

Note

Subscriber access provided by UB + Fachbibliothek Chemie | (FU-Bibliothekssystem)

Ligand-Free Pd-Catalyzed Double Carbonylation of Aryl Iodides with Amines to alpha-Ketoamides under Atmospheric Pressure of Carbon Monoxide and at Room Temperature

Hongyan Du, Qing Ruan, Minghao Qi, and Wei Han

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.5b01249 • Publication Date (Web): 03 Jul 2015 Downloaded from http://pubs.acs.org on July 6, 2015

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Ligand-Free Pd-Catalyzed Double Carbonylation of Aryl Iodides with Amines to α-Ketoamides under Atmospheric Pressure of Carbon Monoxide and at Room Temperature

Hongyan Du,[†] Qing Ruan,[†] Minghao Qi,[†] and Wei Han^{*,†,‡}

[†]Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, China

[‡]Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, China

*Corresponding author's email address: hanwei@njnu.edu.cn; whhanwei@gmail.com

ABSTRACT: A general Pd-catalyzed double carbonylation of aryl iodides with secondary or primary amines to produce α -ketoamides at atmospheric CO pressure has been developed. This transformation proceeds successfully even at room temperature and in the absence of any ligand and additive. A wide range of aryl iodides and amines can be coupled to the desired α -ketoamides in high yields with excellent chemoselectivities. Importantly, the current methodology has been demonstrated to be applied in the synthesis of bioactive molecules and chiral α -ketoamides.

α-Ketoamides are important fragments in biologically active molecules, synthetic

drugs, and pharmaceutically interesting compounds.¹ Moreover, they frequently serve as useful building blocks for an array of functional group transformations.² As a consequence, establishing a general, practical, and efficient approach to α -ketoamides having polyfunctional groups, is of significance.

Palladium-catalyzed double carbonylation of aryl halides with amines is well known as a direct and efficient protocol for the synthesis of α -ketoamides.^{3,4} Generally, this transformation undergoes efficiently at a high pressure of carbon monoxide(≥ 10 bar) and/or an elevated temperature (≥ 80 °C).^{4,5} Moreover, the palladium catalysts are required to be modified by cost of ligands (often with phosphine ligands).^{2d,3b,5,6} These drawbacks have blocked the transfer of the advances to widespread applications, particularly in complex organic syntheses.

In contrast, double carbonylation for α -ketoamides under ambient pressure of CO gas has been scarcely reported, likely due to inertness of CO and poor chemoselectivity.^{6,7} However, in these cases, the necessity to employ extra additives, such as a copper co-catalyst, a nucleophilic amine base, an air-sensitive phosphine, or Au-supported material. Most disadvantageous of all, aryl halide bearing a deactivating group such as halo, cyano, trifluoro, or an ester group in the aryl ring leads to a large amount of monocarbonylated side products.^{6,7} To the best of our knowledge, there is no report of general, ligand- and additive-free double carbonylations of aryl iodides under ambient conditions thus far.

Recently, we demonstrated in situ generation of palladium nanoparticles in

polyethylene glycol (PEG) without any additional ligand and additive. And this catalytic system achieved outstanding performance in carbonylative Suzuki coupling⁸ and hydrocarboxylation⁹ of aryl halides with CO gas under ambient conditions. In continuation of our research to employ this in situ generation of palladium nanoparticles system for other carbonylation, herein we disclose a ligand-free palladium-catalyzed double carbonylation for the synthesis of α -ketoamides by direct three-component coupling of various aryl iodides (including electron-deprived aryl iodides) and amines with CO gas at ambient pressure and temperature. The generality of this protocol is demonstrated here by synthesizing a typical set of α -ketoamide compounds (44 examples) with high yields and excellent selectivities.

We commenced our studies by investigating the reaction between 1-chloro-4-iodobenzene **1a** and cyclohexylamine **2a** (1.0 equiv) employing $Pd(OAc)_2$ as a catalyst and Na₂CO₃ as a base in PEG-400 at room temperature and atmospheric pressure of CO gas (Table 1). The reaction resulted in double carbonylated product **3aa** in 74% yield with excellent selectivity (>95%) (entry 1). A screening of palladium sources revealed that $Pd(OAc)_2$ is much better than $PdCl_2$ (entry 2), and Pd/C is complete ineffective for the reaction (entry 3). Replacing PEG-400 with glycol, NHD-250 (polyethylene glycol dimethyl ether with an average molecular weight of 250 Da) , DMF, toluene, or 1,4-dioxane as the solvent resulted in poorer results (entries 4–8). Evaluation of several bases indicated that Na₂CO₃ was the optimal choice, albeit Na₃PO₄, and NEt₃ were also efficient bases for this

		[Pd] base, solvent CO (balloon), RT			
1a 2a			3aa		
Ent	[Pd]	Base	Solvent	Yield of	
-ry				3aa/%	
1	$Pd(OAc)_2$	Na ₂ CO ₃	PEG-400	74	
2	PdCl ₂	Na ₂ CO ₃	PEG-400	61	
3	Pd/C	Na ₂ CO ₃	PEG-400	-	
4	Pd(OAc) ₂	Na ₂ CO ₃	Ethylene glycol	<5	
5	Pd(OAc) ₂	Na ₂ CO ₃	NHD-250	40	
6	Pd(OAc) ₂	Na ₂ CO ₃	DMF	7	
7	Pd(OAc) ₂	Na ₂ CO ₃	Toluene	10	
8	$Pd(OAc)_2$	Na ₂ CO ₃	Dioxane	25	
9	Pd(OAc) ₂	NaHCO ₃	PEG-400	59	
10	Pd(OAc) ₂	Na ₃ PO ₄	PEG-400	72	
11	$Pd(OAc)_2$	NaF	PEG-400	67	
12	Pd(OAc) ₂	DBU	PEG-400	<5	
13	Pd(OAc) ₂	Et ₃ N	PEG-400	73	
14	Pd(OAc) ₂	DIEA	PEG-400	52	
15	Pd(OAc) ₂	Bu ₄ NOH	PEG-400	Trace	
16 ^b	Pd(OAc) ₂	Na ₂ CO ₃	PEG-400	Trace	
17	Pd(OAc) ₂	DABCO	PEG-400	76	
18 ^c	Nano-Pd	Na ₂ CO ₃	PEG-400	69	

