

Available online at www.sciencedirect.com



Carbohydrate Research 339 (2004) 2611-2614

Note

Carbohydrate RESEARCH

# Environmentally friendly C-glycosylation of phloroacetophenone with unprotected D-glucose using scandium(III) trifluoromethanesulfonate in aqueous media: key compounds for the syntheses of mono- and di-*C*-glucosylflavonoids

Shingo Sato,\* Toshiki Akiya, Toshiyuki Suzuki and Jun-ichi Onodera

Department of Chemistry and Chemical Engineering, Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan

> Received 27 April 2004; accepted 20 July 2004 Available online 18 September 2004

**Abstract**—The direct C-glycosylation of phloroacetophenone with an unprotected D-glucose in aqueous media using scandium(III) trifluoromethanesulfonate (Sc(OTf)<sub>3</sub>) as the catalyst, gave mono- and bis-*C*- $\beta$ -glycosylic compounds in highest total yield of 81%. The second and third use of the recovered Sc(OTf)<sub>3</sub> afforded them in total yields of 56% and 53%, respectively. © 2004 Elsevier Ltd. All rights reserved.

Keywords: C-Glycosylflavonoid; Direct C-glycosylation; Unprotected glucose; Sc(OTf)3; Aqueous media; Recycling

The availability of a variety of C-glycosylflavonoids, which are found in low concentrations in plant tissue such as citrus fruit peels, are attractive because they are nontoxic and have hypotensive activity.<sup>1</sup> A number of C-glycosylic aryl compounds ('aryl C-glycosides') with antibiotic activity have also been isolated from microorganisms, and some useful synthetic methods for preparing these aryl C-glycoside antibiotics have been reported. One such method is Suzuki's C-glycosylation technique, in which the reaction of a selectively hydroxyl-protected polyphenol with per-O-benzylglycosyl fluoride proceeds via an  $O \rightarrow C$  glycoside rearrangement.<sup>2</sup> We also reported on the synthesis of some C-glycosylflavonoids, using Suzuki's method.<sup>3</sup> This reaction results in high yields and in high regio- and stereoselectivities, but requires the use of undesirable solvents such as CH<sub>2</sub>Cl<sub>2</sub>. In addition, the selective protection reaction of hydroxyl groups of the glycosyl donor and the polyphenol derivative such as phloroacetophenone

did not proceed in good yield. One reason for this is that O-demethylation by acid hydrolysis of methyl 2,3,4,6-tetra-O-benzyl- $\alpha$ -D-glucopyranoside is low yield,<sup>4</sup> and C-alkylation tends to occur between the 1,3-diol groups on the benzene ring under the protection reaction conditions of the phenolic hydroxyl. As a result, the reaction requires considerable operating time, and a number of reagents be used in the protection reaction.

Toshima and co-workers recently reported on the environmentally benign C-glycosylation of selective hydroxyl-protected aryl compounds with unprotected 2-deoxy sugars using a solid acid in aqueous media, that afforded aryl *C*-glycosides in good yields with good  $\beta$ -selectivity.<sup>5</sup> After C-glycosylation of the methyl-protected phenol, however, difficulties are encountered in the deprotecting of the methoxyl group.<sup>6</sup>

To the best of our knowledge, a reliable method for the direct C-glycosylation of unprotected polyphenols with unprotected general sugars such as a D-glucose in aqueous media has not been reported.<sup>7</sup> Since C-glycosylflavonoids are typically harmless, we attempted to examine such environmentally friendly glycosylation conditions as a route to their synthesis. The goal was

<sup>\*</sup> Corresponding author. Tel.: +81 238 26 3121; fax: +81 238 26 3413; e-mail: shingo-s@yz.yamagata-u.ac.jp

<sup>0008-6215/\$ -</sup> see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2004.07.023

to develop conditions for the glycosylation of an unprotected polyphenol using an unprotected sugar in aqueous media.

