddd, J = 2.2, J = 8.9, J = 15.2 Hz, 1 H), 2.47 (d, J = 16.8 Hz, 1 H), 2.65 (dd, J = 8.3, J = 13.1 Hz, 1 H), 2.70–2.79 (m 1 H), 3.78 (d, J = 16.8 Hz, 1 H), 4.11 (q, J = 7.2 Hz, 2 H), 5.37 (t, J = 2.5 Hz, 1 H), 7.08 (t, J = 7.3 Hz, 1 H), 7.30 (t, J= 7.3 Hz, 1 H), 7.33–7.39 (m, 4 H), 7.55–7.57 (m, 2 H), 7.78 (d, J= 7.5 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 14.15 (CH₃), 28.26 (CH₂), 35.42 (CH₂), 36.95 (CH₂), 50.62 (C), 61.23 (CH₂), 106.02 (CH), 120.66 (2 CH), 123.35 (CH), 125.27 (2 CH), 127.96 (CH), 128.26 (2 CH), 128.67 (2 CH), 136.82 (C), 137.92 (C), 141.32 (C), 145.59 (C), 174.02 (C) ppm. IR (ATR): v = 2960 (w), 2929 (w), 2326 (w), 2194 (w), 1982 (w), 1761 (m), 1726 (s), 1687 (m), 1595 (m), 1493 (s), 1446 (m), 1369 (m), 1300 (s), 1190 (s), 1095 (s), 1015 (s), 913 (m), 756 (s), 691 (s) cm⁻¹. HRMS (ESI): calcd. for $C_{22}H_{23}N_2O_2$ [M + H⁺] 347.1760; found 347.1750.

1,3-Diphenyl-1,4,4a,5,6,7-hexahydrobenzo[c]pyridazine-4a-Ethvl carboxylate (7b): Phenylhydrazine (5a; 121 mg, 1.14 mmol) and TFA (74 mg, 0.62 mmol) were added to a solution of 1,4-diketone **1b** (300 mg, 1.04 mmol) in CH_2Cl_2 (3.5 mL) and the reaction mixture was stirred for 3 h at 23 °C. After removal of all volatile materials in vacuo, the residue was purified by using chromatography (SiO₂, hexane/MTBE = 10:1, $R_f = 0.34$) to yield pyridazine 7b (359 mg, 1.00 mmol, 96%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): δ = 1.09 (t, J = 7.1 Hz, 3 H), 1.54–1.59 (m, 1 H), 1.63– 1.75 (m, 2 H), 2.06–2.13 (m, 1 H), 2.23–2.32 (m, 2 H), 2.45 (d, J = 17.1 Hz, 1 H), 3.50 (d, J = 17.1 Hz, 1 H), 4.05 (q, J = 7.1 Hz, 2 H), 5.40 (t, J = 3.6 Hz, 1 H), 6.96 (t, J = 7.3 Hz, 1 H), 7.16–7.19 (m, 1 H), 7.22–7.27 (m, 4 H), 7.47 (d, J = 8.1 Hz, 2 H), 7.65 (d, J = 7.9 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 14.23 (CH₃), 19.31 (CH₂), 24.78 (CH₂), 35.05 (2 CH₂), 41.95 (C), 61.43 (CH₂), 108.59 (CH), 122.05 (2 CH), 123.07 (CH), 124.84 (2 CH), 127.65 (CH), 128.22 (2 CH), 128.58 (2 CH), 135.69 (C), 138.01 (C), 138.92 (C), 146.41 (C), 174.30 (C) ppm. IR (ATR): v = 3059 (w), 2979 (w), 2934 (w), 2865 (w), 1723 (s), 1590 (m), 1491 (s), 1445 (m), 1267 (m), 1186 (s), 1024 (m), 758 (s), 693 (s), 633 (s) cm⁻¹. HRMS (ESI): calcd. for C₂₃H₂₅N₂O₂ [M + H⁺] 361.1916; found 361.1921.

Methyl 1,3-Diphenyl-1,4,4a,5-tetrahydrofuro[3,4-c]pyridazine-4acarboxylate (7d) and Methyl 2,3-Diphenyl-4a,5,6,7-tetrahydrofuro-[c]pyridazine-4a-carboxylate (8d): Following the procedure reported for compound 7a, 1,4-diketone 1d (100 mg, 380 µmol), phenylhydrazine (5a; 62 mg, 0.57 mmol), AcOH (11 mg, 0.19 mmol) and TFA (22 mg, 0.19 mmol) were reacted in CH₂Cl₂ (1.2 mL). Chromatography (SiO₂, hexane/MTBE = 2:1, $R_f = 0.15$) gave a mixture of regioisomers 7d (19 mg, 57 µmol, 15%) and 8d (3 mg, 9 µmol, 2%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃), major regioisomer 7d: δ = 2.66 (d, J = 16.9 Hz, 1 H), 3.59 (d, J = 16.9 Hz, 1 H), 3.62 (s, 3 H), 4.22 (d, J = 9.6 Hz, 1 H), 4.94 (d, J = 9.6 Hz, 1 H), 6.52 (s, 1 H), 6.93 (t, J = 7.3 Hz, 1 H), 7.24–7.32 (m, 5 H), 7.45 (d, J = 8.2 Hz, 2 H), 7.69 (d, J = 7.8 Hz, 2 H) ppm; minor regioisomer 8d: δ = 3.64 (s, 3 H), 3.85 (d, J = 8.8 Hz, 1 H), 4.44 (d, J = 14.0 Hz, 1 H), 4.70 (s, 1 H), 4.74 (d, J = 14.0 Hz, 1 H),6.85 (t, J = 7.2 Hz, 1 H), 7.05 (t, J = 7.8 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃), major regioisomer 7d: δ = 34.89 (CH₂), 49.91 (CH₃), 53.54 (C), 80.12 (CH₂), 117.77 (2 CH), 117.91 (C), 122.76 (CH), 125.54 (2 CH), 128.61 (CH), 128.82 (2 CH), 129.49 (2 CH), 131.63 (CH), 138.19 (C), 140.01 (C), 145.58 (C), 173.51 (C) ppm. IR (ATR): $\tilde{v} = 3060$ (w), 3033 (w), 2912 (w), 1732 (s), 1598 (m), 1495 (s), 1290 (m), 1212 (s), 1172 (m), 1127 (m), 1096 (s), 765 (s), 694 (s), 636 (m) cm⁻¹. HRMS (ESI): calcd. for $C_{20}H_{18}N_2NaO_3$ [M + Na⁺] 357.1215; found 357.1223.

Methyl 1,3-Diphenyl-1,4,4a,5,6,7-hexahydrothiopyrano[4,3-c]pyridazine-4a-carboxylate (7i) and Methyl 2,3-Diphenyl-2,4a,5,6,7,8hexahydrothiopyrano[4,3-c]pyridazine-4a-carboxylate (8i): Following the procedure given for compound 7b, 1,4-diketone 1i (480 mg, 1.64 mmol), phenylhydrazine (5a; 195 mg, 1.80 mmol) and TFA (112 mg, 0.980 mmol) were reacted in CH₂Cl₂ (5.6 mL). Chromatography (SiO₂, hexane/MTBE = 10:1, $R_f = 0.27$) gave a mixture of regioisomers $7i~(211\,\text{mg},~580\,\mu\text{mol},~35\,\%)$ and 8i(118 mg, 320 µmol, 20%) as a yellowish solid. ¹H NMR (500 MHz, CDCl₃), major regioisomer 7i: $\delta = 2.69-2.73$ (m, 1 H), 2.78 (d, J = 13.7 Hz, 1 H), 2.94-2.97 (m, 1 H), 3.19-3.22 (m, 1 H), 3.38 (d, J = 13.4 Hz, 1 H), 3.46 (d, J = 17.2 Hz, 1 H), 3.71 (s, 3 H), 5.53 (s, 1 H), 7.07–7.10 (m, 2 H), 7.31–7.35 (m, 4 H), 7.52 (d, J = 7.7 Hz, 2 H), 7.68 (d, J = 7.7 Hz, 2 H) ppm; minor regioisomer 8i: $\delta =$ 2.69-2.73 (m, 1 H), 2.88-2.89 (m, 1 H), 2.94-2.97 (m, 1 H), 3.25-3.26 (m, 1 H), 3.38 (d, J = 13.4 Hz, 1 H), 3.42–3.43 (m, 1 H), 3.80 (s, 3 H), 4.55 (s, 1 H), 6.92 (t, J = 7.3 Hz, 1 H), 6.97 (d, J = 7.8 Hz,

2 H), 7.07–7.10 (m, 2 H), 7.13–7.18 (m, 3 H), 7.26 (d, J = 7.1 Hz, 2 H) ppm. ¹³C{¹H} MMR (125 MHz, CDCl₃), major regioisomer 7i: $\delta = 26.27$ (CH₂), 33.49 (CH₂), 35.92 (CH₂), 42.70 (C), 52.91 (CH₃), 105.06 (CH), 122.90 (2 CH), 124.64 (2 CH), 127.90 (CH), 128.07 (CH), 128.24 (2 CH), 128.77 (2 CH), 137.22 (C), 137.54 (C), 138.09 (C), 146.13 (C), 173.18 (C) ppm; minor regioisomer **8i**: $\delta =$ 28.94 (CH₂), 34.46 (CH₂), 37.67 (CH₂), 48.79 (C), 52.73 (CH₃), 101.35 (CH), 123.25 (2 CH), 123.83 (CH), 123.89 (CH), 127.95 (2 CH), 127.98 (2 CH), 128.12 (2 CH), 135.53 (C), 140.32 (C), 143.41 (C), 143.62 (C), 171.77 (C) ppm. IR (ATR): $\tilde{v} = 3056$ (w), 2950 (w), 2906 (w), 1730 (s), 1593 (m), 1491 (s), 1297 (m), 1262 (m), 1194 (s), 1156 (m), 1136 (m), 1029 (w), 758 (s), 691 (s) cm⁻¹. HRMS (ESI): calcd. for C₂₁H₂₀N₂NaO₂S [M + Na⁺] 387.1143; found 387.1137.

