DIPHENOXYTHIOPHOSPHORYLIMIDOPHOSPHORUS TRICHLORIDE,

ITS THERMAL ISOMERIZATION AND REACTION

WITH PHENOL AND DIMETHYLAMINE

UDC 542.952.1:542.91: 547.1'118:547.56:547.233.2

Previously [1] we had shown that the reaction of diphenylphosphoramide with PCl_5 proceeds to give diphenyl (dichlorophosphorylimido)chlorophosphate, and not diphenoxyphosphorylimidophosphorus trichloride, i.e., rearrangement involving the O atom takes place.

A similar rearrangement was studied previously by other authors [2, 3].

The analogous rearrangement involving the thiono sulfur atom in the series of thiophosphorylimidophosphorus compounds of type

$$\begin{array}{c|c} S & Cl & S \\ \parallel & \parallel & \parallel \\ -P - N = PCl_3 \rightarrow -P = N - PCl_2 \\ \parallel & \parallel & \parallel \end{array}$$

is unknown up to now.

It was shown by us on the example of diphenoxythiophosphorylimidophosphorus trichloride (I) that the S atom migrates at high temperature:

Imidophosphate (I) was obtained as described in [4], and its structure was proved by the ^{31}P NMR and IR spectral data. The ^{31}P NMR spectrum has signals at 43.4 and -6.9 ppm, which confirms the presence of the $(PhO_2)_2P(S)N^-$ and $Cl_3P=N^-$ groups in the molecule. The constants of (I) are given in Table 1.

Imidophosphate (I) can be distilled in a high vacuum, but the ³¹P NMR spectrum of the distillate has, besides the intense signals of the starting (I), signals at 13.1 and 30.8 ppm (Jpnp=31.7 Hz), which are characteristic for diphenyl (dichlorophosphorylimido)chlorophosphate (II), a compound that we had obtained previously [5]. When (I) is heated at 220°C for 8-10 h, it is converted completely (data of ³¹P NMR spectra) to imidophosphate (II), which was isolated in satisfactory yield from the reaction mixture and whose structure was confirmed by the ³¹P NMR and IR spectral data, and also by direct comparison with the previously obtained (II) [5].

Imidophosphate (II), obtained by the thermal isomerization of (I), reacts with phenol, taken in a 1:1 ratio, to give triphenyl (dichlorothiophosphorylimido)phosphate (III), whose constants coincide with the constants of the triphenoxy derivative of (III), which had been obtained from dichlorothiophosphorylimidophosphorus trichloride and phenol using a 1:3 ratio of the reactants [5].

$$\begin{array}{c} \text{Cl}_{3}\text{P} \!=\! \text{NP(S)Cl}_{2} + 3\text{PhOH} \xrightarrow{-3\text{HCI}} (\text{PhO})_{3}\text{P} \!=\! \text{NP(S)Cl}_{2} \end{array}$$
 (III)

Besides the thermal isomerization, we studied the reaction of (I) with phenol and dimethylamine using a variable ratio of the reactants. The Cl atoms in (I) are successively replaced by the phenoxy group when a mixture of (I) and phenol, taken in a ratio of 1:1, 1:2, and 1:3, is heated, in which connection each successive insertion of the phenoxy group into (I) requires more drastic conditions, similar to the replacement of the Cl atoms in the "thiopentachloride" by the phenoxy group [5].

A. N. Nesmeyanov Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 465-468, February, 1982. Original article submitted July 24, 1981.