Since Kobayashi and co-workers<sup>8</sup> recently developed a number of carbon-carbon bond-forming reactions using rare-earth metal triflates, that function as Lewis acids, even in aqueous media, we attempted the use of ytterbium(III) trifluoromethanesulfonate  $(Yb(OTf)_3)$ and  $Sc(OTf)_3$  to satisfy the above reaction conditions (Table 1). We examined the C-glycosylation of phloroacetophenone, a key compound in C-glycosylflavonoid synthesis, with D-glucose in aqueous acetonitrile solution. Detailed structural analyses of the sugar moieties were carried out after acetylation of the products.<sup>7</sup> A structural analysis of the C-glucosides obtained indicated that they were, in fact, the desired mono- and bis-C- $\beta$ -D-glucopyranosides ( $1^{3a,b}$ ,  $2^{9,10}$ ). As of this writing, the bis-C-glucoside 2 produced here could not be synthesized by repeating the  $O \rightarrow C$  glycoside rearrangement method from phloroacetophenone.<sup>10</sup> The reaction barely proceeded at room temperature (entry 3). When the temperature was increased to 65°C, 80°C, or to reflux, the yield of the C-glycosides increased (entries 4, 5 and 8). A higher yield was obtained using  $Sc(OTf)_3$ , rather than  $Yb(OTf)_3$  as a promoter (entry 2). The use of *p*-toluensulfonic acid as a promoter led to no reaction,<sup>7</sup> and the use of a Brønsted acid such as HCl and H<sub>2</sub>SO<sub>4</sub> also resulted in no yields of C-glucosides (entry 1). When the amount of added  $Sc(OTf)_3$  was increased,

the yield of bis-C-glucoside 2 was also increased (entries 5 and 10). When acetonitrile-water was used as a solvent system, good yield and selectivity of the mono-C-glucoside was obtained (entries 6 and 7). An ethanol-water solvent system gave a good yield but no selectivity (entries 9 and 10). The use of 0.2 equiv of Sc(OTf)<sub>3</sub> in 2:1 EtOH $-H_2O$  gave the highest yield (81%) of C-glucosides (1: 43%, 2: 38%) (entry 9). The best yield of the monoand bis-C-glucosides was 48% and 40%, respectively (entries 6 and 10). In this reaction, the additional formation of small amounts of phloroacetophenone dimers linked via a D-glucose chain was confirmed. The use of more than 0.4 equiv of Sc(OTf)<sub>3</sub> and 3 equiv of D-glucose, or an extension of the refluxing time, or the use of water as a solvent (entry 11) did not lead to an improved yield of mono- and bis-C-glucosides, and side reaction products made the product separation by silica-gel chromatography difficult. Since phenol or 2,4-O-dimethylprotected phloroacetophenone was unreactive under these reaction conditions, it is suggested that this direct C-glycosylation of polyphenols proceeds regioselectively only between the 1,3-diol. Thus, this reaction is a carbon-carbon bond-forming reaction of the 1,3-diketone with an aldehyde. In entry 10, the second use of the recovered glucose and  $Sc(OTf)_3$  gave the C-glycosides in a total of 56% yield (1:2 = 68:32), and further the third use in a total of 53% yield (1:2 = 81:19). Direct recycling of the Sc(OTf)<sub>3</sub> used in the reaction with excess glucose permits excellent yields to be obtained.

Table 1. C-glycosylation of phloroacetophenone with D-glucose in aqueous media



| Entry | Glc (equiv) | Promoter (equiv)           | Solvent                                   | Temp (°C). | Time (h) | Yield (%)   |           |
|-------|-------------|----------------------------|-------------------------------------------|------------|----------|-------------|-----------|
|       |             |                            |                                           |            |          | mono-C (1)  | bis-C (2) |
| 1     | 3.0         | <i>p</i> -TsOH (-0.4)      | CH <sub>3</sub> CN:H <sub>2</sub> O (1:1) | Reflux     | 6        | No reaction |           |
| 2     | 3.0         | Yb(OTf) <sub>3</sub> (0.2) | CH <sub>3</sub> CN:H <sub>2</sub> O (1:1) | Reflux     | 8        | 13          | 3         |
| 3     | 1.5         | $Sc(OTf)_{3}(0.1)$         | CH <sub>3</sub> CN:H <sub>2</sub> O (1:1) | rt         | 24       | No reaction |           |
| 4     | 3.0         | $Sc(OTf)_{3}$ (0.2)        | CH <sub>3</sub> CN:H <sub>2</sub> O (1:1) | 65         | 20       | 16          | 10        |
| 5     | 3.0         | $Sc(OTf)_{3}$ (0.2)        | CH <sub>3</sub> CN:H <sub>2</sub> O (2:1) | Reflux     | 8        | 43          | 29        |
| 6     | 3.0         | $Sc(OTf)_{3}(0.1)$         | CH <sub>3</sub> CN:H <sub>2</sub> O (2:1) | Reflux     | 8        | 48          | 14        |
| 7     | 3.0         | $Sc(OTf)_{3}$ (0.2)        | CH <sub>3</sub> CN:H <sub>2</sub> O (1:2) | Reflux     | 8        | 47          | 24        |
| 8     | 3.0         | $Se(OTf)_{3}$ (0.2)        | THF:H <sub>2</sub> O (2:1)                | Reflux     | 8        | 16          | 12        |
| 9     | 3.0         | $Sc(OTf)_{3}$ (0.2)        | EtOH:H <sub>2</sub> O (2:1)               | Reflux     | 9        | 43          | 38        |
| 10    | 3.0         | $Sc(OTf)_{3}$ (0.4)        | EtOH:H <sub>2</sub> O (2:1)               | Reflux     | 6.5      | 39          | 40        |
| 11    | 5.0         | $Sc(OTf)_{3}$ (0.2)        | $H_2O$                                    | Reflux     | 8        | 8           | 34        |
| 12    | 3.0         | $Sc(OTf)_{3}$ (0.2)        | CH <sub>3</sub> CN                        | Reflux     | 8        | 5           | 22        |
| 13    | 3.0         | Sc(OTf) <sub>3</sub> (0.2) | 1,4-Dioxane                               | Reflux     | 3        | 0           | 0         |