6-tert-Butyl 4a-Methyl 1,3-Diphenyl-1,4,4a,5,6,7-hexahydropyrido[4,3-c]pyridazine-4a,6-dicarboxylate (7j): Following the procedure given for compound 7b, 1,4-diketone 1j (640 mg, 1.70 mmol), phenylhydrazine (5a; 257 mg, 2.38 mmol) and TFA (116 mg, 1.02 mmol) were reacted in CH₂Cl₂ (5.8 mL). Chromatography (SiO₂, hexane/MTBE = 10:1, $R_f = 0.29$) gave pyridazine 7j (133 mg, 250 µmol, 15%) as a yellowish oil. A double signal set is observed due to E/Z-isomers (ratio 1.0:0.73) at the carbamate C-N bond. ¹H NMR (500 MHz, CDCl₃), major conformer: $\delta = 1.49$ (s, 9 H), 2.31 (d, J = 17.1 Hz, 1 H), 2.88–2.96 (m, 2 H), 3.37 (d, J = 16.5 Hz, 2 H), 3.69 (s, 3 H), 4.58–4.65 (m, 2 H), 5.26 (br. s, 1 H), 7.09–7.14 (m, 2 H), 7.33–7.38 (m, 3 H), 7.52 (d, J = 7.3 Hz, 2 H), 7.71 (d, J = 7.3 Hz, 2 H) ppm; minor conformer: $\delta = 1.48$ (s, 9 H), 2.31 (d, J = 17.1 Hz, 1 H), 2.88–2.96 (m, 1 H), 2.96–3.04 (m, 1 H), 3.74 (s, 3 H), 4.41-4.45 (m, 1 H), 4.58-4.65 (m, 2 H), 4.76 (d, J =16.0 Hz, 1 H), 5.18 (br. s, 1 H), 7.01 (d, J = 7.3 Hz, 1 H), 7.09-7.14 (m, 2 H), 7.33–7.38 (m, 2 H), 7.52 (d, J = 7.3 Hz, 2 H), 7.71 (d, J = 7.3 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃), major conformer: $\delta = 28.34$ (3 CH₃), 30.03 (CH₂), 42.16 (C), 42.65 (CH₂), 50.73 (CH₂), 52.96 (CH₃), 80.20 (C), 102.54 (CH), 123.59 (CH), 124.40 (CH), 124.79 (2 CH), 127.98 (2 CH), 128.29 (2 CH), 128.84 (2 CH), 137.33 (C), 138.02 (C), 143.51 (C), 145.90 (C), 153.81 (C), 172.61 (C) ppm; minor conformer: $\delta = 28.29$ (3 CH₃), 29.67 (CH₂), 41.97 (C), 43.44 (CH₂), 49.43 (CH₂), 52.67 (CH₃), 80.09 (C), 102.49 (CH), 122.77 (CH), 123.37 (2 CH), 124.79 (2 CH), 128.17 (CH), 128.29 (2 CH), 128.84 (2 CH), 135.47 (C), 138.02 (C), 143.51 (C), 145.90 (C), 153.81 (C), 172.57 (C) ppm. IR (ATR): $\tilde{v} = 2975$ (w), 2952 (w), 2930 (w), 1734 (m), 1696 (s), 1597 (m), 1493 (m), 1423 (m), 1365 (m), 1236 (m), 1198 (s), 1163 (s), 1153 (s), 1124 (s), 754 (s), 691 (s) cm⁻¹. HRMS (ESI): calcd. for $C_{26}H_{30}N_3O_4$ [M + H⁺] 448.2236; found 448.2231.

6-Benzyl 4a-Methyl 1,3-Diphenyl-1,4,4a,5,6,7-hexahydropyrido-[4,3-c]pyridazine-4a,6-dicarboxylate (7k): Following the procedure given for compound 7b, 1,4-diketone 1k (145 mg, 350 µmol), phenylhydrazine (5a; 42 mg, 0.39 mmol) and TFA (24 mg, 0.21 mmol) were reacted in CH₂Cl₂ (1.2 mL). Twofold chromatography (SiO₂, toluene/MTBE = 10:1, $R_f = 0.34$, then hexane/MTBE = 3:1, $R_f =$ 0.20) gave pyridazine 7k (70 mg, 0.15 mmol, 43%) as a yellowish oil. A double signal set is observed due to E/Z-isomers (ratio $\approx 1:1$) at the carbamate C–N bond. ¹H NMR (500 MHz, CDCl₃): δ = 2.32 (t, J = 16.6 Hz, 2 H), 2.88–2.94 (m, 2 H), 3.41 (s, 3 H), 3.45– 3.53 (m, 5 H), 3.66-3.78 (m, 2 H), 4.44-4.57 (m, 2 H), 4.60-4.75 (m, 2 H), 5.04-5.16 (m, 6 H), 7.00-7.11 (m, 4 H), 7.17-7.20 (m, 2 H), 7.24–7.30 (m, 16 H), 7.41 (d, J = 7.9 Hz, 4 H), 7.60–7.63 (m, 4 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 29.85 (CH₂), 29.97 (CH₂), 41.99 (C), 42.18 (C), 43.35 (2 CH₂), 50.08 (CH₂), 50.36 (CH₂), 52.78 (CH₃), 52.95 (CH₂), 67.39 (2 CH₂), 101.22 (CH), 101.97 (CH), 122.85 (2 CH), 123.44 (2 CH), 123.62 (2 CH), 123.70 (2 CH), 124.51 (2 CH), 124.82 (2 CH), 127.92 (2 CH),

128.00 (2 CH), 128.04 (2 CH), 128.18 (2 CH), 128.30 (4 CH), 128.52 (2 CH), 128.87 (4 CH), 133.80 (C), 134.26 (C), 136.41 (C), 136.55 (C), 137.31 (2 C), 138.21 (C), 138.60 (C), 145.85 (2 C), 154.62 (C), 154.88 (C), 172.09 (C), 172.34 (C) ppm. IR (ATR): $\tilde{v} =$ 3062 (w), 3033 (w), 2951 (w), 2924 (w), 2849 (w), 1732 (m), 1702 (s), 1594 (m), 1493 (m), 1445 (m), 1430 (m), 1336 (m), 1294 (m), 1262 (m), 1227 (s), 1197 (s), 1121 (m), 759 (m), 732 (m), 693 (s) cm⁻¹. HRMS (ESI): calcd. for C₂₉H₂₇N₃NaO₄ [M + Na⁺] 504.1899; found 504.1909.

Ethyl 3-(4-Methoxyphenyl)-1-phenyl-1,4,4a,5,6,7-hexahydrobenzo-[c]pyridazine-4a-carboxylate (71): Following the procedure given for compound 7b, 1,4-diketone 1l (1.00 g, 3.14 mmol), phenylhydrazine (5a; 373 mg, 3.45 mmol) and TFA (214 mg, 1.88 mmol) were reacted in CH₂Cl₂ (11 mL). Chromatography (SiO₂, hexane/MTBE = 10:1, $R_{\rm f}$ = 0.24) gave pyridazine 7l (955 mg, 2.45 mmol, 78%) as a yellowish solid. M.p. 113 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.16 (t, J = 7.1 Hz, 3 H), 1.62 (t, J = 12.0 Hz, 1 H), 1.69–1.82 (m, 2 H), 2.13–2.17 (m, 1 H), 2.29–2.37 (m, 2 H), 2.49 (d, J = 17.1 Hz, 1 H), 3.54 (d, J = 17.1 Hz, 1 H), 3.80 (s, 3 H), 4.11 (q, J = 7.1 Hz, 2 H), 5.46 (br. s, 1 H), 6.86 (d, J = 8.6 Hz, 2 H), 7.01 (t, J = 7.2 Hz, 1 H), 7.30 (t, J = 7.7 Hz, 2 H), 7.53 (d, J = 8.2 Hz, 2 H), 7.66 (d, J = 8.6 Hz, 2 H ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): $\delta =$ 14.19 (CH₃), 19.26 (CH₂), 24.73 (CH₂), 35.00 (CH₂), 35.10 (CH₂), 42.00 (C), 55.25 (CH₃), 61.34 (CH₂), 108.22 (CH), 113.63 (2 CH), 121.79 (2 CH), 122.73 (CH), 126.12 (2 CH), 128.50 (2 CH), 130.81 (C), 135.69 (C), 138.97 (C), 146.45 (C), 159.46 (C), 174.30 (C) ppm. IR (ATR): $\tilde{v} = 3002$ (w), 2957 (w), 2935 (w), 2858 (w), 2837 (w), 1723 (s), 1598 (m), 1511 (m), 1494 (s), 1453 (m), 1297 (m), 1240 (m), 1214 (m), 1183 (s), 1157 (m), 1084 (m), 1037 (m), 1025 (m), 836 (s), 764 (s), 698 (s) cm⁻¹. HRMS (ESI): calcd. for $C_{24}H_{27}N_2O_3$ [M + H⁺] 391.2022; found 391.2029.

Ethyl 3-(4-Bromophenyl)-1-phenyl-1,4,4a,5,6,7-hexahydrobenzo[c]pyridazine-4a-carboxylate (7m) and Ethyl 3-(4-Bromophenyl)-2phenyl-2,4a,5,6,7,8-hexahydrobenzo[*c*]pyridazine-4a-caboxylate (8m): Following the procedure given for compound 7b, 1,4-diketone 1m (181 mg, 491 µmol), phenylhydrazine (5a; 58 mg, 0.54 mmol) and TFA (33 mg, 0.29 mmol) were reacted in CH₂Cl₂ (1.7 mL). Chromatography (SiO₂, hexane/MTBE = 10:1, $R_{\rm f}$ = 0.36) gave a mixture of regioisomers 7m (104 mg, 240 µmol, 48%) and 8m (41 mg, 90 µmol, 15%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃), major regioisomer **7m**: $\delta = 1.15$ (t, J = 7.1 Hz, 3 H), 1.49– 1.64 (m, 2 H), 1.69–1.78 (m, 2 H), 2.11–2.18 (m, 1 H), 2.32–2.36 (m, 1 H), 2.48 (d, J = 17.1 Hz, 1 H), 3.49 (d, J = 17.0 Hz, 1 H), 4.07-4.14 (m, 2 H), 5.46-5.47 (m, 1 H), 7.04 (t, J = 7.3 Hz, 1 H), 7.30 (t, J = 7.9 Hz, 2 H), 7.42 (d, J = 8.5 Hz, 2 H), 7.50 (d, J =8.1 Hz, 2 H), 7.57 (d, J = 6.6 Hz, 2 H) ppm; minor regioisomer **8m**: δ = 1.20 (t, J = 7.1 Hz, 3 H), 1.69–1.78 (m, 2 H), 1.89–1.91 (m, 1 H), 2.27-2.30 (m, 2 H), 2.51-2.54 (m, 2 H), 2.64-2.67 (m, 1 H), 4.14–4.25 (m, 2 H), 4.57 (s, 1 H), 6.91 (t, J = 7.3 Hz, 1 H), 6.97 (d, J = 8.0 Hz, 2 H), 7.00 (d, J = 8.4 Hz, 2 H), 7.10 (t, J = 7.8 Hz, 2 H)2 H), 7.27-7.29 (m, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃), major regioisomer 7m: δ = 14.21 (CH₃), 19.21 (CH₂), 24.71 (CH₂), 34.67 (CH₂), 34.90 (CH₂), 41.74 (C), 61.49 (CH₂), 109.00 (CH), 121.52 (C), 122.08 (2 CH), 123.32 (CH), 126.24 (2 CH), 128.62 (2 CH), 131.36 (2 CH), 135.41 (C), 136.84 (C), 137.60 (C), 146.15 (C), 174.17 (C) ppm; minor regioisomer 8m: $\delta = 14.17$ (CH₃), 22.82 (CH₂), 24.71 (CH₂), 32.35 (CH₂), 37.31 (CH₂), 47.11 (C), 61.25 (CH₂), 104.54 (CH), 121.91 (C), 122.57 (2 CH), 123.32 (CH), 128.31 (2 CH), 129.54 (2 CH), 131.17 (2 CH), 135.09 (C), 138.25 (C), 143.69 (C), 147.03 (C), 172.36 (C) ppm. IR (ATR): $\tilde{v} = 2979$ (w), 2935 (w), 2865 (w), 2836 (w), 1724 (s), 1594 (m), 1577 (w), 1310 (m), 1295 (m), 1267 (m), 1189 (s), 1072 (m), 909 (m), 825 (m),

751 (m), 732 (m), 695 (m), 632 (s) cm⁻¹. HRMS (ESI): calcd. for $C_{23}H_{24}BrN_2O_2$ [M + H⁺] 439.1021; found 439.1030.