TABLE 1. Derivatives of $(PhO)_2'P(S)N = "PRR'R"$	³¹ ρ NMR (δ, ppm)	Jpnp,	9 29,3	1 48,8	1 61,0	9 65,9	1	1 51,3	!	2 64.7
		P″	6'9-	-3,1	-10,1	-23,3	1	24,1	Ĭ	22,2
		P,	43,4	45,1	45,9	46,6	I	48,1	1	46,6
	$\mathbb{R}(\nu, \text{cm}^{-1})$ PMR(5, ppm)	PhO	7,2–7,3	7,2–7,4	7,2-7,4	7,2-7,4	7,2-7,4	7,2–7,3	7,2-7,4	1.
		Me2N	ı	1	1	ı	2,68	2,58	2,54	1
	m -1)	P=0	069	695	069	069	695	200	700	200
	R(v, c	P=N	1325	1335	1335	1330	1320	1305	1295	1295
	Empirical formula		$\mathrm{C_{12}H_{10}Cl_3NO_2P_2S}$	$\mathrm{C}_{18}\mathrm{H}_{15}\mathrm{Cl_2NO_3P_2S}$	$C_{24}H_{20}GINO_4P_2S$	$\mathrm{C}_{30}\mathrm{H}_{25}\mathrm{NO}_{5}\mathrm{P}_{2}\mathrm{S}$	$C_{14}H_{16}Gl_2N_2O_2P_2S$	$\mathrm{C_{16}H_{22}CIN_{3}O_{2}P_{2}S}$	$\mathrm{C_{18}H_{28}N_4O_2P_2S}$	
	Found %	s	8,1	1	5,9	6,0	8,0	ı	7.9	1
		д	15,4	13,6	12,0	10,8	15.1	. 1	14.5	14,3
		CI	26,5	15,4	7,4	1	17.3		3 1	ı
	a_{4}^{20}		1,4484	1,3751	1	1	1,3505	1,2556	1	1
	n_D^{20}		1,6016	1,6029	1,6033	I	1,5918	1,5811	I	1,5723‡
	bp, °C (p, mm Hg); mp, °C		*	162–16 4 (0,005)	192—196 (0,005)	97–98, cf. [4]	142-145 (0,008)	155–159 (0,003)	48	(0,001) (48–49)
	Yield,		94	65	53	41	26	09	74	£ 65 ‡
	R"		ಕ	CI	CI	PhO	CI	CI	$\mathrm{Me_2N}$	
	Ä		5	. 17	PhO	PhO	CI	Me_2N	$\mathrm{Me_{2}N}$	
	æ			(IV) PhO	(V) PhO	(VI) Рьо Рьо	(VII) Me ₂ N Cl	(VIII) Me ₂ N Me ₂ N	(IX) Me ₂ N Me ₂ N Me ₂ N	
TAB	Com-		(I) CI	(IV)	(<u>S</u>	(VI)	(VII)	(VIII)	(IX)	

*The compound was purified by microdistillation at 0.0001 mm of Hg. †Obtained by the reaction of diphenyl azidothiophosphate with hexamethylphosphorous triamide. ‡Supercooled liquid.

$$(I) - \begin{array}{c} \begin{array}{c} \text{PhoH; } 140-150^{\circ} \\ \\ \hline \\ 2\text{PhoH; } 170-180^{\circ} \\ \\ \hline \\ 3\text{PhoH; } 180-200^{\circ} \\ \\ \hline \\ \end{array} \begin{array}{c} (\text{PhO})_{2}\text{P(S)N} = \text{PCI}_{2}(\text{OPh})_{2} \\ \\ (\text{V)} \\ \\ \hline \\ \text{(VI)} \end{array}$$

The reaction of (I) with dimethylamine, using a reactant ratio of 1:2 and 1:4, is also accompanied by the replacement of either one or two Cl atoms, as is shown below.

(I)
$$+2n\text{Me}_2\text{NH} \rightarrow (\text{FhO})_2\text{P(S)N} = \text{PGI}_{3-n}(\text{NMe}_2)_n$$

 $n = 1 \text{ (VII)}; n = 2 \text{ (VIII)}$

The reaction of acid chloride (VIII) with excess dimethylamine gave hexamethyltriamido (diphenoxythiophosphorylimido) phosphoric acid (IX), which was also obtained independently from hexamethylphosphorous triamide and diphenyl azidothiophosphate.

(VIII)
$$\xrightarrow{\text{Me}_2\text{NH}}$$
 (PhO)₂P(S)N=P(NMe₂)₃ $\xrightarrow{\text{NsP(S)(OPh)}_2}$ (Me₂N)₃P

EXPERIMENTAL

The IR spectra were obtained on a UR-20 instrument as a film, and for imidophosphates (VI) and (IX) as KBr pellets; the PMR spectra were obtained on a Perkin-Elmer R-12 instrument in CCl₄ solution relative to TMS; the ³¹P NMR spectra were obtained on a Brucker HX-90 instrument (operating frequency 36.43 MHz), with suppression of the spin-spin coupling of the P and H atoms, and using 85% H₃PO₄ as the external standard. The characteristics of compounds (I) and (IV)-(IX) are given in Table 1.

Thermal Isomerization of Diphenoxythiophosphorylimidophosphorus Trichloride (I). Compound (I) (9.5 g) was heated in an argon stream for 8-10 h at 220°. Distillation gave 2.9 (31%) of (II) with bp 120-122° (0.003 mm); n_D^{20} 1.5943; d_4^{20} 1.4400. Found: P 14.9; S 8.1%. $C_{12}H_{10}Cl_3NO_2P_2S$. Calculated: P 15.4; S 8.0%. ³¹P NMR spectrum (δ , ppm): -13.1 (P¹); 30.8 (†P); $J_{PNP} = 31.7$ Hz, cf. [5].

Triphenyl (Dichlorothiophosphorylimido)phosphate (III). A mixture of 9.5 g of (II), obtained by the thermal isomerization of (I), and 2.5 g of phenol was heated for 5 h at $180-200^{\circ}$ until the gas evolution ceased. Distillation gave 6.4 g (58%) of (III) with bp 165-168° (0.003 mm), $n_{\rm D}^{20}$ 1.5976, d_4^{20} 1.3591. Found: Cl 15.4; P 13.5%. $C_{18}H_{15}Cl_2NO_3P_2S$. Calculated: Cl 15.5; P 13.5%, cf. [5].

