Contents lists available at SciVerse ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

FT-IR and FT-Raman spectroscopies and DFT calculations of 2,2-dimethyl-5-(4H-1,2,4-triazol-4-ylaminomethylene)-1,3-dioxane-4,6-dione monohydrate

G.M.M. Sampaio^a, A.M.R. Teixeira^a, H.D.M. Coutinho^a, D.M. de Sena Junior^a, P.T.C. Freire^b, P.E.S. Caselli^b, G.O.M. Gusmão^b, R.R.F. Bento^{c,*}, L.E. Silva^d

^a Universidade Regional do Cariri, 63010-970 Crato, Brazil

^b Universidade Federal do Ceará, 60455-760 Fortaleza, Brazil

^c Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Brazil

^d Universidade Federal do Paraná, Setor Litoral, Matinhos 83260-000, Brazil

HIGHLIGHTS

- ▶ We study the vibrational spectra of C₉H₁₀N₄O₄·H₂O molecule through Raman and infra red spectroscopies.
- ▶ We furnish the descriptions of the normal modes considering the Potential Energy Distribution (PED).
- ▶ We present calculated and theoretical data on geometric parameters of the molecule.
- ▶ We give detailed description of the assignments of the vibrational modes of C₉H₁₀N₄O₄·H₂O.
- ▶ The first time the Potential Energy Distribution (PED) is being presented for this synthetic substance.

ARTICLE INFO

Article history: Received 9 October 2012 Received in revised form 30 December 2012 Accepted 30 December 2012 Available online 11 January 2013

Keywords: Raman scattering IR spectroscopy Normal modes C₉H₁₀N₄O₄·H₂O crystal

ABSTRACT

In this work we present a study of the vibrational spectra of 2,2-dimethyl-5-(4H-1,2,4-triazol-4-ylaminomethylene)-1,3-dioxane-4,6-dione monohydrate, $C_9H_{10}N_4O_4$ ·H₂O. The FT-IR and FT-Raman spectra of the crystal were recorded at room temperature in the regions 400–4000 cm⁻¹ and 50–4000 cm⁻¹, respectively. Vibrational wavenumbers and wave vector were predicted using density functional theory calculations with the B3LYP functional and 6-31G(d,p) basis set. The descriptions of the normal modes were made after considering the Potential Energy Distribution (PED). A comparison with experimental spectra allowed us to assign all of the normal modes of the crystal.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The synthesis of isolated pure substances has become a tool of great importance to the development of drugs with enhanced pharmacological properties. Nowadays, the use of molecular modeling contributes markedly to the discovery of new drugs, which are safer and more efficient. The compound 1,2,4-triazole and its derivatives have been used as starting materials for the synthesis of many heterocycles [1]. Studies indicate that the 1,2,4-triazole group is associated with anti-inflammatory action [2], and also with pharmacological activities, such as antiviral [3], analgesic [4], antimicrobial [5], antidepressant [6] and antifungal [7]. On

the other hand, cyclic 1,3-diones like Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione) and their 5-arylaminemethylene analogs play an important role in heterocyclic chemistry as pivotal intermediates to access cyclic products [8].

Derivatives of Meldrum's acid have proven to be valuable reagents and intermediates in the synthesis of complex organic compounds such as natural products and their analogs [9]. The search for a study to demonstrate the biological activity of 5-aminomethylene Meldrum's acid derivatives led to a patent in 1965 [10]. In addition, different heterocyclic rings were condensed to the 5methoxymethylene Meldrum's acid in order to evaluate their potential biological activity as antileishmanicidal, antitrypanosomal and antiviral agent [8,11]. Furthermore, several compounds, natural or synthetic, can modify the antibiotic activity and also the phenotype of the bacterial strains, reversing the resistant and

^{*} Corresponding author. Tel.: +55 65 3615 8743; fax: +55 65 3615 8734. *E-mail address:* ricardobento@fisica.ufmt.br (R.R.F. Bento).

^{0022-2860/\$ -} see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.molstruc.2012.12.058

intermediary phenotype to the sensitive phenotype, as demonstrated by the derived compounds of 4-chloro-5-heteroiminedithiazoles, against the *Escherichia coli*, *Staphylococcus aureus* and *Pseudomonas aeruginosa* strains [12].

Many heterocyclic derivatives of Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione) have been prepared and studied from the synthetic and structural point of view [11], although their vibrational properties have not received the same attention. In order to fill this gap, the present work reports a study of vibrational spectra of 2,2-dimethyl-5-(4H-1,2,4-triazol-4-ylaminomethylene)-1,3dioxane-4,6-dione monohydrate, $C_9H_{10}N_4O_4$ ·H₂O, with support of theoretical calculations using density functional theory. As a consequence, we were able to assign the vibrational modes of the crystal this synthetic compound.