Ethyl 3-(4-Nitrophenyl)-1-phenyl-1,4,4a,5,6,7-hexahydrobenzo[c]pyridazine-4a-carboxylate (7n) and Ethyl 3-(4-Nitrophenyl)-2-phenyl-2,4a,5,6,7,8-hexahydrobenzo[c]pyridazine-4a-caboxylate (8n): Following the procedure given for compound 7b, 1,4-diketone 1n (75 mg, 0.22 mmol), phenylhydrazine (5a; 26 mg, 0.24 mmol) and TFA (15 mg, 0.13 mmol) were reacted in CH₂Cl₂ (0.8 mL). Chromatography (SiO₂, hexane/MTBE = 5:1, $R_f = 0.31$) gave a mixture of regioisomers 7n (41 mg, 0.10 mmol, 46%) and 8n (9 mg, 0.02 mmol, 10%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃), major isomer **7n**: δ = 1.15 (t, J = 7.1 Hz, 3 H), 1.61–1.66 (m, 1 H), 1.71–1.81 (m, 2 H), 2.13–2.21 (m, 1 H), 2.32 (ddd, J = 4.5 Hz, J = 8.9 Hz, J = 17.9 Hz, 1 H), 2.38–2.40 (m, 1 H), 2.52 (d, J = 17.0 Hz, 1 H), 3.55 (d, J = 17.0 Hz, 1 H), 4.07–4.15 (m, 2 H), 5.51 (dd, J = 3.5 Hz, J = 5.0 Hz, 1 H), 7.10 (t, J = 7.1 Hz, 1 H), 7.34 (t, J = 7.1 Hz), 7.34 (t, J = 7.1 Hz), 7.34 (t, J = 7.1 Hz)7.9 Hz, 2 H), 7.50 (d, J = 7.6 Hz, 2 H), 7.81 (d, J = 9.0 Hz, 2 H), 8.15 (d, J = 9.0 Hz, 2 H) ppm; minor isomer 8n: $\delta = 1.21$ (t, J =7.1 Hz, 3 H), 1.55–1.60 (m, 2 H), 1.61–1.66 (m, 1 H), 1.71–1.81 (m, 2 H), 1.91–1.94 (m, 1 H), 2.55–2.56 (m, 1 H), 2.65–2.69 (m, 1 H), 4.16-4.26 (m, 2 H), 4.71 (s, 1 H), 6.92 (t, J = 7.4 Hz, 1 H), 6.96 (d,J = 7.6 Hz, 2 H), 7.10 (t, J = 7.1 Hz, 2 H), 7.30 (d, J = 8.7 Hz, 2 H), 8.01 (d, J = 8.8 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃), major isomer 7n: δ = 14.66 (CH₃), 19.60 (CH₂), 25.16 (CH₂), 34.84 (CH₂), 35.28 (CH₂), 42.03 (C), 62.09 (CH₂), 110.79 (CH), 122.99 (2 CH), 124.12 (2 CH), 124.64 (CH), 125.22 (2 CH), 129.21 (2 CH), 135.73 (C), 136.35 (C), 144.45 (C), 146.23 (C), 146.98 (C), 174.37 (C) ppm; minor isomer 8n: $\delta = 14.61$ (CH₃), 23.19 (CH₂), 30.12 (CH₂), 32.72 (CH₂), 37.76 (CH₂), 47.64 (C), 61.91 (CH₂), 107.16 (CH), 122.87 (2 CH), 123.79 (2 CH), 124.23 (CH), 128.75 (2 CH), 128.99 (2 CH), 137.98 (C), 143.33 (C), 143.83 (C), 147.61 (C), 147.89 (C), 172.46 (C) ppm. IR (ATR): $\tilde{v} = 2980$ (w), 2935 (w), 2864 (w), 2837 (w), 1725 (m), 1594 (m), 1553 (m), 1511 (m), 1491 (m), 1338 (vs), 1191 (s), 1109 (m), 854 (m), 753 (m), 695 (m) cm⁻¹. HRMS (ESI): calcd. for $C_{23}H_{24}N_3O_4$ [M + H⁺] 406.1767; found 406.1763.

Ethyl 3-(2,4-Dimethoxyphenyl)-2-phenyl-2,4a,5,6,7,8-hexahydrobenzo[c]pyridazine-4a-carboxylate (80): Following the procedure given for compound 7b, 1,4-diketone 1o (100 mg, 290 µmol), phenylhydrazine (5a; 35 mg, 0.32 mmol) and TFA (15 mg, 0.13 mmol) were reacted in CH₂Cl₂ (1.0 mL). Chromatography (SiO₂, hexane/ MTBE = 2:1, $R_f = 0.49$) gave pyridazine **80** (54 mg, 13 µmol, 45%) as an orange oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.24$ (t, J =7.1 Hz, 3 H), 1.49 (dt, J = 12.8, J = 3.0 Hz, 1 H), 1.57 (dt, J =1.89 (m, 1 H), 2.46–2.49 (m, 1 H), 2.55 (dd, J = 5.2, J = 13.3 Hz, 1 H), 2.64–2.67 (m, 1 H), 3.27 (s, 3 H), 3.73 (s, 3 H), 3.79 (d, J = 11.7 Hz, 1 H), 4.11–4.26 (m, 2 H), 4.39 (s, 1 H), 6.09 (d, J = 2.1 Hz, 1 H), 6.38 (dd, J = 2.3, J = 8.4 Hz, 1 H), 6.83 (t, J = 7.1 Hz, 1 H), 6.96–7.01 (m, 4 H), 7.12 (d, J = 8.3 Hz, 1 H) ppm. ¹³C{¹H} NMR $(125 \text{ MHz}, \text{ CDCl}_3): \delta = 14.27 \text{ (CH}_3), 22.91 \text{ (CH}_2), 25.45 \text{ (CH}_2),$ 32.39 (CH₂), 37.14 (CH₂), 46.85 (C), 55.02 (CH₃), 55.26 (CH₃), 60.92 (CH₂), 98.30 (CH), 102.07 (CH), 104.17 (CH), 118.02 (C), 122.33 (2 CH), 122.88 (CH), 127.30 (2 CH), 131.84 (CH), 137.36 (C), 144.40 (C), 144.74 (C), 157.34 (C), 161.33 (C), 173.09 (C) ppm. IR (ATR): $\tilde{v} = 2933$ (w), 2859 (w), 2838 (w), 1725 (s), 1608 (m), 1598 (m), 1504 (m), 1496 (m), 1464 (m), 1308 (m), 1283 (m), 1209 (s), 1033 (w) cm⁻¹. HRMS (ESI): calcd. for $C_{25}H_{28}N_2NaO_4$ [M + Na⁺] 443.1947; found 443.1959.

Ethyl 1-(2-Chlorophenyl)-3-phenyl-1,4,4a,5,6,7-hexahydrobenzo[c]pyridazine-4a-carboxylate (7p): Following the procedure given for compound 7b, 1,4-diketone 1b (150 mg, 520 µmol), 2-chlorophenylhydrazine (5b; 81 mg, 0.57 mmol) and TFA (15 mg, 0.13 mmol) were reacted in CH₂Cl₂ (1.8 mL). Chromatography (SiO₂, hexane/ MTBE = 10:1, $R_f = 0.33$) gave pyridazine 7p (155 mg, 390 µmol, 75%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): δ = 1.24 (t, J = 7.1 Hz, 3 H), 1.65 (dd, J = 3.4, J = 13.0 Hz, 1 H), 1.75–1.84 (m, 2 H), 2.18–2.28 (m, 2 H), 2.42 (dt, J = 13.3, J = 3.7 Hz, 1 H), 2.48 (d, J = 16.7 Hz, 1 H), 3.58 (d, J = 16.7 Hz, 1 H), 4.15–4.26 (m, 2 H), 4.73 (t, J = 4.3 Hz, 1 H), 7.23 (t, J = 7.7 Hz, 1 H), 7.25– 7.28 (m, 2 H), 7.32–7.37 (m, 2 H), 7.49 (d, J = 8.0 Hz, 1 H), 7.60 (d, J = 7.9 Hz, 1 H), 7.73 (d, J = 8.0 Hz, 2 H) ppm. ¹³C{¹H} NMR $(125 \text{ MHz}, \text{ CDCl}_3): \delta = 14.23 \text{ (CH}_3), 19.48 \text{ (CH}_2), 24.48 \text{ (CH}_2),$ 33.96 (CH₂), 34.49 (CH₂), 42.04 (C), 61.40 (CH₂), 103.90 (CH), 125.04 (2 CH), 127.41 (CH), 127.58 (CH), 127.77 (CH), 128.24 (2 CH), 129.47 (CH), 130.40 (CH), 132.42 (C), 136.08 (C), 137.81 (C), 140.11 (C), 143.14 (C), 173.88 (C) ppm. IR (ATR): $\tilde{v} = 3061$ (w), 2978 (w), 2932 (w), 2869 (w), 2837 (w), 1722 (s), 1585 (w), 1479 (m), 1444 (m), 1292 (m), 1194 (vs), 1113 (m), 1024 (m), 759 (m), 693 (m), 632 (m), 600 (m), 536 (m) cm⁻¹. HRMS (ESI): calcd. for $C_{23}H_{23}CIN_2NaO_2$ [M + Na⁺] 417.1346; found 417.1336.

Ethyl 1-(3,4-Dichlorophenyl)-3-phenyl-1,4,4a,5,6,7-hexahydrobenzo-[c]pyridazine-4a-carboxylate (7q) and Ethyl 2-(3,4-Dichlorophenyl)-3-phenyl-2,4a,5,6,7,8-hexahydrobenzo[c]pyridazine-4a-carboxylate (8q): Following the procedure given for compound 7b, 1,4-diketone 1b (150 mg, 520 µmol), 3,4-dichlorophenylhydrazine (5c; 100 mg, 570 µmol) and TFA (15 mg, 0.13 mmol) were reacted in CH₂Cl₂ (1.8 mL). Chromatography (SiO₂, hexane/MTBE = 10:1, $R_f = 0.35$) gave a mixture of regioisomers 7q (174 mg, 410 µmol, 78%) and 8q (7.0 mg, 16 μ mol, 3%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃), major isomer 7q: $\delta = 1.14$ (t, J = 7.1 Hz, 3 H), 1.61–1.66 (m, 1 H), 1.70–1.81 (m, 2 H), 2.14–2.21 (m, 1 H), 2.31–2.39 (m, 2 H), 2.53 (d, J = 17.3 Hz, 1 H), 3.57 (d, J = 17.3 Hz, 1 H), 4.09 (q, J = 7.1 Hz, 2 H), 5.58 (t, J = 4.2 Hz, 1 H), 7.27–7.36 (m, 4 H), 7.41 (dd, J = 2.4, J = 8.8 Hz, 1 H), 7.65 (d, J = 2.3 Hz, 1 H), 7.70 (d, J = 7.6 Hz, 2 H) ppm; minor isomer 8q: 1.20 (t, J = 7.1 Hz, 3 H), 4.14-4.25 (m, 2 H), 4.66 (s, 1 H), 6.62 (dd, J = 2.4, J = 8.8 Hz, 1 H), 7.04 (d, J = 8.8 Hz, 1 H) 7.11–7.13 (m, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃), major isomer $7q: \delta = 14.17$ (CH₃), 19.08 (CH₂), 24.70 (CH₂), 34.83 (CH₂), 35.32 (CH₂), 41.81 (C), 61.57 (CH₂), 111.02 (CH), 120.00 (CH), 122.18 (CH), 124.95 (2 CH), 125.04 (C), 128.20 (CH), 128.31 (2 CH), 129.99 (C), 132.19 (C), 134.85 (C), 137.36 (C), 140.68 (C), 145.75 (C), 174.03 (C) ppm. IR (ATR): $\tilde{v} = 2980$ (w), 2937 (w), 2866 (w), 2837 (w), 1725 (m), 1585 (m), 1471 (s), 1445 (m), 1266 (m), 1180 (m), 1126 (m), 1112 (m), 1023 (m), 760 (m), 737 (m), 693 (m), 631 (m) cm⁻¹. HRMS (ESI): calcd. for C₂₃H₂₂Cl₂N₂NaO₂ [M + Na⁺] 451.0956; found 451.0943.