Phenyl (Diphenoxythiophosphorylimido) di chlorophosphate (IV). A mixture of 10 g of (I) and 2.5 g of phenol was heated at 140-150° until the HCl evolution ceased. Distillation gave 7.4 g of (IV).

Diphenyl (Diphenoxythiophosphoryl imido) chl orophosphate (V). A mixture of 8.8 g of (I) and 4.6 g of phenol was heated at 170-180° until HCl evolution ceased. Distillation gave 6.0 g of (V).

Triphenyl (Diphenoxythiophosphorylimido)phosphate (VI). A mixture of 7.1 g of (I) and 5.0 g of phenol was heated for 7-10 h at 180-200° until the HCl evolution ceased. Then the mixture was cooled, 10 ml of MeOH was added, and 4.2 g of crystalline (VI) was isolated.

Dimethyl amido (diphenoxythiophosphorylimido) dichlorophosphoric Acid (VII). With stirring, to a solution of 16.6 g of (I) in 100 ml of abs. ether at $0-5^{\circ}$ was added 3.8 g of Me_2NH in 50 ml of ether, after which the mixture was stirred for 2 h at $\sim 20^{\circ}$, the precipitate was separated, the filtrate was evaporated, and the residue was distilled to give 9.6 g of (VII).

Tetramethyldiamido(diphenoxythiophosphorylimido)chlorophosphoric Acid (VIII). With stirring, to a solution of 20.9 g of (I) in 100 ml of abs. ether at 0-5° was added 9.5 g of Me_2NH in 50 ml of ether. The mixture was stirred for another 2 h at ~20°, the precipitate was separated, the filtrate was evaporated, and the residue was distilled to give 13.1 g of (VIII).

Hexamethyltriamido (diphenoxythiophosphorylimido)phosphoric Acid (IX). a) Reaction of (VIII) with Me₂NH. To a solution of 3.8 g of (VIII) in 5 ml of abs. ether at ~20° was added a 2~ to 3-fold excess of Me₂NH and the mixture was let stand at 20-22° in an airtight closed flask for 2 days. The hydrochloride was separated, the filtrate was evaporated, the volatiles were removed by distillation, and the residue was recrystallized from a 1:1 heptane CCl₄ mixture to give 2.9 g of (IX).

b) Reaction of hexamethylphosphorous triamide with diphenyl azidothiophosphate. To a solution of 3.0 g of hexamethylphosphorous triamide in 5.0 ml of abs. benzene at 40-50° was cautiously added 2.9 g of diphenyl

azidothiophosphate in 5 ml of benzene. Immediately after adding the first drops of the azide a yellor color appears (formation of the triazene) and nitrogen is evolved vigorously. At the end of reaction the volatiles were vacuum-distilled and the residue was distilled to give 3.1 g of imidophosphate (IX).

CONCLUSIONS

- 1. Diphenoxythiophosphorylimidophosphorus trichloride undergoes thermal isomerization to diphenyl (dichlorothiophosphorylimido)chlorophosphate.
- 2. The reactions of diphenoxythiophosphorylimidophosphorus trichloride with phenol and dimethylamine were studied.

LITERATURE CITED

- 1. A. A. Khodak, V. A. Gilyarov, and M. I. Kabachnik, Izv. Akad. Nauk SSSR, Ser. Khim., 1981, 1137.
- 2. A. Ya. Yakubovich, I. M. Filatova, E. L. Zaitseva, and A. P. Simonov, Zh. Obshch. Khim., 39, 2213 (1969).
- 3. V. A. Shokol, G. A. Golik, Yu. N. Levchuk, Yu. P. Egorov, and G. I. Derkach, Zh. Obshch. Khim., 43, 267 (1973).
- 4. A. V. Kirsanov and I. M. Zhmurova, Zh. Obshch. Khim., 28, 2478 (1958).
- 5. A. A. Khodak, V. A. Gilyarov, and M. I. Kabachnik, Izv. Akad. Nauk SSSR, Ser. Khim., 1981, 1117.

REGIOSELECTIVE SYNTHESES

OF α -FUNCTIONALLY SUBSTITUTED KETONES

S. I. Zav'yalov, G. I. Ezhova, T. K. Budkova, O. V. Dorofeeva, and O. K. Taganova UDC 542.91:547.841

 α -Functionally substituted ketones (FK) serve as important synthones for obtaining heterocyclic compounds. The most widely used method for synthesizing FK is based on the α -halogenation of ketones. A serious disadvantage of this method is the formation of mixtures of α -halo derivatives in the case of unsymmetrical ketones [1].

In the present paper we studied regioselective paths for the synthesis of FK using Meldrum's acid (I) [2].

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 468-471, February, 1982. Original article submitted August 13, 1981.