2. Experimental

The crystal structure of 2,2-dimethyl-5-(4H-1,2,4-triazol-4-ylaminomethylene)-1,3-dioxane-4,6-dione monohydrate, $C_9H_{10}N_{4-}O_4 \cdot H_2O$, an aminomethylene derivative of Meldrum's acid, was recently reported [13]. Crystalline samples of this compound were obtained after heating a solution of Meldrum's acid (36 mmol) in thimethyl orthoformate (50 mL) under reflux for 2 h, and adding the corresponding arylamine (30 mmol). Reflux was kept for additional 30 min. The material thus formed was filtered and washed with methanol.

FT-Raman spectrum, in the wavenumber region from 50 cm⁻¹ to 4000 cm⁻¹, was taken using a Bruker RFS100/S FTR system and a liquid nitrogen cooled Ge D418-T detector, with a Nd:YAG laser emitting at 1064 nm as excitation source. Laser power was set to 150 mW, nominal resolution to 4 cm⁻¹, and accumulation of 60 scans per spectra. Slightly compacted powder samples were confined in screw cap standard chromatographic glass vials.

Infrared spectrum was obtained by using a Bruker Equinox/55 Fourier Transformed infrared (FT-IR) spectrometer equipped with a DTGS (deuterated triglycine sulfate) detector and a KBr beamsplitter. The wavenumber region covered in the mid-IR spectrum goes from 400 cm⁻¹ to 4000 cm⁻¹ with samples grinded in an agate mortar to minimize scattering on the particle surface, and mixed with KBr until a uniform mixture was obtained to form a pellet. The resolution was of 4 cm⁻¹. IR spectra were recorded and treated using spectroscopic software OPUS, from Bruker.

3. Computational method

The Density Functional Theory (DFT) algorithm was used in the calculation, and all the calculations in this work were performed by using Gaussian 03 software package [14]. The hybrid functional

Fig. 2. Unit cell of $C_{9}H_{10}N_{4}O_{4}\text{\cdot}H_{2}O$ with dashed lines representing the hydrogen bonds.

(B3LYP) and the basis set 6-31G, augmented by *d* polarization functions on heavy atoms and *p* polarization functions on hydrogen atoms, were used [15–17]. The initial molecular structure of C_9H_{10} -N₄O₄·H₂O used in the DFT calculations corresponds to a single molecule of the unit cell described in Ref. [13]. The output file contained the optimized structure, the vibrational frequencies in the harmonic approximation, and the atomic displacements for each mode. The Potential Energy Distribution (PED) of the normal modes was calculated using the GAR2PED program [18]. The normal mode analysis was performed and the PED was calculated along the internal coordinates using localized symmetry [19,20]. For this purpose a complete set of 84 internal coordinates were defined using Pulay's recommendations [19]. The calculated vibrational wave numbers were adjusted to compare with experimental Raman and IR frequencies.

4. Results and discussion

The molecular structure of 2,2-dimethyl-5-(4H-1,2,4-triazol-4ylaminomethylene)-1,3-dioxane-4,6-dione monohydrate, $C_9H_{10}N_4$ - O_4 ·H₂O comprises two rings, named here as R1 and R2. R1 is a fivemembered ring formed by atoms C1, C2, N1, N2 and N3 which comes from a 1,2,4 triazole group. R2, on its turn, is a sixmembered ring formed by atoms C4 to C7, O2 and O3, originated from Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione). The corresponding ball and stick model, with atom numbering, used to describe the $C_9H_{10}N_4O_4$ ·H₂O structure is shown in Fig. 1.

Fig. 1. Representation of the molecular structure of C₉H₁₀N₄O₄·H₂O.

The crystal structure of $C_9H_{10}N_4O_4$ ·H₂O belongs to the monoclinic system, with space group P2₁/c, *Z* = 4, and lattice parameters: *a* = 18.012 Å, *b* = 5.356 Å, *c* = 12.937 Å, β = 108.786° [13]. The distribution of the four molecules of $C_9H_{10}N_4O_4$ ·H₂O in the unit cell is shown in Fig. 2, where the dashed lines represent the hydrogen bonds among the molecules, which are responsible for the stabilization of the structure in the solid state, as occur with several other organic materials. The nitrogen atoms of ring R1 forms hydrogen bonds with one of the oxygen atoms of water molecule while the other oxygen form a hydrogen bond with the N4 atom of the $C_9H_{10}N_4O_4$ molecule. Additionally, some internal hydrogen bonds are formed, as those between the N4 atom and the oxygen of the ring R2.

It is well described in the literature that the biological activity, as well as the geometry of molecules, are influenced by internal hydrogen bonds. Furthermore, this issue is the subject of current

Table 1

_

Comparative tables of geometric parameters (calculated and experimental) of $C_9H_{10}N_4O_4\cdot H_2O$.