Ethyl 1-(2-Methoxyphenyl)-3-phenyl-1,4,4a,5,6,7-hexahydrobenzo-[c]pyridazine-4a-carboxylate (7r): Following the procedure given for compound 7b, 1,4-diketone 1b (150 mg, 520 µmol), 2-methoxyphenylhydrazine (5d; 79 mg, 0.57 mmol) and TFA (15 mg, 0.13 mmol) were reacted in CH₂Cl₂ (1.8 mL). Chromatography (SiO₂, hexane/MTBE = 10:1, $R_f = 0.32$) gave pyridazine 7r (107 mg, 270 μ mol, 53%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): δ = 1.12 (t, J = 7.1 Hz, 3 H), 1.47–1.54 (m, 1 H), 1.62–1.68 (m, 2 H), 2.09-2.14 (m, 2 H), 2.28 (dt, J = 12.8, J = 3.2 Hz, 1 H), 2.38(d, J = 16.3 Hz, 1 H), 3.42 (d, J = 16.5 Hz, 1 H), 3.76 (s, 3 H),4.03–4.13 (m, 2 H), 4.62 (br. s, 1 H), 6.92 (t, J = 8.9 Hz, 2 H), 7.13–7.18 (m, 2 H), 7.22 (t, J = 7.6 Hz, 2 H), 7.37 (t, J = 6.8 Hz, 1 H), 7.58 (d, J = 7.7 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 14.67 (CH₃), 20.05 (CH₂), 24.95 (CH₂), 34.18 (CH₂), 34.94 (CH₂), 42.51 (C), 56.54 (CH₃), 61.71 (CH₂), 103.13 (CH), 113.34 (CH), 121.69 (CH), 125.35 (2 CH), 127.76 (CH), 128.04 (CH), 128.57 (2 CH), 129.42 (CH), 135.51 (C), 137.13 (C), 138.65 (C), 139.08 (C), 156.22 (C), 174.53 (C) ppm. IR (ATR): $\tilde{v} = 3058$

(w), 2975 (w), 2933 (w), 2835 (w), 1721 (m), 1584 (m), 1498 (m), 1460 (m), 1444 (m), 1293 (m), 1271 (m), 1243 (m), 1194 (s), 1159 (s), 1123 (m), 1024 (s), 752 (s), 693 (m) cm⁻¹. HRMS (ESI): calcd. for $C_{24}H_{27}N_2O_3$ [M + H⁺] 391.2022; found 391.2021.

Ethyl 1-(4-Methoxyphenyl)-3-phenyl-1,4,4a,5,6,7-hexahydrobenzo-[c]pyridazine-4a-carboxylate (7s): Following the procedure given for compound 7b, 1,4-diketone 1b (150 mg, 520 µmol), 4-methoxyphenylhydrazine (5e; 79 mg, 0.57 mmol) and TFA (15 mg, 0.13 mmol) were reacted in CH₂Cl₂ (1.8 mL). Chromatography (SiO₂, hexane/MTBE = 10:1, $R_f = 0.32$) gave pyridazine 7s (69 mg, 0.18 mmol, 35%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.16$ (t, J = 7.1 Hz, 3 H), 1.59–1.61 (m, 1 H), 1.70–1.76 (m, 2 H), 2.11–2.18 (m, 1 H), 2.24–2.27 (m, 1 H), 2.35 (dt, J = 13.2, J = 4.0 Hz, 1 H), 2.46 (d, J = 16.7 Hz, 1 H), 3.53 (d, J = 17.0 Hz, 1 H), 3.79 (s, 3 H), 4.11 (q, J = 7.1 Hz, 2 H), 5.20 (br. s, 1 H), 6.87 (d, J = 8.5 Hz, 2 H), 7.20–7.23 (m, 1 H), 7.30 (t, J = 7.6 Hz, 2 H), 7.41 (d, J = 8.5 Hz, 2 H), 7.67 (d, J = 8.0 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 14.23 (CH₃), 19.40 (CH₂), 24.68 (CH₂), 34.40 (CH₂), 34.90 (CH₂), 41.97 (C), 55.50 (CH₃), 61.38 (CH₂), 106.16 (CH), 113.95 (2 CH), 124.67 (2 CH), 124.71 (2 CH), 127.42 (CH), 128.17 (2 CH), 136.38 (C), 137.95 (C), 138.04 (C), 139.78 (C), 156.27 (C), 174.25 (C) ppm. IR (ATR): $\tilde{v} = 3062$ (w), 2978 (w), 2933 (w), 2868 (w), 2835 (w), 1723 (m), 1506 (s), 1444 (m), 1293 (m), 1241 (s), 1178 (s), 1111 (m), 1028 (m), 830 (m), 759 (m), 692 (m) cm⁻¹. HRMS (ESI): calcd. for $C_{24}H_{26}N_2NaO_3$ [M + Na⁺] 413.1841; found 413.1837.

Ethyl 1-(2-Methylphenyl)-3-phenyl-1,4,4a,5,6,7-hexahydrobenzo-[c]pyridazine-4a-carboxylate (7t): Following the procedure given for compound 7b, 1,4-diketone 1b (150 mg, 520 µmol), 2-methylphenylhydrazine (5f; 70 mg, 0.57 mmol) and TFA (15 mg, 0.13 mmol) were reacted in CH₂Cl₂ (1.8 mL). Chromatography (SiO₂, hexane/ MTBE = 10:1, $R_f = 0.38$) gave pyridazine 7t (35 mg, 90 µmol, 18%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.18$ (t, J =7.1 Hz, 3 H), 1.49–1.60 (m, 1 H), 1.72–1.78 (m, 2 H), 2.10–2.20 (m, 2 H), 2.26 (s, 3 H), 2.34 (dt, J = 13.1, J = 3.1 Hz, 1 H), 2.42 (d, J = 14.8 Hz, 1 H), 3.53 (d, J = 16.6 Hz, 1 H), 4.08–4.20 (m, 2 H), 4.56 (br. s, 1 H), 7.14–7.17 (m, 1 H), 7.20–7.23 (m, 3 H), 7.28 (t, J = 7.6 Hz, 2 H), 7.35–7.37 (m, 1 H), 7.66 (d, *J* = 7.7 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 14.20 (CH₃), 18.04 (CH₃), 19.47 (CH₂), 24.49 (CH₂), 33.79 (CH₂), 34.74 (CH₂), 42.24 (C), 61.36 (CH₂), 102.82 (CH), 124.75 (2 CH), 126.53 (CH), 126.69 (CH), 127.49 (CH), 127.70 (CH), 128.20 (2 CH), 130.85 (CH), 135.79 (C), 136.25 (C), 137.92 (C), 138.90 (C), 144.29 (C), 173.99 (C) ppm. IR (ATR): $\tilde{v} = 3059$ (w), 3025 (w), 2981 (w), 2934 (w), 2870 (w), 2837 (w), 1724 (s), 1585 (m), 1493 (m), 1447 (m), 1294 (m), 1270 (m), 1190 (s), 1126 (m), 1068 (m), 1025 (m), 761 (m), 695 (m), 633 (s) cm⁻¹. HRMS (ESI): calcd. for $C_{24}H_{27}N_2O_2$ [M + H⁺] 375.2073; found 375.2070.

Ethyl 1-(4-Methylphenyl)-3-phenyl-1,4,4a,5,6,7-hexahydrobenzo-[*c*]pyridazine-4a-carboxylate (7u): Following the procedure given for compound 7b, 1,4-diketone 1b (150 mg, 520 µmol), 4-methylphenylhydrazine (5g; 70 mg, 0.57 mmol) and TFA (15 mg, 0.13 mmol) were reacted in CH₂Cl₂ (1.8 mL). Chromatography (SiO₂, hexane/ MTBE = 10:1, $R_f = 0.37$) gave pyridazine 7u (128 mg, 340 µmol, 66%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.15$ (t, J = 7.1 Hz, 3 H), 1.55–1.63 (m, 1 H), 1.69–1.76 (m, 2 H), 2.11–2.18 (m, 1 H), 2.26–2.37 (m, 2 H), 2.31 (s, 3 H), 2.48 (d, J = 17.1 Hz, 1 H), 3.54 (d, J = 17.1 Hz, 1 H), 4.10 (q, J = 7.1 Hz, 2 H), 5.35 (br. s, 1 H), 7.11 (d, J = 8.1 Hz, 2 H), 7.21–7.24 (m, 1 H), 7.30 (t, J = 7.6 Hz, 2 H), 7.40 (d, J = 8.1 Hz, 2 H), 7.69 (d, J = 7.8 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): $\delta = 14.45$ (CH₃), 19.56 (CH₂), 21.08 (CH₃), 24.94 (CH₂), 34.95 (CH₂), 35.21 (CH₂),

42.12 (C), 61.62 (CH₂), 107.72 (CH), 122.76 (2 CH), 124.94 (2 CH), 127.71 (CH), 128.40 (2 CH), 129.41 (2 CH), 133.12 (C), 136.10 (C), 138.22 (C), 138.50 (C), 144.17 (C), 175.54 (C) ppm. IR (ATR): $\tilde{v} = 3029$ (w), 2975 (w), 2934 (w), 2864 (w), 2835 (w), 1725 (m), 1509 (m), 1445 (w), 1267 (w), 1191 (m), 760 (w), 694 (w), 632 (s) cm⁻¹. HRMS (ESI): calcd. for C₂₄H₂₆N₂NaO₂ [M + Na⁺] 397.1892; found 397.1866.