Table 1. Optimization of reaction conditions^{*a*}

^a Reaction conditions (unless otherwise stated): 1a (0.5 mmol), 2a (0.5 mmol), [Pd] (0.01 mmol), CO (balloon), base (1.0 mmol), solvent (2.0 mL), RT, and 6 h. ^b With addition of Hg (1.0 mmol). ^b Pre-prepared nanopalladium.

transformation (entries 10 and 13); other bases, like NaHCO₃, NaF, and DIEA (N,N-Diisopropylethylamine), gave rise to lower yields (entries 9, 11, and 14), but DBU (1,8-Diazabicyclo[5.4.0]undec-7-ene) and Bu₄NOH were totally ineffective (entries 12 and 15). DABCO (1,4-Diazabicyclo[2.2.2]octane) known as a base

promoting double carbonylation^{6b} was also effective and gave a comparable result to Na_2CO_3 (entry 17). Considering that DABCO is more expensive and can readily contaminate products, we chose Na_2CO_3 as the base. TEM (transmission electron microscopy) analyzed the reaction mixture and indicated palladium nanoparticles were formed (see ESI, Figure S1). And the size distribution of Pd nanoparticles was

Reaction conditions(unless otherwise stated): **1** (0.5 mmol), **2b** (0.5 mmol), CO (balloon), Na₂CO₃(1.0 mmol), Pd(OAc)₂(2 mol %), PEG-400 (2.0 mL), and RT.

about 3.0 ± 0.6 nm. An enlarged TEM image indicated that the shape of nanoparticles was spherical [see ESI, Figure S1 (b)]. Furthermore, under the optimal conditions, Hg

(100 equiv to Pd) was added to the system and led to completely inhibit the reaction (entry 16), suggesting that the real active catalyst is likely to be nanopalladium. Moreover, recently, we reported Pd(OAc)₂ readily formed palladium nanoparticles in PEG.¹⁰ According to our previous study, pre-prepared palladium nanoparticles had an average size of 3.6 nm,^{10b} bigger than that of the present *in situ* generated palladium nanoparticles (3.0 nm), and exhibited lower activity (entry 18).

Having the optimized conditions in hand, a series of aryl iodides 1 as coupling partners to morpholine **2b** were explored (Scheme 1). This protocol was efficient with diverse aryl iodides bearing electron-donating substitutes, such as methyl and methoxy, to give the corresponding coupling products in high yields. To our delight, the ortho-substituted substrate 1c wasn't affected by the steric hindrance of methyl group and provided **3cb** in excellent yield. A free amino group (1u) proved to be compatible in the system, albeit a moderate conversion was obtained. The inductive electron-deprived chloro, fluoro, and trifluoro groups were also well tolerated, and the desired products **3ab** and **3gb–3ib** were generated in high yields. Electron-poor cyano- and ester-substituted iodides that readily directed the reactions towards monocarbonylation^{6,7} reacted slowly but still afforded the desired double carbonylated products in 89% (3lb) and 80% (3mb) yields, along with yielding 8% and 6% of amides, respectively. Gratifyingly, a reactive and useful carboxyl group (1t) was intact under the present conditions, which had never been demonstrated in double carbonylation process. The new protocol was also applicable to 1-iodonaphthalene

(1n) and 4-iodo-1,1'-biphenyl (1s) as illustrated by the synthesis of 3nb (90%) and 3sb (66%), the latter accompanied by the formation of amide side product in 15% yield. In addition, heterocyclic iodides such as 3-iodothiophene (1o), 2-iodothiophene (1p), and 4-iodo-3,5-dimethylisoxazole (1q) were readily converted to the corresponding α -ketoamides in 86%, 66%, and 96% yields. It should also be noted that the reaction between 1-(bromomethyl)-4-iodobenzene (1r) and morpholine 2b (2.0 equiv) under ambient conditions underwent one-pot amination/double carbonylation to yield 3rb in 84%. However, bromobenzene and chlorobenzene derivatives when tested failed to give desired products even at 100 °C. And 1,4-diiodobenzene as aryl iodide resulted in a complex mixture.

Encouraged by the above results, various amines 2 were subjected to the double carbonylation conditions to further evaluate the scope of the transformation (Scheme 2). Generally, cyclic or acyclic primary and secondary amines (2a-2l) furnished the corresponding α -ketoamides in satisfactory yields with excellent selectivities (>95%). For instance, *N*-Boc-protected amine 2d worked well to give the double carbonylated product 3ad in 86% yield. Amines bearing a strain ring (2g), a pyridyl group (2h), and an allylic substituent (2k) were also applied succesfully to the double carbonylation protocol, affording the corresponding products in 65%, 81%, and 75% yields, respectively. Additionally, the double carbonylation of bulky amantadine (3i) or *t*-butyl amine (3j) with 1-chloro-4-iodobenzene (1a) proceeded smoothly. To our

mmol), CO (balloon), Na₂CO₃ (1.0 mmol), Pd(OAc)₂ (2 mol %), PEG-400 (2.0 mL), and RT. ^{*a*} Withou the use of a base. ^{*b*}50 °C.

delight, a long-alkyl-chain lauryl amine (21) gave access to the desired α -ketoamide in 73% at an elevated temperature (50 °C). When piperazine (2m) bearing two identical reactive sites was subjected to the nomal conditions, mono α -ketoamide 3am, a versatile intermediate for further synthetic manipulations, was obtained in 75% yield with high selectivity.

To demonstrate the transformation's practical utility, a gram-scale reaction was performed by using **1a** and **2b** under ambient conditions, which provided the α -ketoamide **3ab** in 77% yield (Scheme 3). Moreover, the same reaction was used to

test the recycling uses of the catalytic system. Gratifyingly, the in situ nanocatalyst can be recycled up to five times to provide the corresponding product in 80, 80, 77, 77,

Scheme 3 A gram-scale synthesis of 3ab

and 72 % yield, respectively. To our delight, when optically active amines 2n and 2o, were treated with 1a, the desired products 3an and 3ao were obtained in satisfactory yields without racemization (eq 1 and 2).¹¹ And the latter proceeded smoothly even in the absence of a base. To further test the applicability of this protocol to bioactive or drug-like molecules, a HIV-1 inhibitor $3vp^{12}$ and an acetylated gluco-ketoamine 3wb could be directly synthesized via the present double carbonylation approach and were obtained in 65% (eq 3) and 68% (eq 4) yields, respectively.