Bond lengths	Exp. (Å)	Calc. (Å)	Bond lengths	Exp. (Å)	Calc. (Å)
C1-N1	1.293	1.306	C5-02	1.365	1.369
C1-N3	1.348	1.375	02-C6	1.433	1.431
C1-H1	0.930	1.080	C6-03	1.436	1.446
N1-N2	1.387	1.390	C6-C8	1.500	1.527
N2-C2	1 299	1 306	C6-C9	1 502	1 517
C2-N3	1 346	1 376	03-07	1 362	1 356
C2-H2	0.930	1 080	C7-04	1 211	1 224
N3_N4	1 391	1 384	C8-H4	0.960	1.092
N4-C3	1 317	1 340	C8-H5	0.960	1.092
N4_H10	0.860	1 036	C8-H6	0.960	1.092
C3-C4	1 367	1 378	C9-H7	0.960	1.000
C3_H3	0.930	1.07	C9-H8	0.960	1.092
C4-C7	1 / 37	1.007	C9-H9	0.960	1.092
C4_C7	1.451	1.450	05 µ11	0.900	0.072
C4-C5 C5-01	1.451	1.474	05-H12	0.960	0.975
Rond angle	1.207 Evp. (°)	(2)	Bond angle	0.300 Exp. (°)	Calc (°)
N1 C1 N2	100 7	110.0		110.2	111 5
	105.7	127.1	02-00-03	110.2	111.5
	125.1	127.1	02-06-08	100.0	100.4
	125.1	122.9	03-06-08	109.9	109.4
CI-NI-N2	107.6	107.6	02-06-09	106.5	106.3
C2-N2-N1	106.6	107.6	03-06-09	106.3	105.8
N2-C2-N3	110.1	110.0	18-16-19	113.8	113.6
N2-C2-H2	124.9	127.1	C7-03-C6	117.8	119.4
N3-C2-H2	124.9	122.9	04-07-03	117.8	118.3
C2-N3-C1	105.9	104.9	04-C7-C4	125.6	125.0
C2-N3-N4	127.0	127.5	03-C7-C4	116.6	116.6
C1-N3-N4	127.0	127.4	C6-C8-H4	109.5	109.6
C3-N4-N3	119.5	119.2	C6-C8-H5	109.5	110.0
C3-N4-H10	125.8	126.2	H4-C8-H5	109.5	111.0
N3-N4-H10	114.7	114.6	C6-C8-H6	109.5	111.0
N4-C3-C4	126.4	128.5	H4–C8–H6	109.5	108.5
N4-C3-H3	116.8	115.1	H5-C8-H6	109.5	108.6
C4-C3-H3	116.8	116.4	C6-C9-H7	109.5	109.8
C3-C4-C7	121.8	123.4	C6-C9-H8	109.5	109.5
C3-C4-C5	117.2	115.8	Н7-С9-Н8	109.5	109.1
C7-C4-C5	120.8	120.5	C6-C9-H9	109.5	110.0
01-C5-02	117.9	119.4	H7-C9-H9	109.5	109.3
01-C5-C4	126.3	125.3	H8-C9-H9	109.5	109.2
02-C5-C4	115.8	115.3	H11-05-H12	107.0	104.7
C5-O2-C6	118.3	119.5			
Torsion angle	Exp. (°)	Calc. (°)	Torsion angle	Exp. (°)	Calc. (°)
N3-C1-N1-N2	0.6	0.4	C7-C4-C5-O2	-5.4 (3)	-7.1
C1-N1-N2-C2	0.1	0.2	01-C5-02-C6	159.2 (2)	161.2
N1-N2-C2-N3	-0.8	-0.7	C4-C5-O2-C6	-23.0 (3)	-21.5
N2-C2-N3-C1	1.1	0.9	C5-02-C6-03	49.5 (2)	46.2
N2-C2-N3-N4	176.18	176.3	C5-O2-C6-C8	-71.8 (2)	-75.4
N1-C1-N3-C2	-1.1	-0.8	C5-O2-C6-C9	164.38 (18)	161.1
N1-C1-N3-N4	-176.12	-176.2	02-C6-03-C7	-49.7 (2)	-44.2
C2-N3-N4-C3	77.5	86.9	C8-C6-O3-C7	71.7 (2)	78.0
C1-N3-N4-C3	-108.4	-98.7	C9-C6-O3-C7	-164.71 (18)	-159.3
N3-N4-C3-C4	-177.2	-178.8	C6-03-C7-04	-159.60 (18)	-164.8
N4-C3-C4-C7	2.8	2.7	C6-O3-C7-C4	23.6 (3)	17.7
N4-C3-C4-C5	177.6	177.0	C3-C4-C7-O4	3.1 (3)	5.6
C3-C4-C5-01	-2.6	-4.5	C5-C4-C7-O4	-171.5 (2)	-168.5
C7-C4-C5-01	172.2	170.0	C3-C4-C7-O3	179.60 (18)	177.2
C3-C4-C5-O2	179.8	178.5	C5-C4-C7-O3	5.0 (3)	8.8
Hydrogen-bond geometry (Å, °)					