Ethyl 1-(4-Iodophenyl)-3-phenyl-1,4,4a,5,6,7-hexahydrobenzo[c]pyridazine-4a-carboxylate (7v) and Ethyl 2-(4-Iodophenyl)-3-phenyl-2,4a,5,6,7,8-hexahydrobenzo[c]pyridazine-4a-carboxylate (8v): Following the procedure given for compound **7b**, 1,4-diketone **1b** (150 mg, 520 µmol), 4-iodophenylhydrazine (5h; 133 mg, 570 µmol) and TFA (15 mg, 0.13 mmol) were reacted in CH₂Cl₂ (1.8 mL). Chromatography (SiO₂, hexane/MTBE = 10:1, $R_{\rm f}$ = 0.27) gave a mixture of regioisomers 7v (194 mg, 400 µmol, 77%) and 8v (10 mg, 21 μ mol, 4%) as a red solid. M.p. 44 °C. ¹H NMR (500 MHz, CDCl₃), major isomer 7v: δ = 1.07 (t, *J* = 7.1 Hz, 3 H), 1.53-1.59 (m, 1 H), 1.63-1.71 (m, 2 H), 2.08-2.11 (m, 1 H), 2.23-2.31 (m, 2 H), 2.45 (d, J = 17.3 Hz, 1 H), 3.50 (d, J = 17.2 Hz, 1 H), 4.03 (q, J = 7.1 Hz, 2 H), 5.47 (t, J = 4.2 Hz, 1 H), 7.18–7.21 (m, 1 H), 7.25-7.28 (m, 4 H), 7.51 (d, J = 8.6 Hz, 2 H), 7.63 (d, J= 7.7 Hz, 2 H) ppm; minor isomer 8v: δ = 1.13 (t, J = 7.2 Hz, 3 H), 2.60 (d, J = 14.8 Hz, 1 H), 4.07–4.18 (m, 2 H), 4.56 (s, 1 H), 6.68 (d, J = 8.5 Hz, 2 H), 7.06 (d, J = 6.3 Hz, 2 H), 7.13 (d, J =7.0 Hz, 2 H) ppm. 13C{1H} NMR (125 MHz, CDCl₃), major isomer 7v: $\delta = 14.67$ (CH₃), 19.61 (CH₂), 25.18 (CH₂), 35.36 (CH₂), 35.60 (CH₂), 42.26 (C), 61.95 (CH₂), 85.84 (C), 110.39 (CH), 123.72 (2 CH), 125.30 (2 CH), 128.40 (CH), 128.72 (2 CH), 135.51 (C), 137.90 (2 CH), 138.07 (C), 140.28 (C), 146.56 (C), 174.58 (C) ppm. IR (ATR): $\tilde{v} = 3059$ (w), 2978 (w), 2934 (w), 2865 (w), 2835 (w), 1723 (s), 1579 (m), 1481 (vs), 1444 (m), 1301 (m), 1266 (m), 1184 (s), 1170 (s), 1110 (m), 1022 (m), 818 (m), 758 (s), 691 (s) cm⁻¹. HRMS (ESI): calcd. for $C_{23}H_{24}IN_2O_2$ [M + H⁺] 487.0882; found 487.0891.

Ethyl 2-[2-(2,4-Dinitrophenyl)hydrazono]-1-(2-oxo-2-phenylethyl)cyclohexanecarboxylate (6w): 2,4-Dinitrophenylhydrazine 5i (151 mg, 690 µmol) and TFA (47 mg, 0.41 mmol) were added to a solution of 1,4-diketone 1b (200 mg, 690 µmol) in THF (2.4 mL) and the resulting reaction mixture was stirred for 3 h under reflux. After removal of all volatile materials in vacuo, the residue was purified by using chromatography (SiO₂, hexane/MTBE = 3:1, $R_{\rm f}$ = 0.22) to yield hydrazone **6w** (233 mg, 500 μ mol, 72%) as an orange solid. M.p. 75 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.30$ (t, J = 7.1 Hz, 3 H), 1.47-1.56 (m, 1 H), 1.58-1.66 (m, 1 H), 1.78-1.66 (m, 1 H)1.84 (m, 2 H), 2.05–2.08 (m, 1 H), 2.44–2.47 (m, 1 H), 2.74–2.86 (m, 2 H), 3.35 (d, J = 16.7 Hz, 1 H), 3.80 (d, J = 16.7 Hz, 1 H), 4.23–4.36 (m, 2 H), 6.86 (d, J = 9.6 Hz, 1 H), 7.52–7.55 (m, 3 H), 7.68 (t, J = 7.4 Hz, 1 H), 8.03 (d, J = 7.5 Hz, 2 H), 8.98 (d, J =2.5 Hz, 1 H), 11.20 (s, 1 H) ppm. ¹³C{¹H} NMR (125 MHz, $CDCl_3$): $\delta = 14.58 (CH_3), 22.37 (CH_2), 26.09 (CH_2), 26.32 (CH_2),$ 38.57 (CH₂), 45.71 (CH₂), 54.50 (C), 62.02 (CH₂), 116.45 (CH), 123.73 (CH), 128.64 (2 CH), 129.36 (2 CH), 129.59 (C), 129.75 (CH), 133.98 (CH), 137.26 (C), 138.09 (C), 145.34 (C), 158.95 (C), 174.11 (C), 197.06 (C) ppm. IR (ATR): $\tilde{v} = 3323$ (w), 2941 (w), 2865 (w), 1727 (m), 1688 (m), 1618 (s), 1591 (m), 1517 (m), 1504 (m), 1334 (s), 1312 (m), 1221 (m), 1198 (m), 1137 (m), 763 (m), 744 (m), 630 (s) cm⁻¹. HRMS (ESI): calcd. for $C_{23}H_{24}N_4NaO_7$ [M + Na⁺] 491.1543; found 491.1542.

1-Benzyl 3-Methyl 4-Oxo-3-(2-oxo-2-phenylethyl)pyrrolidine-1,3-dicarboxylate (1g): Phenacyl bromide (105 mg, 530 μ mol) and K₂CO₃ (73 mg, 0.53 mmol) were added to a solution of β -oxo ester 10g (134 mg, 480 μ mol) in acetone (1 mL) and the resulting mixture was stirred for 19 h at 40 °C. Then water (10 mL) was added and the aqueous phase was extracted with MTBE $(3 \times 10 \text{ mL})$. The combined organic extracts were dried (MgSO₄), filtered and the solvent was evaporated to yield 1,4-diketone 1g (83 mg, 0.21 mmol, 44%) after chromatography (SiO₂, hexane/MTBE = 2:1, $R_f = 0.13$) as a colorless oil. A double signal set is observed due to E/Z-isomers (ratio 1.0:0.95) at the carbamate C-N bond. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 3.65-3.74 \text{ (m, 4 H)}, 3.71 \text{ (s, 6 H)}, 3.85 \text{ (s, 6 H)}$ 2 H), 4.16-4.28 (m, 4 H), 4.39-4.46 (m, 2 H), 5.19 (s, 4 H), 7.32-7.38 (m, 10 H), 7.46 (t, J = 7.5 Hz, 4 H), 7.58 (t, J = 7.5 Hz, 2 H), 7.92 (d, J = 7.8 Hz, 4 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): $\delta = 42.83$ (CH₂), 43.04 (CH₂), 52.54 (CH₂), 52.70 (CH₂), 52.95 (CH₂), 53.07 (CH₂), 53.59 (2 CH₃), 56.70 (C), 57.68 (C), 67.62 (2 CH₂), 128.21 (4 CH), 128.38 (2 CH), 128.40 (4 CH), 128.74 (4 CH), 129.00 (4 CH), 134.20 (2 CH), 135.72 (2 C), 136.56 (2 C), 154.86 (C), 155.03 (C), 169.35 (C), 169.62 (C), 196.31 (C), 196.37 (C), 205.94 (C), 206.57 (C) ppm. IR (ATR): $\tilde{v} = 3063$ (w), 3032 (w), 2955 (w), 2920 (w), 1769 (m), 1704 (s), 1681 (s), 1449 (m), 1418 (m), 1352 (m), 1270 (m), 1211 (m), 1180 (m), 1120 (m), 911 (m), 754 (m), 730 (s), 689 (s) cm^{-1} . HRMS (ESI): calcd. for $C_{22}H_{21}NNaO_6$ [M + Na⁺] 418.1267; found 418.1274.

Ethyl 4-Oxo-3-(2-oxo-2-phenylethyl)tetrahydro-2H-pyran-3-carboxylate (1h): Following the procedure given for compound 1g, oxo ester 10h (413 mg, 2.40 mmol), phenacyl bromide (11a; 525 mg, 2.64 mmol) and K₂CO₃ (365 mg, 2.64 mmol) were reacted in acetone (4.8 mL). Chromatography (SiO₂, hexane/MTBE = 1:1, $R_{\rm f}$ = 0.38) gave 1,4-diketone 1h (502 mg, 1.73 mmol, 72%) as a colorless solid. M.p. 90 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.26 (t, J = 7.1 Hz, 3 H), 2.53–2.57 (m, 1 H), 3.05 (ddd, J = 7.3, J = 11.0, J = 15.4 Hz, 1 H), 3.38 (d, J = 17.7 Hz, 1 H), 3.51 (d, J = 17.7 Hz, 1 H), 3.89–3.95 (m, 2 H), 4.22–4.28 (m, 3 H), 4.43 (d, J = 11.4 Hz, 1 H), 7.44 (t, J = 7.7 Hz, 2 H), 7.56 (t, J = 7.4 Hz, 1 H), 7.91 (d, J = 7.6 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): $\delta =$ 13.97 (CH₃), 39.53 (CH₂), 40.79 (CH₂), 60.04 (C), 62.00 (CH₂), 68.26 (CH₂), 73.97 (CH₂), 128.09 (2 CH), 128.64 (2 CH), 133.42 (CH), 136.50 (C), 170.73 (C), 196.00 (C), 202.88 (C) ppm. IR (ATR): $\tilde{v} = 2979$ (w), 2931 (w), 2865 (w), 1733 (s), 1714 (s), 1710 (s), 1451 (m), 1385 (m), 1364 (m), 1300 (m), 1252 (m), 1220 (s), 1197 (m), 1106 (m), 1003 (m), 746 (m), 693 (m), 632 (s) cm⁻¹. HRMS (CI, isobutane): calcd. for $C_{16}H_{18}O_5$ [M + H⁺] 291.1232; found 291.1227. C₁₆H₁₉O₅ (290.31): calcd. C 66.19, H 6.25; found C 66.19, H 6.39.

Methyl 4-Oxo-3-(2-oxo-2-phenylethyl)tetrahydro-2H-thiopyran-3carboxylate (1i): Following the procedure given for compound 1g, oxo ester 10i (300 mg, 1.72 mmol), phenacyl bromide (11a; 376 mg, 1.89 mmol) and K₂CO₃ (261 mg, 1.89 mmol) were reacted in acetone (3.5 mL). Chromatography (SiO₂, hexane/MTBE = 1:1, $R_{\rm f}$ = 0.38) gave 1,4-diketone 1i (248 mg, 0.850 mmol, 49%) as a yellowish solid. M.p. 86 °C. ¹H NMR (500 MHz, CDCl₃): δ = 2.80–2.88 (m, 2 H), 2.97-3.09 (m, 2 H), 3.26 (s, 2 H), 3.50 (A-part of an ABsystem, J = 17.3 Hz 1 H), 3.61 (B-part of an AB-system, J =17.3 Hz, 1 H), 3.75 (s, 3 H), 7.40 (t, J = 7.7 Hz, 2 H), 7.51 (t, J = 7.3 Hz, 1 H), 7.88 (d, J = 7.8 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 29.78 (CH₂), 37.62 (CH₂), 41.96 (CH₂), 42.64 (CH₂), 52.71 (CH₃), 60.68 (C), 127.89 (2 CH), 128.47 (2 CH), 133.24 (CH), 136.26 (C), 171.31 (C), 196.06 (C), 204.25 (C) ppm. IR (ATR): $\tilde{v} = 3002$ (w), 2968 (w), 2951 (w), 2931 (w), 1734 (s), 1706 (s), 1596 (m), 1448 (m), 1430 (m), 1418 (m), 1364 (m), 1317 (m), 1291 (m), 1208 (s), 1136 (m), 1130 (m), 1004 (m), 968 (m), 779 (m), 754 (m), 691 (m) cm⁻¹. HRMS (CI, isobutane): calcd. for $C_{15}H_{17}O_4S$ [M + H⁺] 293.0848; found 293.0840.