In summary, we have developed the first general, ligandless, and non-additive palladium-catalyzed double carbonylation of aryl iodides and amines giving α -ketoamides in high yields. Notably, the in situ generated catalyst system devoid of a tedious process for the preparation of nanopalladium enables the transformation to proceed efficiently even at atmospheric pressure of carbon monoxide and room temperature with excellent chemoselectivities. Moreover, a series of reactive groups are compatible with the reaction conditions. This protocol has also been successfully demonstrated to be adaptable to chiral amines as substrates and to be applicable to the synthesis of a HIV-1 inhibitor and an acetylated gluco-ketoamine.

Experiment Section

General Information. PEG-400 was pre-dried (toluene azeotrope). ¹H and ¹³C NMR spectra of solutions in CDCl₃ or DMSO- d_6 were recorded on a 400 MHz instrument. Chemical shifts were expressed in parts per million (ppm) downfield from tetramethylsilane and refer to the solvent signals (CDCl₃: H 7.24 and C 77.0 ppm; DMSO- d_6 : H 2.50 and C 39.5 ppm). The signals of water were observed at about 1.58 ppm in CDCl₃ and 3.42 ppm in DMSO- d_6 , respectively.

General Procedures for Pd-Catalyzed Double Carbonylation of Aryl Iodide with Amine:

General Procedure A: A 25 mL Schlenk flask was charged with Pd(OAc)₂ (0.01 mmol, 2.3 mg), sodium carbonate (1.0 mmol, 106.5 mg), and PEG-400 (2.0 mL) before standard cycles of evacuation and back-filling with dry and pure carbon monoxide. Corresponding aryl iodide (0.5 mmol) and amine (0.5 mmol) were added successively. The mixture was stirred at room temperature for the indicated time. At the end of the reaction, the reaction mixture was poured into a saturated aqueous NaCl solution (15 mL) and extracted with ethyl acetate (3 × 15 mL). The organic phases were combined, and the volatile components were evaporated in a rotary evaporator. The crude product was purified by column chromatography on silica gel (petroleum ether: diethyl ether = 10 : 1-10 : 6).

In the recycling experiment, the residue was subjected to a second run of the double carbonylation by charging it with the same materials (1a, 2b, and Na₂CO₃) without further addition of $Pd(OAc)_2$ except addition of another 0.5 mL PEG-400 to the reaction mixture.

General Procedure B: A 25 mL Schlenk flask was charged with Pd(OAc)₂ (0.01 mmol, 2.3 mg), sodium carbonate (1.0 mmol, 106.5 mg), and PEG-400 (2.0 mL) before standard cycles of evacuation and back-filling with dry and pure carbon monoxide. Corresponding aryl iodide (0.5 mmol) and amine (0.5 mmol) were added successively. The mixture was stirred at 50 °C for the indicated time. At the end of the reaction, the reaction mixture was poured into a saturated aqueous NaCl solution (15 mL) and extracted with ethyl acetate (3

× 15 mL). The organic phases were combined, and the volatile components were evaporated in a rotary evaporator. The crude product was purified by column chromatography on silica gel (petroleum ether: diethyl ether = 10 : 1-10 : 6).

General Procedure C: A 25 mL Schlenk flask was charged with $Pd(OAc)_2$ (0.01 mmol, 2.3 mg), and PEG-400 (2.0 mL) before standard cycles of evacuation and back-filling with dry and pure carbon monoxide. Corresponding aryl iodide (0.5 mmol) and amine (0.5 mmol) were added successively. The mixture was stirred at room temperature for the indicated time. At the end of the reaction, the reaction mixture was poured into a saturated aqueous NaCl solution (15 mL) and extracted with ethyl acetate (3 × 15 mL). The organic phases were combined, and the volatile components were evaporated in a rotary evaporator. The crude product was purified by column chromatography on silica gel (petroleum ether: diethyl ether = 10 : 1–10 : 6).

2-(4-Chlorophenyl)-*N***-cyclohexyl-2-oxoacetamide** (3aa). *Following general procedure A*, **3aa** was isolated as a white solid (98 mg, 74%). Known compound (CAS: 24914-10-1). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8 Hz, 2 H), 7.42 (d, *J* = 8 Hz, 2 H), 6.98 (s, 1 H), 3.86-3.76 (m, 1 H), 1.97–1.71 (m, 2 H), 1.65–1.23 (m, 4 H), 1.29–1.20 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 186.7, 160.4, 141.0, 132.7, 131.8, 128.8, 48.5, 32.7, 25.4, 24.7 ppm; mp 100.5–100.9 °C.

1-(4-Chlorophenyl)-2-morpholinoethane-1,2-dione(3ab).¹³ Following general procedure A, **3ab** was isolated as a white solid (102 mg, 80%). ¹H NMR (400 MHz,

CDCl₃) δ 7.89 (d, J = 8.0 Hz, 2 H), 7.48 (d, J = 8 Hz, 2 H), 3.79–3.73 (m, 4 H), 3.64 (t, J = 4 Hz, 2 H), 3.36 ppm (t, J = 4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 164.9, 141.6, 131.5, 131.1, 129.5, 66.7, 66.6, 46.3, 41.7 ppm; mp 116.0–116.5 °C.

1-Morpholino-2-(*p***-tolyl)ethane-1,2-dione (3bb).¹³** Following general procedure A, **3bb** was isolated as a yellow oil (93 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8 Hz, 2 H), 7.30 (d, J = 8 Hz, 2 H), 3.79–3.74 (m, 4 H), 3.63 (t, J = 8 Hz, 2 H), 3.35 (t, J = 8 Hz, 2 H), 2.42 ppm (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 165.7, 146.3, 130.7, 129.8, 129.8, 66.8, 66.7, 46.3, 41.6, 21.9 ppm.

1-Morpholino-2-(*o***-tolyl)ethane-1,2-dione (3cb).¹³** *Following general procedure A*, **3cb** was isolated as a yellow solid (108 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8 Hz, 1 H), 7.47 (td, J = 8, 1.2 Hz, 1 H), 7.33–7.28(m, 2 H), 3.78–3.74(m, 4 H), 3.65(t, J = 8 Hz, 2 H), 3.37(t, J = 8 Hz, 2 H), 2.64 ppm (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 193.1, 166.2, 141.6, 133.9, 132.7, 132.7, 131.5, 126.2, 66.7, 66.6, 46.3, 41.6, 21.8 ppm; mp 80.5–81.2 °C.