D−H···A	D-H		H····A		$D{\cdots}A$	D····A		D–H···A	
	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	
N4–H10· · · O4	0.9	1.0	2.2	2.3	2.8	2.9	119.6	112.3	
N4-H10···05	0.9	1.0	2.0	1.8	2.7	2.8	142.0	164.8	

research in chemistry, due to the influence of these interactions in the design of new biologically active substances, affecting membrane transport and the distribution of drugs within biological system. In general terms the formation of ligand–protein complexes depends on hydrogen bonding. As it is well known, hydrogen bond contributes to the orientation of the ligand associated by a conformational distortion of the molecules and recognition of substrates, inhibitors, agonists and antagonists, among others [21–25].

The molecule $C_9H_{10}N_4O_4$: H_2O has 30 atoms, and so there are 90° of freedom. Excluding the translational and rotational modes, there are 84 vibrational modes for the hydrate. In the unit cell there are four units of the hydrate $C_9H_{10}N_4O_4$: H_2O , accounting for 360° of freedom and thus 354 vibrational modes are expected. From these, three are acoustic modes and 351 are optical modes. The modes of A_g and B_g irreducible representations of the factor group C_{2h} are Raman active, while modes with A_u and B_u symmetries are infrared active. Assuming that the weakness of the intermolecular coupling causes negligible factor group splitting, the assignment task is simplified to that of the molecular modes.

Table 1 shows bond distances, bond angles and dihedral angles for the hydrate $C_9H_{10}N_4O_4$ ·H₂O, for the optimized structure (Calc.) and that obtained from X-ray analysis (Exp.) [13]. The agreement between the optimized and experimental crystal structure is quite good, showing that the geometry optimization reproduces the experimental conformation almost exactly.

The FT-Raman and FT-IR spectra of polycrystalline samples of the substance $C_9H_{10}N_4O_4$ ·H₂O are shown in Figs. 3a and b, respectively. From the FT-Raman spectrum we observe that modes below 200 cm⁻¹ – some of them associated to external modes and others to internal modes as discussion below – are the most intense in all spectral range, at least from 0 to 1750 cm⁻¹ interval.

Table 2 lists a detailed description of the assignments of the vibrational modes of $C_9H_{10}N_4O_4$ · H_2O . The calculated wavenumber values, not scaled, are given in the first column, while the calculated and scaled wavenumbers – whose meaning will be furnished below – are given in the second column. We also present the experimental wavenumber values for the crystal obtained by

FT-Raman and FT-IR spectroscopies (the third and fourth columns, respectively); and the fifth column gives the assignment of the all bands appearing in both Raman and infra red spectra. The vibrational assignments of the normal modes were made with regard to the PED, where values greater than 10% only are considered. The percent contribution of the PED to each vibrational mode is given in parentheses in the fourth column.

The symbols employed in the classification of the normal modes are as follows: r, τ , sc and wag stand for rocking, torsion, scissoring and wagging vibrations, respectively. The symbol δ is used to indicate a bending and when associated with the subscript 'out' refers to an out-of-plane deformation. Finally, v_s and v_{as} are used to indicate symmetric and anti-symmetric stretching, respectively. With regard to the intensity of the Raman and of the infrared bands we have used the following abbreviations: vs (very strong), s (strong), m (medium), w (weak) and vw (very weak).

Now we discuss the main calculated and observed vibrations of $C_9H_{10}N_4O_4$ · H_2O . The calculated values for the wavenumbers at the DFT level contain known systematic errors due to the neglect of electron correlation, resulting in overestimates of about 10–20%. Therefore, it is necessary to calculate a suitable scale factor (*f*) to achieve a better agreement with the experimental values. Following the procedure described by Wong [26] and Scott and Radom [27], *f* was calculated by fitting the theoretical values to the experimental ones (from FT-Raman spectrum). After successive adjustments, *f* was found to be 0.9495 with the overall root mean square error for this scale factor of 56 cm⁻¹. In Table 2, the scaled wavenumbers (ω_{scal}) were obtained by multiplying the calculated values (ω_{cal}) by *f*. The assignments of the respective molecular vibrations are given in the last column.

Analysis of the normal modes from the crystal shows that most of the bands in the FT-Raman and FT-IR spectra consist of combined vibrational modes. The out of plane deformation are mainly present in the region between 30 cm⁻¹ $\leq \omega_{cal} \leq 900$ cm⁻¹, but can also be observed until $\omega_{cal} = 1332$ cm⁻¹. The torsional modes are observed in the region of calculated frequencies between 104 cm⁻¹ and 684 cm⁻¹. However, vibrations related to the methyl

Fig. 3. Vibrational spectra of $C_9H_{10}N_4O_4$: H_2O crystal at room temperature: (a) FT-Raman and (b) FT-IR. The vertical arrows in (a), at 207 cm⁻¹, and (b), at 930 cm⁻¹, are associated with the atomic displacements in Fig. 4a and b, respectively.