1-*tert*-Butyl 3-Methyl 4-Oxo-3-(2-oxo-2-phenylethyl)piperidine-1,3dicarboxylate (1j): Following the procedure given for compound 1g,

M. Penning, J. Christoffers

oxo ester 10j (1.15 g, 4.47 mmol), phenacyl bromide (11a; 979 mg, 4.92 mmol) and K₂CO₃ (680 mg, 4.92 mmol) were reacted in acetone (14 mL). Chromatography (SiO₂, hexane/MTBE = 2:1, $R_{\rm f}$ = 0.14) gave 1,4-diketone 1j (1.24 g, 3.31 mmol, 74%) as a colorless solid. M.p. 45 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.40 (s, 9 H), 2.60 (d, J = 14.9 Hz, 1 H), 2.84–2.97 (m, 1 H), 3.44–3.79 (m, 4 H), 3.72 (s, 3 H), 4.15 (s, 1 H), 4.34–4.50 (m, 1 H), 7.44 (t, J = 7.1 Hz, 2 H), 7.56 (t, J = 7.0 Hz, 1 H), 7.92 (d, J = 7.8 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 28.47 (3 CH₃), 39.51 (CH₂), 41.12 (CH₂), 42.69 (CH₂), 50.02 (CH₂), 53.08 (CH₃), 58.56 (C), 80.72 (C), 128.32 (2 CH), 128.88 (2 CH), 133.77 (CH), 136.44 (C), 154.46 (C), 171.03 (C), 196.22 (C), 204.60 (C) ppm. IR (ATR): $\tilde{v} = 2977$ (w), 2954 (w), 2932 (w), 1737 (m), 1686 (s), 1424 (m), 1366 (m), 1295 (m), 1249 (m), 1220 (m), 1157 (s), 1132 (m), 1000 (m), 756 (m), 739 (m), 690 (m) cm⁻¹. HRMS (ESI): calcd. for $C_{20}H_{25}NNaO_6$ [M + Na⁺] 398.1580; found 398.1570.

1-Benzyl 3-Methyl 4-Oxo3-(2-oxo-phenylethyl)piperidine-1,3-dicarboxylate (1k): Following the procedure given for compound 1g, oxo ester 10k (524 mg, 1.80 mmol), phenacyl bromide (11a; 384 mg, 1.98 mmol) and K₂CO₃ (274 mg, 1.98 mmol) were reacted in acetone (3.6 mL). Chromatography (SiO₂, hexane/MTBE = 1:1, R_f = 0.25) gave 1,4-diketone 1k (517 mg, 1.26 mmol, 70%) as a colorless oil. A double set of broad signals is observed due to E/Z-isomers (ratio 1.0:0.62) at the carbamate C-N bond. ¹H NMR (500 MHz, CDCl₃): δ = 2.64 (d, J = 15.6 Hz, 2 H), 2.89–2.99 (m, 2 H), 3.44– 3.48 (m, 3 H), 3.54–3.58 (m, 8 H), 3.64–3.72 (m, 2 H), 3.81 (d, J = 17.8 Hz, 1 H), 4.29–4.33 (m, 2 H), 4.46–4.57 (m, 2 H), 5.05–5.19 (m, 4 H), 7.31-7.35 (m, 10 H), 7.44 (t, J = 7.6 Hz, 4 H), 7.57 (t, J= 7.3 Hz, 2 H), 7.86–7.90 (m, 4 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃), major conformer: δ = 38.91 (CH₂), 40.96 (CH₂), 42.85 (CH₂), 49.53 (CH₂), 52.67 (CH₃), 57.77 (C), 67.49 (CH₂), 127.62 (2 CH), 127.91 (CH), 128.08 (2 CH), 128.43 (2 CH), 128.57 (2 CH), 133.53 (CH), 135.92 (C), 136.04 (C), 154.85 (C), 170.58 (C), 196.00 (C), 203.67 (C) ppm; minor conformer: $\delta = 39.13$ (CH₂), 41.27 (CH₂), 42.85 (CH₂), 49.87 (CH₂), 52.79 (CH₃), 57.43 (C), 67.49 (CH₂), 127.62 (2 CH), 127.91 (CH), 128.08 (2 CH), 128.43 (2 CH), 128.57 (2 CH), 133.53 (CH), 135.92 (C), 136.37 (C), 155.08 (C), 170.74 (C), 196.27 (C), 203.87 (C) ppm. IR (ATR): \tilde{v} = 3065 (w), 3031 (w), 2953 (w), 1737 (m), 1695 (s), 1473 (w), 1447 (m), 1430 (m), 1355 (w), 1293 (m), 1277 (m), 1248 (m), 1217 (s), 1127 (m), 999 (m), 909 (m), 755 (m), 737 (m), 691 (m), 643 (m), 609 (m) cm⁻¹. HRMS (CI, isobutane): calcd. for $C_{23}H_{24}NO_6$ [M + H⁺] 410.1604; found 410.1593.

Ethyl 1-[2-(4-Methoxyphenyl)-2-oxoethyl]-2-oxocyclohexanecarboxylate (11): Following the procedure given for compound 1g, oxo ester 10b (1.00 g, 5.88 mmol), 4-methoxyphenacyl bromide (11l; 1.62 g, 7.06 mmol) and K₂CO₃ (976 mg, 7.06 mmol) were reacted in acetone (12 mL). Chromatography (SiO₂, hexane/MTBE = 2:1, $R_{\rm f} = 0.23$) gave 1,4-diketone 11 (1.01 g, 3.16 mmol, 54%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): δ = 1.24 (t, J = 7.1 Hz, 3 H), 1.74–1.83 (m, 4 H), 2.04–2.06 (m, 1 H), 2.41–2.45 (m, 1 H), 2.50-2.53 (m, 1 H), 2.75-2.82 (m, 1 H), 3.35 (d, J = 17.3 Hz, 1 H), 3.50 (d, J = 17.3 Hz, 1 H), 3.84 (s, 3 H), 4.16–4.25 (m, 2 H), 6.90 (d, J = 8.6 Hz, 2 H), 7.91 (d, J = 8.6 Hz, 2 H) ppm. ¹³C{¹H} NMR $(125 \text{ MHz}, \text{ CDCl}_3): \delta = 14.01 \text{ (CH}_3), 22.00 \text{ (CH}_2), 26.71 \text{ (CH}_2),$ 36.58 (CH₂), 40.51 (CH₂), 43.68 (CH₂), 55.43 (CH₃), 58.75 (C), 61.44 (CH₂), 113.62 (2 CH), 129.86 (C), 130.30 (2 CH), 163.48 (C), 172.08 (C), 195.42 (C), 207.40 (C) ppm. IR (ATR): $\tilde{v} = 2938$ (w), 2865 (w), 2842 (w), 1728 (m), 1710 (s), 1679 (m), 1600 (s), 1510 (m), 1312 (m), 1260 (m), 1223 (s), 1170 (s), 1027 (m), 631 (s) cm^{-1} . HRMS (CI, isobutane): calcd. for $C_{18}H_{23}O_5$ [M + H⁺] 319.1545; found 319.1538.

Ethyl 1-[2-(4-Bromophenyl)-2-oxoethyl]-2-oxocyclohexanecarboxylate (1m): NaH (60% in mineral oil, 57 mg, 1.4 mmol) and 4-bromophenacyl bromide (11m; 395 mg, 1.42 mmol) were added at 60 °C to a solution of oxo ester 10b (200 mg, 1.18 mmol) in THF (1.2 mL) and the reaction mixture was stirred at this temperature for 17 h. Then water (5 mL) and brine (5 mL) were added and the mixture was extracted with MTBE (3×10 mL). The combined organic extracts were dried (MgSO₄), filtered and the solvent was removed in vacuo. Chromatography (SiO₂, hexane/MTBE = 5:1, $R_{\rm f}$ = 0.23) yielded 1,4-diketone 1m (191 mg, 520 μ mol, 44%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.25$ (t, J = 7.1 Hz, 3 H), 1.71–1.83 (m, 4 H), 2.04–2.08 (m, 1 H), 2.42–2.45 (m, 1 H), 2.47–2.52 (m, 1 H), 2.80–2.87 (m, 1 H), 3.29 (d, J = 17.3 Hz, 1 H), 3.47 (d, J = 17.3 Hz, 1 H), 4.17–4.27 (m, 2 H), 7.57 (d, J = 8.6 Hz, 2 H), 7.79 (d, J = 8.6 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 14.03 (CH₃), 21.98 (CH₂), 26.84 (CH₂), 36.90 (CH₂), 40.52 (CH₂), 43.87 (CH₂), 59.06 (C), 61.60 (CH₂), 128.25 (C), 129.59 (2 CH), 131.83 (2 CH), 135.56 (C), 171.94 (C), 196.04 (C), 207.30 (C) ppm. IR (ATR): $\tilde{v} = 2939$ (w), 2865 (w), 1728 (m), 1708 (s), 1687 (s), 1585 (m), 1397 (m), 1215 (s), 1193 (s), 1133 (m), 1071 (s), 1006 (m), 626 (m) cm⁻¹. HRMS (CI, isobutane): calcd. for $C_{17}H_{20}BrO_4$ [M + H⁺] 367.0545; found 367.0540.

Ethyl 1-[2-(4-Nitrophenyl)-2-oxoethyl]-2-oxocyclohexanecarboxylate (1n): Following the procedure given for compound 1g, oxo ester **10b** (500 mg, 2.94 mmol), 4-nitrophenacyl bromide (**11n**; 1.43 g, 5.88 mmol) and K₂CO₃ (813 mg, 5.88 mmol) were reacted in acetone (6 mL). Chromatography (SiO₂, hexane/MTBE = 3:1, $R_{\rm f}$ = 0.16) gave 1,4-diketone 1n (122 mg, 370 µmol, 13%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.27$ (t, J = 7.1 Hz, 3 H), 1.69–1.83 (m, 4 H), 2.07–2.13 (m, 1 H), 2.43–2.51 (m, 2 H), 2.85– 2.93 (m, 1 H), 3.29 (d, J = 17.2 Hz, 1 H), 3.49 (d, J = 17.2 Hz, 1 H), 4.22–4.28 (m, 2 H), 8.07 (d, J = 8.7 Hz, 2 H), 8.28 (d, J =8.7 Hz, 2 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 14.48 (CH₃), 22.37 (CH₂), 27.40 (CH₂), 37.70 (CH₂), 40.95 (CH₂), 44.69 (CH₂), 60.05 (C), 62.21 (CH₂), 124.22 (2 CH), 129.51 (2 CH), 141.89 (C), 150.70 (C), 172.24 (C), 196.20 (C), 207.73 (C) ppm. IR (ATR): $\tilde{v} = 2941$ (w), 2868 (w), 1730 (m), 1697 (s), 1605 (w), 1526 (s), 1347 (s), 1318 (m), 1214 (m), 1197 (m), 1013 (m), 856 (m), 633 (m) cm⁻¹. HRMS (CI, isobutane): calcd. for $C_{17}H_{20}NO_6$ [M + H⁺] 334.1291; found 334.1294.