Since the C-glycosylation method developed here is very simple and environmentally friendly and proceeds with high regio- and  $\beta$ -stereoselectively, we conclude that this reaction has considerable potential for use in the synthesis of nontoxic naturally occurring *C*-glycosylflavonoids, especially di-*C*-glycosylflavonoids in which most of the *C*- $\beta$ -glycosyl residues are bonded between the 1,3-diol of the polyphenol molecule.<sup>1</sup>

## 1. Experimental

### 1.1. General

The solvents used in this reaction were prepared by distillation. For separation and purification, at first, column chromatography was performed on MCI gel CHP20P® (high porous polymer, 75-150 µm, Mitsubishi Chemical Corp.), and then, flash column chromatography was performed on silica gel (230-400 mesh, Fuji-Silysia Co., Ltd., BW-300). Melting points were determined on a Yanagimoto micro-melting point apparatus and are uncorrected. Optical rotations were recorded on a JASCO DIP-370 polarimeter. Mass spectral data were obtained by fast-atom bombardment (FAB) using 3-nitrobenzyl alcohol (NBA) as a matrix on a JEOL JMS-AX505HA instrument. IR spectra were recorded on a Horiba FT-720 IR spectrometer. NMR spectra were recorded on a Varian Inova 500 spectrometer using Me<sub>4</sub>Si as an internal standard. Elemental analyses were performed on a Perkin-Elmer PE 2400 II instrument.

#### 1.2. C-Glycosylation procedure

After the mixture of phloroacetophenone (200 mg, 1.19 mmol), D-glucose (643 mg, 3.57 mmol), and Sc(OTf)<sub>3</sub> (117mg, 0.238mmol) were dissolved in EtOH  $(3 \text{ mL})/\text{H}_2\text{O}$  (1.5 mL) refluxed for 9h. Water (100 mL) was added to the reaction mixture, and the suspension was passed through a column of MCI GEL CHP20P®  $(75-150\,\mu\text{m}, \text{Mitsubishi} \text{Chemical Corp.}, 2.5 \times 10\,\text{cm})$ loaded with water, and the gel was then washed with 200 mL of water, to remove nonabsorbed glucose and  $Sc(OTf)_3$ . The nonabsorbed components, which include the unreactive glucose and Sc(OTf)<sub>3</sub>, was evaporated in vacuo to give a colorless solid (550 mg). The absorbed products were eluted from the gel column with 100 mL of 50% aqueous acetone, and the eluate was evaporated in vacuo to give a pale-brown solid (442 mg) that was then separated by silica-gel column chromatography (15:30:2:1 Me<sub>2</sub>CO-EtOAc-H<sub>2</sub>O-AcOH) to give 1 (168 mg, 42.8%) and 2 (225 mg, 38.3%).

The recovered glucose and  $Sc(OTf)_3$  (550 mg), and 200 mg of phloroacetophenone and 300 mg of additional

glucose were subjected to the same reaction to give the *C*-glucosides in 56% yield (1:2 = 68:32). The same glycosylation reaction in the third cycle also gave the *C*-glucosides in 53% yield (1:2 = 81:19).