Table 2

Calculated vibrational wavenumbers (in cm⁻¹), scaled values for f = 0.9495, experimental Raman and IR bands positions in units of cm⁻¹, and assignment of vibrational modes.

ω_{calc}	$\omega_{\rm scal}$	$\omega_{\rm FT-Raman}$	$\omega_{\rm FT-IR}$	Assignment with PED ^a (%)
30	28			δ _{cut} (C7C4C3C5) (73) + δ _{cut} (C3N4HN3) (18)
35	33			δ_{out} (C3N4HN3) (89)
39	37			δ_{out} (C3N4HN3) (79) + δ_{out} (C7C4C3C5) (14)
52	49	61 m		δ_{out} (C2N3N4C1) (72)
78	74	74 vs		δ_{out} (C3N4HN3) (90)
104	99	104 vs		$R2[\tau (C4C502C6)] (95)$
121	115	115 VS		$RZ[\delta(C/C4C3C5)(203C6)](32) + \delta_{out}(C2N3N4C1)(27) + \delta_{out}(C/C4C3C5)(18)$ $S = (C7C4C3C5)(42) + R2[\pi(C4C5C3C6)](18) + R2[S(C4C3C5C3C4C7)](12)$
150	123	125 VS 148 m		$R_{2}[\tau (C4C502C6)] (20) + \delta_{a,c} (C3N4HN3) (20) + \delta_{a,c} (C2N3N4C1) (13) + R2[\delta (C402C5:03C4C7)] (13)$
201	192	140 m		δ_{out} (C7C4C3C5) (65) + δ_{out} (C2N3N4C1) (15)
217	206	185 m		δ_{out} (C7C4C3C5) (84) + δ_{out} (C3N4HN3) (11)
220	209	207 w		$R2[\tau (C8H_3;C9H_3)](79) + \delta_{out} (C7C4C3C5) (16)$
250	237	214 w		R2[δ (C7C4C5;0203C6)] (70) + δ_{out} (C2N3N4C1) (13)
258	245	226 m		$R2[\tau (C8H_3; C9H_3)] (33) + R2[\delta (C402C5; O3C4C7)] (21) + \delta_{out} (C3N4HN3) (17)$
259	246	263 m		$R2[\tau (C8H_3;C9H_3)] (42) + \delta (HO5H) (29) + \delta_{out} (C3N4HN3) (13)$
296	281	295 W		$RZ[T((4C502C6)](41) + RZ[\delta((402C5;(6C/03)](26) + RZ[T((8H_3;(9H_3))](26)$
343	326	328 vw		$\delta_{out} (C7C4C3C5) (59) + \delta_{cot} (C3N4HN3) (35)$
387	367	346 w		$R_{2}[\tau (C4C502C6)] (60) + \delta_{out} (C3N4HN3) (17) + \delta (C6C8H) (11)$
401	381	360 vw		δ_{out} (C7C4C3C5) (51) + δ_{out} (C3N4HN3) (28)
419	398	389 m		δ_{out} (C7C4C3C5) (58) + δ_{out} (C3N4HN3) (15) + δ_{out} (C4C3HN4) (14)
422	401	396 m		δ_{out} (C3N4HN3) (81)
433	411	408 m	412 m	δ_{out} (C7C4C3C5) (61) + δ_{out} (C3N4HN3) (22) + δ_{out} (C4C3HN4) (11)
505	479	432 m	434 s	$R2[\delta (C402C5;C6C703)] (49) + R2[\delta (C402C5;O3C4C7)] (26) + \delta_{out} (C7C4C3C5) (11)$
509	483	447 vw		$R2[\delta(C/C4C5;O2O3C6)](95)$
525 588	498	487 VW	509 m	$R2[0(C/C4C5;02O5C6)](78) + \delta_{out}(C/C4C5C5)(17)$ $R1[r(N2N1C1N2)](73) + \delta(HNAN2)(30) + \delta(C2N3N4C1)(12)$
625	593	529 m	528 w	$R1[\tau (N2N1C1N3)] (54) + \delta_{nut} (C2N3N4C1) (20)$
638	606	550 vw		$R1[\tau (N2N1C1N3)] (44) + \delta_{out} (C2N3N4C1) (26)$
644	611	564 vw		δ_{out} (C7C4C3C5) (49) + R2[δ (C7C4C5;O2O3C6)] (23)
684	649	581vw	584 s	R1[τ (N2N1C1N3)] (57)+R1[δ_{out} (N3C1HN1)] (24)
721	685	615 w	613 s	δout (C4C3HN4) (63) + R2[τ (C4C502C6)] (22) + δout (C3N4HN3) (13)
741	704	634 m	634 m	δ_{out} (C7C4C3C5) (46) + R2[δ (C7C4C5;0203C6)] (31)
784	744	648 s	644 m	$\delta_{\text{out}} (C/C4C3C5) (92)$ P1[S (N2C1UN1)](72) + P1[S (N2C2UN2)](25)