1-Morpholino-2-(*m***-tolyl)ethane-1,2-dione (3db).¹⁴** Following general procedure A, **3db** was isolated as a yellow oil (115 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1 H), 7.71 (d, J = 8 Hz, 1 H), 7.44 (d, J = 8 Hz, 1 H), 7.40–7.36 (m, 1 H) 3.79–3.75 (m, 4 H), 3.63 (t, J = 4 Hz, 2 H), 3.35 (t, J = 4 Hz, 2 H), 2.40 ppm (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 191.4, 165.6, 139.1, 135.8, 133.0, 129.9, 129.0, 127.0, 66.7, 66.6, 46.2, 41.6, 21.2 ppm.

1-(3,5-Dimethylphenyl)-2-morpholinoethane-1,2-dione (3eb). Following general procedure A, **3eb** was isolated as a white solid (104 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 2 H), 7.26 (s, 1 H), 3.79–3.74 (m, 4 H), 3.63 (t, J = 4.8 Hz, 2 H), 3.34 (t, J = 4.8 Hz, 2 H), 2.35 ppm (d, J = 0.5 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 191.6, 165.7, 138.9, 136.8, 133.1, 127.3, 66.7, 66.7, 46.2, 41.6, 21.1 ppm. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₄H₁₇NO₃Na 270.1100; found 270.1113; IR v_{max} (KBr)/ cm⁻¹ 3458,

2965, 2921,2893, 2850, 1755, 1675, 1653, 1592, 1444, 1289, 1179,1115, 843, 803,761, 746, 665; mp 93.0–93.7 °C.

1-Morpholino-2-phenylethane-1,2-dione (3fb).¹³ *Following general procedure A*, **3fb** was isolated as a brown oil (103 mg, 94%). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8 Hz, 2 H), 7.64 (tt, J = 4, 1.2 Hz, 1 H), 7.52–7.48 (m, 2 H), 3.79–3.76 (m, 4 H), 3.63 (t, J = 4.8 Hz, 2 H), 3.36 ppm (t, J = 4.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 165.4, 134.9, 133.0, 129.7, 129.1, 66.7, 66.7, 46.3, 41.6 ppm.

1-(4-Fluorophenyl)-2-morpholinoethane-1,2-dione (3gb).¹⁵ *Following general procedure A*, **3gb** was isolated as a gray solid (101 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 8, 4 Hz, 2 H), 7.17 (dd, J = 8, 4 Hz, 2 H), 3.79–3.73 (m, 4 H), 3.64 (t, J = 4 Hz, 2 H), 3.36 ppm (t, J = 4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 189.3, 165.1, 166.8 (d, J = 256 Hz), 132.5 (d, J = 10 Hz), 129.6 (d, J = 2.8 Hz),116.4 (d, J = 22 Hz), 66.7, 66.6, 46.3, 41.7 ppm; mp 86.1–86.3 °C.

1-(3-Fluorophenyl)-2-morpholinoethane-1,2-dione (3hb). Following general procedure A, **3hb** was isolated as a yellow liquid (114 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dt, J = 8, 0.3 Hz, 1 H), 7.65–7.62 (m, 1 H), 7.48 (td, J = 7.6, 5.6 Hz, 1 H), 7.32 (tdd, J = 16.4, 2.4, 0.8 Hz, 1 H), 3.77–3.75 (m, 4 H), 3.64(t, J = 4 Hz, 2 H), 3.35 ppm (t, J = 8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 189.6, 164.7, 162.9 (d, J = 248 Hz), 135.1 (d, J = 6 Hz), 130.8 (d, J = 7 Hz), 125.7 (d, J = 3 Hz), 122.0 (d, J = 21 Hz), 115.9 (d, J = 23 Hz), 66.7, 66.6, 46.2, 41.7 ppm. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₂H₁₂FNO₃Na 260.0693; found 260.0692; IR v_{max} (KBr)/ cm⁻¹ 3092, 2972, 2920, 2859, 1682, 1647, 1606, 1584, 1482, 1369, 1167, 1150, 1066, 797, 772, 762.

1-Morpholino-2-(4-(trifluoromethyl)phenyl)ethane-1,2-dione (3ib).¹⁴ Following general procedure A, 3ib was isolated as a violet solid (109 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8 Hz, 2H), 7.75 (d, J = 8 Hz, 2 H), 3.79–3.75 (m, 4 H), 3.64 (t, J = 4 Hz, 2 H), 3.37(t, J = 4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 189.6, 164.5,

135.9(q, *J* = 31 Hz), 130.0, 126.1(q, *J* = 4 Hz), 123.3(q, *J* = 271 Hz), 66.7, 66.6, 46.3, 41.8 ppm; mp 127.3–127.5 °C.

1-(3-Fluoro-4-methylphenyl)-2-morpholinoethane-1,2-dione (3jb). Following general procedure A, 3jb was isolated as a white solid (112 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 2 H), 7.31 (t, J = 8 Hz, 1 H), 3.78–3.73 (m, 4 H), 3.62 (t, J = 4 Hz, 2 H), 3.34 (t, J = 4 Hz, 2 H), 2.33 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 165.0, 161.3 (d, J = 247 Hz), 133.3 (d, J = 18 Hz), 132.8 (d, J = 7 Hz), 132.1 (d, J = 5 Hz), 125.5 (d, J = 3 Hz), 115.5 (d, J = 25 Hz), 66.7, 66.6, 46.2, 41.6, 15.1 (d, J = 4 Hz); mp 84.0–84.5 °C; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₁₅FNO₃ 252.1030; found 252.1043; IR v_{max} (KBr)/ cm⁻¹ 3076, 2966, 2927, 2854, 2854, 1755, 1677, 1656, 1645, 1614, 1164, 1114, 1066, 1577, 1502, 880, 812, 764.

1-(4-Methoxyphenyl)-2-morpholinoethane-1,2-dione (3kb).¹³ *Following general procedure A*, 3kb was isolated as a white solid (101 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.0 Hz, 2 H), 6.96 (d, J = 8 Hz, 2 H), 3.86 (s, 3 H), 3.78–3.73 (m, 4 H), 3.62 (t, J = 4 Hz, 2 H), 3.35 ppm (t, J = 4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 189.8, 165.8, 165.0, 132.1, 126.1, 114.4, 66.9, 66.7, 55.6, 46.3, 41.5 ppm; mp 113.1–113.3 °C.