#### **1.3. 3,5-di**-*C*-β-D-Glucopyranosylphloroacetophenone (2)

White powder (from EtOH); mp 171–173 °C;  $[\alpha]_{D}^{22}$  +105 (c 1.12, MeOH); R<sub>f</sub> 0.13 (30:30:5:1 Me<sub>2</sub>CO-EtOAc-H<sub>2</sub>O-AcOH); IR (KBr) v 3346, 2931, 2881, 1621, 1367, 1274, 1082, and 1026 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO $d_6 + D_2O$ )  $\delta$  2.61 (3H, s, ArAc), 3.27 (4H, m, H-3', 3"), 3.34 (2H, t, J 9.5 Hz, H-4', 4"), 3.41 (2H, br s, 2',2"-OH), 3.48 (2H, t, J 9.5 Hz, H-2', 2"), 3.62 (4H, m, H-6'a,b, 6"a,b), 4.72 (2H, d, J 9.5Hz, H-1', 1"), 4.75 (2H, br s, 6',6"-OH), 5.01 (2H, br. s, 3',3"-OH), 5.05 (2H, br s, 4',4"-OH), 9.17 (1H, br s, 4-OH), 11.77 (2H, br s, 2,6-OH); <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>) δ 32.8 (Ar*Ac*), 59.8 (C-6', 6"), 69.1 (C-4', 4"), 71.9 (C-2', 2"), 74.5 (C-1', 1"), 77.7 (C-3', 3"), 81.0 (C-5', 5"), 103.8 (C-3, 5), 104.7 (C-1), 161.15 and 161.19 (C-2, 6), 172.0 (C-4), 203.4 (ArAc); FABMS (positive, glycerol, m/z) 493  $(M+H)^+$ ; Anal. Calcd for  $C_{20}H_{28}O_{14}$ : C, 48.78; H, 5.73. Found: C, 48.52; H, 5.86.

#### References

- Matsubara, Y.; Sawabe, A. J. Synth. Org. Chem. Jpn. 1994, 52, 318–327; Chopin, J.; Dellamonica, G. C-Glycosylflavonoids. In *The Flavonoids*; Harborne, J. B., Ed.; Chapman and Hall: London, 1988; pp 63–97.
- (a) Kometani, T.; Kondo, H.; Fujimori, Y. Synthesis 1988, 1005–1007; (b) Matsumoto, T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett. 1988, 29, 6935–6938; (c) Matsumoto, T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett. 1989, 30, 833– 836; (d) Matsumoto, T.; Hosoya, T.; Suzuki, K. Tetrahedron Lett. 1990, 31, 4629–4632; (e) Matsumoto, T.; Hosoya, T.; Suzuki, K. Synlett 1991, 709–711.
- (a) Kumazawa, T.; Ohki, K.; Ishida, M.; Sato, S.; Onodera, J.; Matsuba, S. *Bull. Chem. Soc. Jpn.* **1995**, *68*, 1379–1384; (b) Kumazawa, T.; Asahi, N.; Matsuba, S.; Sato, S.; Furuhata, K.; Onodera, J. *Carbohydr. Res.* **1998**, *308*, 213–216; (c) Kumazawa, T.; Minatogawa, T.; Matsuba, S.; Sato, S.; Onodera, J. *Carbohydr. Res.* **2000**, *329*, 507–513; (d) Kumazawa, T.; Kimura, T.; Matsuba, S.; Sato, S.; Onodera, J. *Carbohydr. Res.* **2001**, *334*, 183– 193.
- Perrine, T. D.; Glaudemans, C. P. J.; Ness, R. K.; Kyle, J.; Fletcher, H. G., Jr. J. Org. Chem. 1967, 32, 664–669.
- (a) Toshima, K.; Matsuo, G.; Ishizuka, T.; Nakata, M.; Kinoshita, M. J. Chem. Soc., Chem. Commun. 1992, 1641– 1642; (b) Toshima, K.; Matsuo, G.; Nakata, M. J. Chem. Soc., Chem. Commun. 1994, 997–998; (c) Toshima, K.; Ushiki, Y.; Matsuo, G.; Matsumura, S. Tetrahedron Lett. 1997, 38, 7375–7378.
- 6. Lee, D. Y. W.; Zhang, W.-Y.; Karnati, V. V. R. *Tetrahedron Lett.* 2003, 44, 6857–6859.
- 7. Onodera, J.; Takano, M.; Kishi, Y.; Yokoyama, N.; Ishida, R. Chem. Lett. 1983, 1487-1488.

- (a) Kobayashi, S. Chem. Lett. 1991, 2087–2090; (b) For review, see Kobayashi, S. Synlett 1994, 689–701; (c) Kobayashi, S. Eur. J. Org, Chem. 1999, 15–27; (d) Kobayashi, S.; Kitagawa, H.; Sugiura, M.; Lam, W. W-.L. Chem. Rev. 2002, 102, 2211–2302, cited therein.
- Kumazawa, T.; Kimura, T.; Matsuba, S.; Sato, S.; Furuhata, K.; Onodera, J. *Carbohydr. Res.* 2001, 334, 207–213.
- 10. Kumazawa, T.; Ishida, M.; Matsuba, S.; Sato, S.; Onodera, J. *Carbohydr. Res.* **1997**, *297*, 379–383.