833	705	736 m	735 s	$R1[o_{out}(NSCINNJ)(73) + R1[o_{out}(N2ZINS)](23)$ $R1[s (N3CINNJ)(73) + R1[s (N2ZINS)](23)$
849	806	840 m	798 s	$R1[\delta_{out} (N3C1HN1)] (46) + R1[\delta_{out} (N2C2HN3)] (21)$
871	827	856 w	843 m	δ_{out} (C3N4HN3) (65) + δ_{out} (C4C3HN4) (23)
900	855	892 m	873 m	δ_{out} (C7C4C3C5) (31) + R2[δ (C7C4C5;0203C6)] (23)+ δ_{out} (C3N4HN3) (18) + R2[δ (C7C4C5;0203C6)] (13)
935	888	932 m	930 s	R1[δ (C1N3C2N2N1)] (83)
945	897	941 m	951 m	$r(C8H_3)(30) + R2[\delta(C7C4C5;0203C6)](15) + \delta(C9H_3)(12)$
952	904	985 m	985 m	$R2[\delta(C7C4C5;0203C6)](24) + R2[\delta(C402C5;C6C703)](22)$
1001	950	994 m 1006 m	1001c	$ \begin{array}{l} KI[\delta(LZNZN3)](3/) + KI[\delta(LININ3)](1/) + KI[\delta(NIN2)](15) \\ & \qquad \qquad$
1014	903	1017 m	1001s 1021 m	σ_{out} (C4C51)(4) (51) + K2[0 (C7C4C5, 0205C0)] (27) + σ_{out} (C7C4C5C5) (11) r (C8H ₀) (53) + r (C9H ₀) (22)
1021	988	1063 m	1057 s	δ_{out} (C4C3HN4) (87)
1048	995	1097 vw		δ_{out} (C4C3HN4) (80)
1070	1016	1137 m	1136 m	R1[δ (C2N2N3)] (43) + R1[δ (C1N3C2N2N1)] (20) + R1[ν (C1N3)] (12) + R1[δ (C1N1N3)] (11)
1156	1098	1168 vw		δ (HN4N3) (16) + R1[δ (C1N1N3)] (16) + δ (N4C3C4) (16)
1222	1160	1200 m	1202 w	R1[δ (C1N1N3)] (89)
1224	1162	1218 m	1218 s	$R1[\delta(C2N2N3)](62) + R1[\delta(C1N1N3)](25)$
1255	11/5	1234 VW		$R_2[0(C7C4C5,02056)](53)$ $R_2[\delta(C7C4C5,02056)](23) + R_2[\delta(C4C5C7)](20) + R_1[\delta(C1N1N2)](12)$
1290	1225	1249 W	1268 s	δ (NG3C4) (22) + R2(6 (7724C5) (2023C6)) (22) + 6 (HN4N3) (12)
1301	1235	1280 m	1287 vs	$R2[\delta (C7C4C5;0203C6)] (57) + \delta (N4C3C4) (32)$
1332	1265	1295 m		$δ_{out}$ (C3N4HN3) (35) + R1[v (C1N3)] (24) + R1[δ (C1N3C2N2N1)] (19)
1341	1273	1325 m	1323 w	δ (N4C3C4) (46) + R2[δ (C7C4C5;02O3C6)] (23) + δ (HN4N3) (23)
1405	1334	1356 m	1355 m	δ (HN4N3) (38) + R2[δ (C7C4C5;0203C6)] (24) + δ (N4C3C4) (16)
1420	1348	1384 m	1380 s	wag $(C9H_3)$ $(69) + wag (C8H_3) (25)$
1435	1363	1401W	1390 m	o (HN4N3) (54) + Wag (C8H ₃) (18) s (LINAI2) (70)
1459	1416	1400 III 1463 vs	1457 W	$s_{\rm C}$ (C9H ₂) (74) + s _C (C8H ₂) (14)
1492	1417	1 105 45	1 102 111	sc (C9H ₃) (49) + sc (C8H ₃) (16) + δ (HN4N3) (14)
1508	1432	1474 m	1472 m	δ (HN4N3) (72)
1510	1434			δ (HN4N3) (64) + R2[δ (C7C4C5;O2O3C6)] (21)
1514	1438	1517 m	1517 w	sc $(C9H_3)(52) + \delta$ (HN4N3) (15)
1518	1441	1533 w	1539 vw	δ (HN4N3) (51) + R1[δ (C2N2N3)] (23)
1545	1467	1602 m	1597 s	δ (HN4N3) (34) + R1[$δ$ (C1N1N3)] (24) + R1[$δ$ (C2N2N3)] (20)
1656	15/2	1643 VW	1645 VW	0 (HIV4IV3) (33) + 0 (HU3H) (33) 8 (HNINI3) (50) + 8 (HO5H) (72)
1081	1590	1078 VW	1675 III 1699 ve	υ (ΠΙΥΨΙΝΟ) (Ου) * 0 (ΠΟΟΠ) (42) R2[ν (C7ΛΔ)] (61) + R2[δ (C7C4C5·02O3C6)] (15) + R2[δ (C4Ω2C5·C6C7Ω3)] (12)
1833	1740	1737 vs	1736 s	R2[8 (C7C4C5:0203C6)] (76)
3066	2911	2749 w		v _s (C8H ₃) (92)
3075	2920	2863 w		$V_{\rm s}$ (C9H ₃) (88)