4-(2-Morpholino-2-oxoacetyl)benzonitrile (3lb).¹⁶ *Following general procedure A*, **3lb** was isolated as a white solid (109 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 8.04(d, *J* = 8 Hz, 2 H), 7.79 (d, *J* = 8 Hz, 2 H), 3.79–3.74 (m, 4 H), 3.64 (t, *J* = 4.8 Hz, 2 H), 3.37 ppm (t, *J* = 4.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 164.1, 136.0, 132.7, 130.0, 117.8, 117.5, 66.7, 66.5, 46.3, 41.8 ppm; mp 118.3–118.5 °C.

Methyl 4-(2-morpholino-2-oxoacetyl)benzoate (3mb). Following general procedure A, 3mb was isolated as a gray solid (111 mg, 80%). Known compound (CAS:1616527-07-1). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.7 Hz, 2 H), 7.99 (d, J = 8.7 Hz, 2 H), 3.93 (s, 3 H), 3.79–3.75 (m, 4 H), 3.63 (t, J = 4 Hz, 2 H), 3.36 ppm (t, J =

4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 190.2, 165.8, 164.7, 136.1, 135.3, 130.1, 129.6, 66.7, 66.6, 52.6, 46.2, 41.7 ppm ; mp 140.2–140.6 °C.

1-Morpholino-2-(naphthalen-1-yl)ethane-1,2-dione (3nb).¹⁷ Following general procedure A, 3nb was isolated as a white solid (121 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 9.22 (d, J = 8.8 Hz, 1 H), 8.11 (d, J = 8 Hz, 1 H), 8.01 (dd, J = 8, 1.2 Hz, 1 H), 7.91 (d, J = 8 Hz, 1 H), 7.71–7.67 (m, 1 H), 7.61–7.52 (m, 2 H), 3.81 (m, 4 H), 3.65 (t, J = 4 Hz, 2 H), 3.42 ppm (t, J = 4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 166.0, 136.1, 134.5, 134.0, 130.9, 129.4, 128.8, 128.4, 127.1, 125.7, 124.5, 66.6, 46.4, 41.7 ppm; mp 123.8–124.1 °C.

1-Morpholino-2-(thiophen-3-yl)ethane-1,2-dione (3ob). Following general procedure A, **3ob** was isolated as a yellow liquid (97 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, J = 4, 1.2 Hz, 1 H), 7.55 (dd, J = 4, 1.2Hz, 1 H), 7.34 (dd, J = 5.2, 3.2 Hz, 1 H), 3.75–3.69 (m, 4 H), 3.63 (t, J = 4 Hz, 2 H), 3.40 ppm (t, J = 4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 184.3, 165.1, 138.4, 136.7, 127.2, 126.9, 66.7, 66.6, 46.3, 41.7 ppm; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₀H₁₁NO₃SNa 248.0351; found 248.0354; IR v_{max} (KBr)/ cm⁻¹ 3103, 2974, 2923, 2853, 1643, 1508, 1467, 1444, 1414, 1182, 1117, 1071, 794, 754.

1-Morpholino-2-(thiophen-2-yl)ethane-1,2-dione (3pb).¹⁵ Following general procedure A, 3pb was isolated as a yellow liquid (74 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 4, 1.2 Hz, 1 H), 7.78 (dd, J = 8, 1.2 Hz, 1 H), 7.16 (dd, J = 5.2, 4 Hz, 1 H), 3.76–3.71 (m, 4 H), 3.64 (t, J = 4 Hz, 2 H), 3.46 ppm (t, J = 4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 182.7, 164.3, 140.2, 136.7, 136.2, 128.7, 66.8, 66.6, 46.4, 41.9 ppm.

1-(3,5-Dimethylisoxazol-4-yl)-2-morpholinoethane-1,2-dione (3qb): *Following general procedure A*, **3qb** was isolated as a white solid (114 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 3.74 (t, *J* = 4 Hz, 2 H), 3.70–3.64 (m, 4 H), 3.38 (t, *J* = 8 Hz, 2 H), 2.58 (s, 3 H), 2.38 ppm (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 184.7, 176.6, 164.9, 159.3, 113.5,

The Journal of Organic Chemistry

66.6, 66.4, 46.2, 41.6, 13.3, 11.4 ppm; mp 88.6–88.8 °C; HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₁H₁₄N₂O₄Na 261.0845; found 261.0852; IR v_{max} (KBr)/ cm⁻¹ 2989, 2921, 2856, 1668, 1646, 1581, 1478, 1428, 1421, 1378, 1363, 1275, 1115, 1069, 974, 730.

1-Morpholino-2-(4-(morpholinomethyl)phenyl)ethane-1,2-dione (3rb): *Following general procedure A*, **3rb** was isolated as a white solid (134 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8 Hz, 2 H), 7.48 (d, J = 8 Hz, 2 H), 3.78–3.73 (m, 4 H), 3.68 (t, J = 4 Hz, 4 H), 3.63 (t, J = 4.8 Hz, 2 H), 3.55 (s, 2 H), 3.35 (t, J = 4.8 Hz, 2 H), 2.47–2.38 ppm (m, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 190.7, 165.4, 132.1, 129.8, 129.6, 66.8, 66.7, 66.6, 62.8, 53.6, 46.2, 41.6 ppm; mp 127.2–127.9 °C; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₇H₂₂N₂O₄Na 341.1471; found 341.1479; IR v_{max} (KBr)/ cm⁻¹ 3040, 2965, 2922, 2902, 2847, 1672, 1635, 1602, 1570, 1442, 1312, 1268, 1072, 823, 739.

1-([1,1'-Biphenyl]-4-yl)-2-morpholinoethane-1,2-dione (3sb): Following general procedure *B*, **3sb** was isolated as a yellow solid (97 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.8 Hz, 2 H), 7.71 (d, *J* = 8.4 Hz, 2 H), 7.60 (dd, *J* = 8, 4 Hz, 2 H), 7.47–7.42 (m, 2 H), 7.39 (tt, *J* = 8, 4 Hz, 1 H), 3.77 (s, 4 H), 3.63 (t, *J* = 4.4 Hz, 2 H), 3.38 ppm (t, *J* = 4.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 190.6, 165.4, 147.5, 139.3, 131.6, 130.1, 128.9, 128.6, 127.6, 127.2, 66.6, 66.5, 46.2, 41.5 pm; mp 138.7–139.5 °C; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₈H₁₇NO₃Na 318.1100; found 318.1112; IR v_{max} (KBr)/ cm⁻¹ 3059, 3024, 2995, 2981, 2916, 2851, 1676, 1637, 1599, 1557, 1442, 1175, 1311, 834, 745.