Ethyl 1-[2-(2,4-Dimethoxyphenyl)-2-oxoethyl]-2-oxocyclohexanecarboxylate (10): Following the procedure given for compound 1g, oxo ester 10b (90 mg, 0.53 mmol), 2,4-dimethoxyphenacyl bromide (110; 150 mg, 580 µmol) and K₂CO₃ (80 mg, 0.58 mmol) were reacted in acetone (1.1 mL). Chromatography (SiO₂, hexane/MTBE = 2:1, $R_{\rm f}$ = 0.20) gave 1,4-diketone **10** (86 mg, 0.25 mmol, 47%) as a colorless solid. M.p. 83 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.23 (t, J = 7.1 Hz, 3 H), 1.71–1.83 (m, 4 H), 2.00–2.05 (m, 1 H), 2.37-2.41 (m, 1 H), 2.47-2.50 (m, 1 H), 2.76-2.83 (m, 1 H), 3.39 (A-part of an AB-system, J = 18.2 Hz, 1 H), 3.50 (B-part of an AB-system, J = 18.2 Hz, 1 H), 3.82 (s, 3 H), 3.86 (s, 3 H), 4.14– 4.25 (m, 2 H), 6.41 (d, J = 1.4 Hz, 1 H), 6.49 (dd, J = 1.7, J =8.8 Hz, 1 H), 7.78 (d, J = 8.7 Hz, 1 H) ppm. ¹³C{¹H} NMR $(125 \text{ MHz}, \text{ CDCl}_3): \delta = 14.49 \text{ (CH}_3), 22.44 \text{ (CH}_2), 27.22 \text{ (CH}_2),$ 37.04 (CH₂), 41.00 (CH₂), 49.58 (CH₂), 55.89 (CH₃), 55.94 (CH₃), 59.50 (C), 61.65 (CH₂), 98.68 (CH), 105.55 (CH), 121.20 (C), 133.28 (CH), 161.23 (C), 164.92 (C), 172.95 (C), 196.90 (C), 208.13 (C) ppm. IR (ATR): $\tilde{v} = 2977$ (w), 2955 (w), 2932 (w), 2863 (w), 1730 (m), 1702 (m), 1666 (m), 1311 (m), 1298 (m), 1257 (m), 1221 (m), 1210 (m), 1177 (s), 1136 (s), 1127 (s), 1074 (m), 1025 (m), 842 (m) cm⁻¹. HRMS (CI, isobutane): calcd. for $C_{19}H_{25}O_6$ [M + H⁺] 349.1651; found 349.1649.

European Journal

1-Benzyl 3-Methyl 4-Oxopyrrolidine-1,3-dicarboxylate (10g): Methylacrylate (193 mg, 2.24 mmol) and KOtBu (276 mg, 2.46 mmol) were added at 0 °C to a solution of carbamate 12 (500 mg, 2.24 mmol) in THF (4 mL) and the mixture was stirred at 23 °C for 3 d. Afterwards the solvent was removed in vacuo, the residue was dissolved in CH₂Cl₂ (15 mL) and the pH-value was adjusted to 1 with hydrochloric acid (1 mol/L). The phases were separated and the aqueous phase was extracted with CH_2Cl_2 (2×15 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent was evaporated to yield pyrrolidine 10g (424 mg, 1.53 mmol, 68%) after chromatography (SiO₂, hexane/MTBE = 1:2, $R_{\rm f} = 0.16$) as a colorless oil. A double signal set is observed due to keto-enol-tautomers (ratio 1.0:0.50). ¹H NMR (500 MHz, CDCl₃); ketone: δ = 3.76 (s, 3 H), 3.88–3.98 (m, 2 H), 4.07–4.11 (m, 1 H), 4.27 (s, 2 H), 5.11–5.17 (m, 2 H), 7.32–7.36 (m, 5 H) ppm; enol: δ = 3.78 (s, 3 H), 3.88–3.98 (m, 1 H), 4.07–4.11 (m, 2 H), 4.27 (s, 1 H), 5.11–5.17 (m, 2 H), 7.32–7.36 (m, 5 H), 10.01 (s, 1 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃), ketone: $\delta = 48.54$ (CH₂), 50.94 (CH₂), 51.45 (CH), 52.85 (CH₂), 67.44 (CH₂), 127.86 (CH), 128.00 (2 CH), 128.41 (2 CH), 135.98 (C), 154.38 (C), 167.64 (C), 203.45 (C) ppm; enol: $\delta = 48.79$ (CH₂), 51.28 (CH₂), 51.38 (CH₃), 67.07 (CH₂), 96.87 (C), 128.00 (2 CH), 128.20 (CH), 127.47 (2 CH), 136.34 (C), 154.29 (C), 166.80 (C), 167.50 (C) ppm. IR (ATR): v = 3274 (m, br.), 2956 (w), 2934 (w), 2891 (w), 2869 (w), 1699 (s), 1682 (s), 1641 (m), 1456 (m), 1425 (m), 1365 (m), 1329 (m), 1224 (m), 1217 (m), 1121 (s), 1045 (m), 767 (m), 730 (s), 690 (m) cm⁻¹. HRMS (CI, isobutane): calcd. for $C_{14}H_{16}NO_5 \ [M\ +\ H^+]\ 278.1028;$ found 278.1022.

Diethyl 3,3'-Oxydipropanoate (14): EtOH (1.49 g, 32.4 mmol) and conc. H₂SO₄ (128 mg, 1.30 mmol) were added to a solution of acid **13** (1.05 g, 6.48 mmol) in CHCl₃ (30 mL) and the mixture was stirred for 20 h in an inverse Dean–Stark trap under reflux. The organic phase was washed with water (20 mL) and brine (20 mL) and then dried (MgSO₄), filtered and evaporated to yield ester **14** (705 mg, 3.23 mmol, 50%) after chromatography (SiO₂, hexane/MTBE = 2:1, $R_f = 0.35$) as a colorless oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.23$ (t, J = 7.1 Hz, 6 H), 2.53 (t, J = 6.4 Hz, 4 H), 3.69 (t, J = 6.4 Hz, 4 H), 4.11 (q, J = 7.1 Hz, 4 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): $\delta = 14.15$ (2 CH₃), 35.01 (2 CH₂), 60.46 (2 CH₂), 66.33 (2 CH₂), 171.48 (2 C) ppm. IR (ATR): $\tilde{v} = 2982$ (w), 2935 (w), 2905 (w), 2876 (w), 1731 (s), 1373 (m), 1258 (m), 1181 (s), 1111 (m), 1063 (m), 1029 (m) cm⁻¹. HRMS (CI, isobutane): calcd. for C₁₀H₁₉O₅ [M + H⁺] 219.1232; found 219.1231.

Ethyl 4-Oxotetrahydro-2H-pyran-3-carboxylate (10h): nBuLi (1.6 mol/L hexane, 16.5 mL, 26.4 mmol) was added at -78 °C under an inert atmosphere (N₂) to a solution of anhydrous iPr_2NH (2.67 g, 26.4 mmol) in absolute THF (24 mL) and afterwards the mixture was stirred at 0 °C for 15 min. This solution was then added at -78 °C to a solution of diester 14 (2.95 g, 13.5 mmol) in absolute THF (36 mL) and stirring was continued for 15 min. After warming to ambient temperature, water (40 mL), hydrochloric acid (100 mL, 1 mol/L) and hexane (40 mL) were added and the layers were separated. The aqueous phase was extracted with EtOAc $(3 \times 50 \text{ mL})$ and the combined organic extracts were dried (MgSO₄), filtered and the solvent was evaporated to yield β -oxo ester 10h (422 mg, 2.45 mmol, 18%) after chromatography (SiO₂, hexane/MTBE = 5:1, $R_f = 0.38$) as a colorless liquid. A double signal set is observed owing to keto-enol-tautomers (ratio 0.30:1.0). ¹H NMR (500 MHz, CDCl₃), ketone: $\delta = 1.27$ (t, J = 7.1 Hz, 3 H), 2.50–2.55 (m, 1 H), 2.63–2.68 (m, 1 H), 3.44 (t, J = 5.9 Hz, 1 H), 3.93–4.01 (m, 2 H), 4.07 (dd, J = 11.6 Hz, J = 4.9 Hz, 1 H) 4.18– 4.22 (m, 3 H) ppm; enol: $\delta = 1.27$ (t, J = 7.1 Hz, 3 H), 2.35–2.37 (m, 2 H), 3.82 (t, J = 5.5 Hz, 2 H), 4.18-4.22 (m, 2 H), 4.25 (s, 2

H), 11.82 (s, 1 H) ppm. ${}^{13}C{}^{1H}$ NMR (125 MHz, CDCl₃), ketone: $\delta = 14.09$ (CH₃), 42.05 (CH₂), 57.87 (CH), 61.56 (CH₂), 68.22 (CH₂), 69.70 (CH₂), 167.80 (C), 201.43 (C) ppm; enol: $\delta = 14.24$ (CH₃), 28.76 (CH₂), 60.35 (CH₂), 63.05 (CH₂), 63.97 (CH₂), 97.43 (C), 168.84 (C), 170.15 (C) ppm. IR (ATR): $\tilde{v} = 2980$ (w), 2938 (w), 2915 (w), 2856 (w), 1739 (w), 1719 (m), 1661 (s), 1628 (m), 1403 (w), 1368 (w), 1306 (s), 1285 (m), 1240 (m), 1218 (s), 1193 (m), 1100 (m), 1052 (m), 722 (w), 630 (m) cm⁻¹. HRMS (CI, isobutane): calcd. for C₈H₁₃O₄ [M + H⁺] 173.0814; found 173.0811.

2-Bromo-1-(2,4-dimethoxyphenyl)ethanone (110): Anhydrous AlCl₃ (995 mg, 7.46 mmol) was added to a solution of 1,3-dimethoxybenzene (1.03 g, 7.46 mmol) in bromoacetyl bromide (1.51 g, 7.46 mmol) and the mixture was stirred for 1 h at 23 °C. Water (20 mL) was carefully added and the aqueous phase was extracted with EtOAc (3×15 mL). The combined organic extracts were washed with hydrochloric acid (40 mL, 1 mol/L), then dried (MgSO₄), filtered and the solvent was evaporated. Chromatography [hexane/MTBE = 10:1, then 3:1, R_{f} (hexane/MTBE = 10:1) = 0.11] gave phenacyl bromide 110 (666 mg, 2.57 mmol, 34%) as a colorless solid. M.p. 103 °C. ¹H NMR (500 MHz, CDCl₃): δ = 3.85 (s, 3 H), 3.91 (s, 3 H), 4.55 (s, 2 H), 6.44 (d, J = 2.2 Hz, 1 H), 6.55 (dd, J = 2.2, J = 8.8 Hz, 1 H), 7.89 (d, J = 8.8 Hz, 1 H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 37.97 (CH₂), 55.62 (CH₃), 55.70 (CH₃), 98.23 (CH), 105.85 (CH), 117.84 (C), 133.82 (CH), 160.88 (C), 165.37 (C), 190.16 (C) ppm. IR (ATR): $\tilde{v} = 3013$ (w), 2979 (w), 2948 (w), 1661 (s), 1596 (m), 1574 (m), 1453 (m), 1334 (m), 1275 (s), 1212 (m), 1182 (s), 1112 (m), 1020 (s), 992 (m), 828 (m), 633 (m) cm⁻¹. GC–MS (EI, 70 eV): m/z (%) = 258 (5) [M⁺], 165 (100), 137 (4), 121 (8), 106 (9), 77 (12).