Table 2 (continued)

ω_{calc}	$\omega_{\rm scal}$	$\omega_{ m FT-Raman}$	$\omega_{\mathrm{FT-IR}}$	Assignment with PED ^a (%)
3145	2986	2886 vw		v_{as} (C8H ₃) (97)
3153	2994	2920 m	2912 w	v_{as} (C8H ₃) (56) + v_{as} (C9H ₃) (27) + δ (C6C8H) (12)
3161	3001	2947 vs	2944 w	v_{as} (C9H ₃) (82)
3162	3002	2993 m	2992 m	v_{as} (C9H ₃) (93)
3197	3036	3002 s	3003 m	v (N4H) (86) +
3211	3049	3012 s	3013 m	v (C3H) (59) + δ (N4H) (32)
3283	3117	3056 w	3060 w	R1[v(C2H)](80) + R1[v(C1H)](15)
3288	3122	3133 s	3127 s	R1[v(C1H)](89)
3721	3533		3241 m	v _s (HO5H) (82)
3872	3676		3385 m	v _{as} (HO5H) (97)

Nomenclature: τ = torsion; sc = scissoring; δ = bending; δ_{out} = out of plane bending; ν = stretching; ν_{as} = asymmetric stretching; ν_s = symmetric stretching; v = very strong; s = strong; m = medium; w = weak; vw = very weak.

^a Only PED values greater that 10% are given.

Fig. 4. Selected representations of atomic vibrations corresponding to the calculated wavenumbers of $C_9H_{10}N_4O_4$. H_2O : (a) $\omega_{cal} = 220 \text{ cm}^{-1}$ and (b) $\omega_{cal} = 935 \text{ cm}^{-1}$.

groups were clearly observed at the usual wavenumbers such as: torsion of CH₃ in $\omega_{cal} = 258 \text{ cm}^{-1}$ and $\omega_{cal} = 259 \text{ cm}^{-1}$, rocking of CH₃ in $\omega_{cal} = 1024 \text{ cm}^{-1}$, wagging of CH₃ in $\omega_{cal} = 1420 \text{ cm}^{-1}$ and $\omega_{cal} = 1435 \text{ cm}^{-1}$, and scissoring of CH₃ in $\omega_{cal} = 1491 \text{ cm}^{-1}$. The two very intense bands observed above 1700 cm⁻¹ are assigned as vibrations of R2 ring, both stretching of C7O4 and bending of C7C4C5;0203C6 group.

For organic crystals, bands resulting from C–H, CH₂, CH₃, and N–H stretching vibrations are observed in the region between 2800 cm^{-1} and 3200 cm^{-1} . In particular, the band appearing in the Raman spectrum close to 3000 cm^{-1} is assigned as an almost pure band, i.e., as the stretching vibration of N4-H unit, while the bands observed between 2749 and 2886 cm^{-1} are assigned as

stretching vibrations of C–H. Stretching vibrations related to C–H of the R1 ring are observed at 3060 and 3130 cm⁻¹; obviously, no stretching associated to R2 ring are observed in the region of 3000 cm⁻¹, because in such a ring the carbon atoms are not bonded to any hydrogen atom. The FT-IR spectrum from the crystal showed two bands above this region, namely at 3241 cm⁻¹ ($\omega_{cal} = 3721 \text{ cm}^{-1}$) and 3385 cm⁻¹ ($\omega_{cal} = 3872 \text{ cm}^{-1}$), corresponding to the symmetric stretching and asymmetric stretching of water, respectively. This corroborates the fact that the crystal under study contains water. Finally, it is important to point out that in the Table 2 there is no assignment to external modes. In fact, the calculation was performed in a isolated molecule C₉H₁₀N₄O₄-H₂O what means that it cannot furnish vibrations related to lattice

modes. However, it is well known that such a kind of modes must be found up to 200 cm^{-1} and, consequently, in this region it is expect to be found also, the external modes.

In order to illustrate the assignment, atomic displacement vectors corresponding to two selected normal modes from the isolated molecular structure of $C_9H_{10}N_4O_4$ ·H₂O are shown in Fig. 4. In Fig. 4a it is shown the representation of the atomic vibrations giving rising to the band observed at ~220 cm⁻¹, which corresponds mainly to the torsional vibration of the two CH₃ groups bonded to the R2 ring. On the other hand, in Fig. 4b it is shown the representation of the atomic vibrations giving rising to the band observed at ~930 cm⁻¹, which corresponds to vibrations of R1 ring.