4-(2-Morpholino-2-oxoacetyl)benzoic acid (3tb): *Following general procedure B*, **3tb** was isolated as a white solid (106 mg, 81%). ¹H NMR (400 MHz, DMSO) δ 8.14 (d, J = 8 Hz, 2 H), 8.02 (d, J = 8 Hz, 2 H), 3.72 (t, J = 4 Hz, 2 H), 3.65 (t, J = 4 Hz, 2 H), 3.54 (t, J = 4 Hz, 2 H), 3.31 ppm (t, J = 4 Hz, 2 H); ¹³C NMR (100 MHz, DMSO- d_6) δ 191.4, 164.9,137.1, 135.8, 130.5, 129.9, 66.5, 66.2, 46.1, 41.5 ppm; mp 203.8–204.7 °C; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₃H₁₃NO₅Na 286.0685; found 286.0686; IR v_{max}

ACS Paragon Plus Environment

(KBr)/ cm⁻¹ 3429, 3055, 2983, 2915, 2865, 1702, 1676, 1630, 1570, 1505, 1465, 1317, 1114, 1288, 816, 735.

1-(4-Aminophenyl)-2-morpholinoethane-1,2-dione (3ub): Following general procedure *B*, 3ub was isolated as a yellow solid (60 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8 Hz, 2 H), 6.63 (d, *J* = 8 Hz, 2 H), 3.77–3.71 (m, 4 H), 3.61 (t, *J* = 4.8 Hz, 2 H), 3.35 ppm (t, *J* = 4.8 Hz, 2 H); ¹³C NMR (100MHz, CDCl₃) δ 189.3,166.4, 152.9, 132.4, 123.2, 114.0, 66.8, 66.7, 46.3, 41.5 ppm; mp 172.9–173.2 °C; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₂H₁₄N₂O₃Na 257.0896; found 257.0899; IR v_{max} (KBr)/ cm⁻¹ 3434, 3344, 3042, 2976, 2915, 2846, 1644, 1613, 1583, 1445, 1311, 1266, 1066, 845, 742.

2-(4-Chlorophenyl)-*N*,*N*-diethyl-2-oxoacetamide (3ac).^{6d} Following general procedure *A*, 3ac was isolated as a white liquid (103 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8 Hz, 2 H), 7.44(d, *J* = 8 Hz, 2 H), 3.53 (q, *J* = 8 Hz, 2 H), 3.21 (q, *J* = 8 Hz, 2 H), 1.25 (d, *J* = 8 Hz, 3 H), 1.13 (t, *J* = 8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 190.1, 166.2, 141.1,131.7, 130.9, 129.3, 42.1, 38.9, 14.1, 12.8 ppm.

Tert-butyl((1-(2-(4-chlorophenyl)-2-oxoacetyl)piperidin-4-yl)methyl)carbamate

(3ad). Following general procedure A, 3ad was isolated as a white solid (164 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8 Hz, 2 H), 7.45 (d, J = 8 Hz, 2 H), 4.65–4.61 (m, 2 H), 3.57–3.48(m, 1 H), 3.03–2.76 (m, 4 H), 1.85–1.60 (m, 2 H), 1.40 (s, 9 H), 1.24–1.11 ppm (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 190.3, 164.9, 156.0, 141.3, 131.5, 130.9, 129.4, 45.9, 41.2, 36.8, 30.0, 29.2, 28.3 ppm; mp 108.4–108.6 °C; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₉H₂₅ClN₂O₄Na 403.1395; found 403.139863; IR v_{max} (KBr)/ cm⁻¹ 3365, 2987, 2947, 2925, 2865, 1765, 1685, 1646, 1588, 1525, 1458, 1363, 1316, 1268, 1244, 1207, 1115, 1093, 1072, 841, 726.

1-(4-Chlorophenyl)-2-(pyrrolidin-1-yl)ethane-1,2-dione (3ae).¹⁴ Following general procedure C, 3ae was isolated as a brown liquid (96 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8 Hz, 2 H), 7.42 (d, J = 8 Hz, 2 H), 3.59 (t, J = 8 Hz, 2 H), 3.38 (t, J

The Journal of Organic Chemistry

= 8 Hz, 2 H), 1.93–1.88 ppm (m, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 190.0, 164.2, 141.1, 131.3, 131.2, 129.2, 46.7, 45.3, 25.8, 23.9 ppm;

2-(4-Chlorophenyl)-*N*-(**2**,**3**-dihydro-1H-inden-1-yl)-2-oxoacetamide (3af). *Following general procedure A*, **3af** was isolated as a yellow solid (76 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 8 Hz, 2 H), 7.44 (d, *J* = 8 Hz, 2 H), 7.35 (d, *J* = 8 Hz, 1 H), 7.29 (d, *J* = 4 Hz, 1 H), 7.27–7.26 (m, 2 H), 7.23–7.20 (m, 1 H), 5.52 (dd, *J* =15.7, 7.7, 1 H), 3.04 (ddd, *J* = 16, 12, 4 Hz, 1 H), 2.92 (dt, *J* = 16, 8 Hz, 1 H), 2.68–2.58 (m, 1 H), 1.97–1.87 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 186.1, 161.0, 143.4, 142.0, 141.2, 132.7, 131.7, 128.8, 128.3, 126.9, 124.9, 124.1, 54.7, 33.6, 30.3 ppm; mp 81.6–82.0 °C; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₇H₁₄ClNO₂Na 322.0605; found 322.0603; IR v_{max} (KBr)/ cm⁻¹ 3275, 3035, 2967, 2856, 1687, 1639, 1587, 1531, 1478, 1450, 1010, 817, 761, 751.

2-(4-Chlorophenyl)-*N***-cyclopropyl-2-oxoacetamide** (3ag). *Following general procedure A*, 3ag was isolated as a yellow solid (73 mg, 65%). Known compound (CAS: 1267006-97-2). ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 9.2 Hz, 2 H), 7.42 (d, *J* = 8.4 Hz, 2 H), 7.15 (d, *J* = 2.4 Hz, 1 H), 2.87–2.79 (m, 1 H), 0.87 (dt, *J* = 12, 4 Hz, 2 H), 0.63 ppm (dt, *J* = 8,4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 186.1, 162.6, 141.2, 132.7, 131.6, 128.9, 22.6, 6.5 ppm; mp 79.6–80.0 °C.