Supporting Information (see footnote on the first page of this article): 1 H and ${}^{13}C{}^{1}$ H NMR spectra of all products.

Acknowledgments

The authors are grateful to B. Sc. Alexandra Schischko for preliminary experiments and Dr. Herbert Frey for helpful discussions.

- [1] M. Rössle, J. Christoffers, Synlett 2006, 106-108.
- [2] R. Pflantz, P. Tielmann, M. Rössle, C. Hoenke, J. Christoffers, *Eur. J. Org. Chem.* 2007, 3227–3238.
- [3] R. Pflantz, J. Sluiter, M. Krička, W. Saak, C. Hoenke, J. Christoffers, *Eur. J. Org. Chem.* 2009, 5431–5436.
- [4] M. Penning, J. Christoffers, Eur. J. Org. Chem. 2012, 1809– 1818.
- [5] F. Behler, F. Habecker, W. Saak, T. Klüner, J. Christoffers, Eur. J. Org. Chem. 2011, 4231–4240.
- [6] a) M. Würdemann, J. Christoffers, Synlett 2011, 2841–2843; b)
 M. Würdemann, J. Christoffers, Org. Biomol. Chem. 2010, 8, 1894–1898; c) H. Schramm, W. Saak, C. Hoenke, J. Christoffers, Eur. J. Org. Chem. 2010, 1745–1753; d) R. Pflantz, J. Christoffers, Chem. Eur. J. 2009, 15, 2200–2209; e) N. Wache, J. Christoffers, Synlett 2009, 3016–3018; f) C. L. Diedrich, D. Haase, J. Christoffers, Synthesis 2008, 2199–2210; g) A. Rosiak, C. Hoenke, J. Christoffers, Eur. J. Org. Chem. 2007, 4376–4382.
- [7] a) C. J. Ball, J. Gilmore, M. C. Willis, Angew. Chem. 2012, 124, 5816–5820; Angew. Chem. Int. Ed. 2012, 51, 5718–5722; b) E. Masumoto, H. Maruoka, F. Okabe, S. Nishida, R. Tomita, T. Fujioka, K. Yamagata, J. Heterocycl. Chem. 2012, 49, 893–899; c) S. Achelle, N. Ple, A. Turck, RSC Adv. 2011, 1, 364–388; d) B. Stefanska, M. M. Bontemps-Gracz, I. Antonini, S. Martelli, M. Arciemiuk, A. Piwkowska, D. Rogacka, E. Borowski, Bioorg. Med. Chem. 2005, 13, 1969–1975; e) B. Stefanska, M. Arciemiuk, M. M. Bontemps-Gracz, M. Dzieduszycka, A. Kupiec, S. Martelli, E. Borowski, Bioorg. Med. Chem. 2003, 11, 561–572.

FULL PAPER

- [8] a) S. M. M. Lopes, A. F. Brigas, F. Palacios, A. Lemos, T. M. V. D. Pinho e Melo, Eur. J. Org. Chem. 2012, 2152-2160; b) J. Liu, H. Liu, R. Na, G. Wang, Z. Li, H. Yu, M. Wang, J. Zhong, H. Guo, Chem. Lett. 2012, 41, 218-220; c) R. Matera, S. Gabbanini, A. Valvassori, M. Triquigneaux, L. Valgimigli, Eur. J. Org. Chem. 2012, 3841-3851; d) S. Khaidem, S. Sarveswari, R. Gupta, V. Vijayakumar, Int. J. Res. Pharm. Chem. 2012, 2, 2231-2781; e) L.-T. Shen, L.-H. Sun, S. Ye, J. Am. Chem. Soc. 2011, 133, 15894-15897; f) S. M. Al-Mousawi, M. S. Moustafa, I. A. Abdelhamid, M. H. Elnagdi, Curr. Org. Chem. 2011, 15, 3503-3513; g) R. Na, C. Jing, Q. Xu, H. Jiang, X. Wu, J. Shi, J. Zhong, M. Wang, D. Benitez, E. Tkatchouk, W. A. Goddard III, H. Guo, O. Kwon, J. Am. Chem. Soc. 2011, 133, 13337-13348; h) T. H. Al-Tel, Eur. J. Med. Chem. 2010, 45, 5724-5731; i) G. Stajer, A. E. Szabo, G. Turos, P. Sohar, P. Sillanpäa, Eur. J. Org. Chem. 2005, 4154-4161; j) G. Stajer, F. Miklos, P. Sohar, P. Sillanpäa, Eur. J. Org. Chem. 2001, 4153-4156; k) I. V. Mashevskaya, R. R. Makhmudov, G. A. Aleksandrova, A. V. Duvalov, A. N. Maslivets, Pharm. Chem. J. 2001, 35, 69-71; 1) P. Sohar, F. Miklos, A. Csampai, G. Stajer, J. Chem. Soc. Perkin Trans. 1 2001, 558-564.
- [9] a) M. Asif, A. Singh, A. A. Siddiqui, Med. Chem. Res. 2012, 21, 3336–3346; b) C. G. Wermuth, Med. Chem. Commun. 2011, 2, 935–941; c) M. Asif, A. Singh, L. Ratnakar, J. Pharm. Res. Dev. 2011, 4, 664–667; d) P. S. Banerjee, Asian J. Chem. 2011, 23, 1905–1910; e) I. Hermecz, Adv. Heterocyclic Chem. (Ed.: A. R. Katritzky), 2011, 104, 1–126.
- [10] C. L. Diedrich, W. Frey, J. Christoffers, Eur. J. Org. Chem. 2007, 4731–4737.
- [11] M. Hesse, H. Meier, B. Zeeh, Spectroscopic Methods in Organic Chemistry, 2nd Ed. Thieme, Stuttgart, 2008.
- [12] a) A. A. Shalaby, M. M. El-Shahawi, N. A. Shams, S. Batterjee, Synth. Commun. 2002, 32, 989–999; b) T. Yamasaki, M. Oda, Y. Okamoto, T. Okawara, M. Furukawa, *Heterocycles* 1996, 43, 1863–1871; c) D. L. Boger, R. S. Coleman, J. Am. Chem. Soc. 1987, 109, 2717–2727.
- [13] G. Primofiore, F. Da Settimo, A. M. Marini, F. Simorini, C. La Motta, S. Taliani, S. Laneri, L. Trincavelli, C. Martini, Arch. Pharm. Chemi Sci. Ed. 2005, 338, 126–132.
- [14] a) H. Lehmann, L. LaVecchia, Org. Process Res. Dev. 2010, 14, 650–656; b) E. Schenker, R. Salzmann, Arzneim.-Forsch. 1979, 29, 1835–1843.
- [15] a) M. Rössle, T. Werner, A. Baro, W. Frey, J. Christoffers, Angew. Chem. 2004, 116, 6709–6711; Angew. Chem. Int. Ed. 2004, 43, 6547–6549; b) M. Rössle, T. Werner, W. Frey, J. Christoffers, Eur. J. Org. Chem. 2005, 5031–5038.
- [16] D. E. Ward, M. A. Rasheed, H. M. Gillis, G. E. Beye, V. Jheengut, G. T. Achonduh, *Synthesis* 2007, 1584–1586.
- [17] J. Christoffers, H. Scharl, Eur. J. Org. Chem. 2002, 1505-1508.

- M. Penning, J. Christoffers
- [18] D. S. Dodd, A. C. Oehlschlager, J. Org. Chem. 1992, 57, 2794– 2803.
- [19] K. Okano, N. Mitsuhashi, H. Tokuyama, Chem. Commun. 2010, 46, 2641–2643.
- [20] a) L. Cai, X. Ji, Z. Yao, F. Xu, Q. Shen, *Chin. J. Chem.* 2011, 29, 1880–1886; b) J. Ishida, K. Hattori, H. Yamamoto, A. Iwashita, K. Mihara, N. Matsuoka, *Bioorg. Med. Chem. Lett.* 2005, 15, 4221–4225; c) A. E. Moormann, S. Metz, M. V. Toth, W. M. Moore, G. Jerome, C. Kornmeier, P. Manning, D. W. Hansen Jr., B. S. Pitzele, R. K. Webber, *Bioorg. Med. Chem. Lett.* 2001, 11, 2651–2653.
- [21] J. L. Conroy, T. C. Sanders, C. T. Seto, J. Am. Chem. Soc. 1997, 119, 4285–4291.
- [22] J. A. E. Pratt, I. O. Sutherland, R. F. Newton, J. Chem. Soc. Perkin Trans. 1 1988, 13–22.
- [23] V. A. Anisimova, A. A. Spasov, V. A. Kosolapov, A. F. Kucheryavenko, O. V. Ostrovskii, N. P. Larionov, R. E. Libinzon, *Pharm. Chem. J.* 2005, *39*, 476–483.
- [24] W. D. Langley, Org. Synth. 1929, 9, 20–21; Coll. Vol. 1941, 1, 127–128.
- [25] G. B. Barlin, L. P. Davies, M. M. L. Ngu, Aust. J. Chem. 1989, 42, 1759–1768.
- [26] M. Kihara, A. Nakanishi, S. Kobayashi, *Heterocycles* 1989, 29, 957–965.
- [27] W. A. Spitzer (Eli Lilly Co.), Eur. Pat. Appl. 154494 A2, 1985; Chem. Abstr. 1986, 104, 68884.
- [28] F. A. Harden, R. J. Quinn, P. J. Scammells, J. Med. Chem. 1991, 34, 2892–2898.
- [29] A. A. El-Gendy, M. M. Said, N. Ghareb, Y. M. Mostafa, E. S. H. El-Ashry, Arch. Pharm. Chemi Sci. Ed. 2008, 341, 294– 300.
- [30] Y. Zhang, Q. Tang, M. Luo, Org. Biomol. Chem. 2011, 9, 4977– 4982.
- [31] a) L. N. Yudina, J. Bergman, *Tetrahedron* 2003, 59, 1265–1275;
 b) C. Pegurier, P. Collart, P. Danhaive, S. Defays, M. Gillard, F. Gilson, T. Kogej, P. Pasau, N. Van Houtvin, M. Van Thuyne, B. van Keulen, *Bioorg. Med. Chem. Lett.* 2007, 17, 4228–4231.
- [32] M. W. Bullock, J. J. Hand, J. Am. Chem. Soc. 1956, 78, 5854– 5857.
- [33] C. C. Mauger, G. A. Mignani, Org. Process Res. Dev. 2004, 8, 1065–1071.
- [34] S. Baloniak, U. Thiel, M. Pacholczyk, Acta Pol. Pharm. 1976, 33, 73–79.
- [35] H. G. O. Becker et al. (Autorenkollektiv), Organikum, 22nd ed. Wiley-VCH, Weinheim, Germany, 2004, p. 638–639.
- [36] M. Zhu, N. Zheng, Synthesis 2011, 2223-2236.
- [37] J. Christoffers, T. Werner, W. Frey, A. Baro, *Eur. J. Org. Chem.* 2003, 4879–4886.

Received: August 27, 2012 Published Online: November 26, 2012