5. Conclusions

A study on vibrational properties with an exhaustive frequency assignment of 2,2-dimethyl-5-(4H-1,2,4-triazol-4-ylaminomethylene)-1,3-dioxane-4,6-dione monohydrate, $C_9H_{10}N_4O_4$ ·H₂O, was performed using the FT-IR and FT-Raman data as well as DFT calculations. The correlation between calculated and experimental values was very good, and for the first time the Potential Energy Distribution (PED) is being presented for this synthetic substance. Due to the size of the molecule, and the numerous superposition of vibrational modes, bands assignment would have turned impossible without help from the theoretical model, making a clear statement that theory and experiment must go together.

Acknowledgments

We thank CENAPAD-SP for the use of the GAUSSIAN 03 software package and for computational facilities made available through the Project "proj373". Financial support from FUNCAP and CNPq is also acknowledged.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.molstruc.2012.12.058.

References

- [1] S.M. Desenko, Chem. Heterocycl. Comput. (1995) 2–24.
- [2] A.K. Gupta, K.P. Bhargava, Pharmazie 33 (1978) 430–431.

- [3] D.H. Jones, R. Slack, S. Squires, K.R.H. Wooldridge, J. Med. Chem. 8 (1965) 676– 680.
- [4] J.K. Sughen, T. Yoloye, Pharm. Acta Helv. 58 (1978) 64-68.
- [5] A. Cansiz, J. Chem. Soc. Pak. 23 (2001) 237-240.
- [6] J.M. Kane, M.W. Dudley, S.M. Sorensen, F.P. Miller, J. Med. Chem. 31 (1988) 1253–1258.
- [7] S. Massa, R. Disanto, A. Retico, M. Artico, N. Simonetti, G. Fabrizi, D. Lamba, Eur. J. Med. Chem. 27 (1992) 495–502.
- [8] A.E.-A.M. Gaber, H. McNAB, Synthesis 14 (2001) 2059-2074.
- [9] A.S. Ivanov, Chem. Soc. Rev. 37 (2008) 789-811.
- [10] INC. Sterling Drug, Aromatic Amine Derivatives and Preparation. Patent, 464850, 1965. Chem. Abstract 1,147,759, 1966.
- [11] L.E. Silva, G.I. Graf, D. Hastreiter, L.E. da Silva, R.A. Rebelo, A.G. Montalbanb, A. McKillop, Tetrahedron 58 (2002) 9095–9100.
- [12] P.G. Baraldi, M.G. Pavani, M.C. Nuñez, P. Brigidi, B. Vitali, R. Gambaric, R. Romagnolia, Bioorg. Med. Chem. 10 (2002) 449–456.
- [13] A.C. Joussef, L.E. Silva, A.J. Bortoluzzi, S. Foro, Acta Cryst. E 61 (2005) 02642– 02643.
- [14] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B02, Gaussian, Inc., Pittsburgh, PA, 2003.
- [15] C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785-789.
- [16] R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
- [17] A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652.
- [18] J.M.L. Martin, C. Van Alsenoy, GAR2PED, A Computer Program for PED Calculations, University of Antwerp, Belgium, 2007.
- [19] P. Pulay, G. Fogarasi, F. Pang, J.E. Boggs, J. Am. Chem. Soc. 101 (1979) 2550– 2560.
- [20] G. Fogarasi, X. Zhou, P.W. Taylor, P. Pulay, J. Am. Chem. Soc. 114 (1992) 8191– 8201.
- [21] A. Kucsman, I. Kapovits, Nonbonded sulfur-oxygen interaction in organic sulfur compounds, In: F. Bernardi, I.G. Csizmadia, A. Mangini (Eds.), Organic Sulfur Chemistry: Theoretical and Experimental Advances, Elsevier, Amsterdam, 1985, pp. 191–245.
- [22] P. Veerapandian (Ed.), Structure-based Drug Design, Marcel Dekker, New York, 1997.
- [23] P.J. Goodford, in: C. Silipo, A. Vittoria (Eds.), QSAR: Rational Approaches to the Design of Bioactive Compounds (Pharmacochemistry Library, vol. 16), Elsevier Sciences Pub., Amsterdam, 1990, pp. 49–55.
- [24] G.R. Desiraju, T. Steiner, 'Structural Chemistry and Biology', International Union of Crystallography Monographs on Crystallography, vol. 9, Oxford University Press, Oxford, 1999.
- [25] V. Rajnikant, J. Dinesh, C. Bhavnaish, J. Chem. Cryst. 38 (2008) 567.
- [26] M.W. Wong, Chem. Phys. Lett. 256 (1996) 391-399.
- [27] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502-16513.