2-(4-Chlorophenyl)-2-oxo-*N***-(pyridin-3-ylmethyl)acetamide** (3ah). *Following general procedure A*, 3ah was isolated as a yellow solid (111 mg, 81%). Known compound (CAS: 1267254-48-7). ¹H NMR (400 MHz, CDCl3) δ 8.60 (s, 1 H), 8.55 (dd, J = 4.8, 1.6 Hz, 1 H), 8.33 (d, J = 8.8 Hz, 2 H), 7.69 (d, J = 8 HZ, 1 H), 7.60 (s, 1 H), 7.44 (d, J = 8 Hz, 2 H), 7.30 (dd, J = 8, 4.8 Hz 1 H), 4.57 (d, J = 4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl3) δ 185.6, 161.3, 148.1, 147.9,141.1, 137.0, 132.7, 131.1, 129.0, 124.3, 123.9, 40.9 ppm; mp 105.3–105.6 °C.

N-((1S,3S)-adamantan-1-yl)-2-(4-chlorophenyl)-2-oxoacetamide (3ai). *Following* general procedure A, 3ai was isolated as a white solid (88 mg, 56%). ¹H NMR (400 MHz,

CDCl₃) δ 8.28 (d, J = 8 Hz, 2 H), 7.41 (d, J = 8 Hz, 2 H), 6.80 (s, 1 H), 2.11 (m, 3H), 2.07 (d, J = 2.8 Hz, 6 H), 1.70 ppm (t, J = 4 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 187.2, 160.4, 140.9, 132.8, 131.8, 128.7, 52.5, 41.1, 36.2, 29.3 ppm; mp 114.9–117.6 °C; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₉ClNO₂ 316.1098; found 316.1123; IR v_{max} (KBr)/ cm⁻¹ 3370, 2960, 2928, 2906, 2849, 1665, 1586, 1517, 1445, 1360, 1345, 1314, 1091, 1022, 1016, 845, 800.

N-(*tert*-butyl)-2-(4-chlorophenyl)-2-oxoacetamide (3aj).¹⁸ Following general procedure A, 3aj was isolated as a yellow solid (96 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8 Hz, 2 H), 7.42 (d, J = 8 Hz, 2 H), 6.94 (s, 1 H), 1.43 ppm (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 187.1, 160.9, 140.9, 132.7, 131.7, 128.7, 51.7, 28.3 ppm; mp 49–51 °C

2-(4-Chlorophenyl)-*N*-(**2-methylallyl)**-**2-oxoacetamide** (**3ak**). *Following general procedure A*, **3ak** was isolated as a yellow solid (89 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8 Hz, 2 H), 7.42 (d, *J* = 8 Hz, 2 H), 7.24 (s, 1 H), 4.884 (d, *J* = 1.2 Hz, 1 H), 4.878 (d, *J* = 1.2 Hz, 1 H), 3.90 (d, *J* = 6.4 Hz, 2 H), 1.76 ppm (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 186.2, 161.2, 141.2, 140.7, 132.7, 131.6, 128.9, 111.8, 44.9, 20.3 ppm; mp 33.6–34.2 °C; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₂H₁₂ClNO₂Na 260.0448; found 260.0445; IR v_{max} (KBr)/ cm⁻¹ 3379, 3080, 2980, 2914, 2844, 1669, 1589, 1525, 1484, 1456, 1090, 895.

2-(4-Chlorophenyl)-N-dodecyl-2-oxoacetamide (3al). Following general procedure *B*, **3al** was isolated as a white solid (129 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 8.8 Hz, 2 H), 7.42 (d, J = 8.8 Hz, 2 H), 7.11 (s, 1 H), 3.35 (q, J = 4 Hz, 2 H), 1.61–1.54 (m, 2 H), 1.35–1.23 (m, 20 H), 0.85 ppm (t, J = 8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 186.4, 161.3, 141.1, 132.7, 131.7, 128.8, 39.5, 31.9, 29.6, 29.5, 29.3, 29.2, 29.2, 26.9, 22.7, 14.1 ppm; mp 57.0–57.5 °C; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₂₀H₃₀ClNO₂Na 374.1857; found 374.1849; IR v_{max} (KBr)/ cm⁻¹ 3346, 2962, 2916, 2845, 1672, 1651, 1589, 1524, 1477, 1469, 1389, 1098, 723.

Page 21 of 28

N-cyclohexyl-2-(3,5-dimethylphenyl)-2-oxoacetamide (3ea). Following general procedure A, 3ea was isolated as a white solid (117 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 2 H), 7.22 (s, 1 H), 6.90 (s, 1 H), 3.88–3.77 (m, 1H), 2.34 (s, 6 H), 1.98–1.72 (m, 4 H), 1.65–1.29 (m, 4 H), 1.27–1.21 ppm (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 188.5, 161.1, 138.1, 136.1, 133.4, 128.8, 48.5, 32.7, 25.4, 24.7, 21.2 ppm; mp 87.5–88.0 °C; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₆H₂₁NO₂Na 282.1464; found 282.1465; IR v_{max} (KBr)/ cm⁻¹ 3425, 3285, 3061. 2936, 2912, 2851, 1678, 1643, 1592, 1532, 1446, 1383, 808,687.

N-cyclohexyl-2-oxo-2-phenylacetamide (3fa).¹⁹ *Following general procedure A*, 3fa was isolated as a white solid (96 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (dd, *J* = 8, 1.6 Hz, 2 H), 7.58 (tt, *J* = 8, 1.2 Hz, 1 H), 7.47–7.42 (m, 2 H), 6.96 (d, *J* = 8 Hz, 1 H), 3.87–3.78 (m, 1 H), 1.98–1.71 (m, 4 H), 1.65–1.29 (m, 4 H), 1.26–1.20 ppm (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 160.9, 134.2, 133.4, 131.2, 128.4, 48.4, 32.7, 25.4, 24.7 ppm; mp 112.7–112.9 °C.

N-cyclohexyl-2-oxo-2-(o-tolyl)acetamide (3ca). *Following general procedure A*, 3ca was isolated as a yellow solid (102 mg, 80%). Known compound (CAS: 1029542-43-5). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8 Hz, 1 H), 7.43–7.38 (m, 1 H), 7.28–7.24 (m, 1 H), 7.23 (d, *J* = 4 Hz, 1 H), 6.91 (d, *J* = 4 Hz, 1 H), 3.87–3.77 (m, 1 H), 2.46 (s, 3 H), 1.99–1.71 (m, 4 H), 1.65–1.29 (m, 4 H), 1.27–1.21 ppm (m, 2 H) ; ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 161.1, 140.0, 132.9, 132.6, 131.9, 131.6, 125.3, 48.5, 32.7, 25.4, 24.7, 20.8 ppm; mp 100.1–100.4 °C.

N-cyclohexyl-2-oxo-2-(*m*-tolyl)acetamide (3da). *Following general procedure A*, 3da was isolated as a white solid (99 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 4 Hz, 1 H), 8.09 (s, 1 H), 7.40 (d, *J* = 8 Hz, 1 H), 7.35–7.31 (m, 1 H), 6.93 (d, *J* = 4 Hz, 1 H), 3.87–3.78 (m, 1 H), 2.38 (s, 3 H), 1.98–1.71 (m, 4 H), 1.66–1.29 (m, 4 H), 1.27–1.20 ppm (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 188.3, 161.0, 138.2, 135.1, 133.4, 131.5, 128.4, 128.3, 48.4, 32.7, 25.4, 24.7, 21.3 ppm; mp 107.2–107.6 °C; HRMS (ESI) *m/z*:

 $[M+Na]^+$ calcd for C₁₅H₁₉NO₂Na 268.1308, found 268.1307; IR v_{max} (KBr)/ cm⁻¹ 3420, 3288, 3058, 3055, 2933, 2849, 1652, 1584, 1540, 1446, 1378, 783, 694.

N-cyclohexyl-2-oxo-2-(*p*-tolyl)acetamide (3ba). *Following general procedure A*, 3ba was isolated as a yellow solid (97 mg, 79%). Known compound (CAS: 1266998-34-8). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8 Hz, 2 H), 7.24 (d, *J* = 8 Hz, 2 H), 6.95 (d, *J* = 8 Hz, 1 H), 3.84–3.78 (m, 1 H), 2.39 (s, 3 H), 1.97–1.71 (m, 4 H), 1.65–1.28 (m, 4 H), 1.26–1.19 ppm (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 187.6, 161.1, 145.4, 131.3, 130.9, 129.2, 48.4, 32.7, 25.4, 24.7, 21.8 ppm; mp 105.9–106.5 °C.

N,*N*-diethyl-2-oxo-2-(m-tolyl)acetamide (3dc). *Following general procedure A*, 3dc was isolated as a yellow liquid (87 mg, 79%). Known compound (CAS: 99821-90-6); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1 H), 7.74 (d, *J* = 8 Hz, 1 H), 7.46 (d, *J* = 8 Hz, 1 H), 7.40 (m, 1 H), 3.60–3.55 (m, 2 H), 3.28–3.22 (m, 2 H), 2.43 (s, 3 H), 1.30 (t, *J* = 8 Hz, 3 H), 1.16 ppm (t, *J* = 8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 166.8, 138.8, 135.4, 133.2, 129.8, 128.8, 126.9, 42.1, 38.7, 21.3, 14.0, 12.8 ppm.

2-(3,5-dimethylphenyl)-*N*,*N*-diethyl-2-oxoacetamide (3ec). Following general procedure A, 3ec was isolated as a yellow liquid (84 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 2 H), 7.28 (s, 1 H), 3.58 (m, 2 H), 3.25 (m, 2 H), 2.39 (s, 6 H), 1.30 (t, *J* = 7.2 Hz, 4 H), 1.17 ppm (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 167.0, 138.7, 136.3, 133.3, 127.3, 42.1, 38.7, 21.2, 14.1, 12.8 ppm; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₄H₁₉NO₂Na 256.1308, found 256.1311; IR v_{max} (KBr)/ cm⁻¹ 2973, 2935, 2869, 1678, 1640, 1603, 1440, 1382, 1306, 808, 680.

1-(4-Chlorophenyl)-2-(piperazin-1-yl)ethane-1,2-dione (3am). Following general procedure A, 3am was isolated as a yellow liquid (95 mg, 75%). Known compound (CAS: 1225832-82-5). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8 Hz, 2 H), 7.44 (d, J = 8 Hz, 2 H), 3.70 (t, J = 5.2 Hz, 2 H), 3.30 (t, J = 5.2 Hz, 2 H), 2.93 (t, J = 5.2 Hz, 2 H), 2.80 (t, J = 5.2 Hz, 2 H), 2.62 ppm (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 189.9, 164.9, 141.4, 131.4, 130.9, 129.4, 46.5, 45.9, 45.4, 41.9 ppm.

(S)-2-(4-chlorophenyl)-N-(2,3-dihydro-1H-inden-1-yl)-2-oxoacetamide (3an). *Following general procedure A*, **3an** was isolated as a brown solid (86 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 9.6 Hz, 2 H), 7.45 (d, J = 9.6 Hz, 2 H), 7.30 (d, J = 0.8 Hz, 1 H), 7.29 (s, 1 H), 7.27–7.26 (m, 2 H), 7.23–7.20 (m, 1 H), 5.52 (dd, J = 16, 8Hz, 1 H), 3.04 (ddd, J = 16, 8, 4 Hz, 1 H), 2.92 (dt, J = 16, 8 Hz, 1 H), 2.69–2.61 (m, 1 H), 1.96–1.89 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 186.1, 161.0, 143.4, 142.0, 141.2, 132.8, 131.8, 128.9, 128.4, 126.9, 125.0, 124.1, 54.8, 33.6, 30.3 ppm; mp 104.6–105.2 °C; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₇H₁₄CINO₂Na 322.0605; found 322.0610; IR v_{max} (KBr)/ cm⁻¹ 3458, 3262, 3065, 2971, 2911, 2844, 1687, 1641, 1585, 1546, 1480, 1454, 1014, 817, 762, 750; chiral HPLC conditions: Chiralcel OD-H, (n-hexane/isopropanol, 80:20), flow rate = 1.0 mL/min, Rt = 5.7, and 8.6 min, respectively. Enantiomeric excess was determined to be >99% ee using the HPLC conditions.

(R)-2-(4-chlorophenyl)-N-(2-hydroxypropyl)-2-oxoacetamide (3ao). Following general procedure C, 3ao was isolated as a gray solid (98 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.8 Hz, 2 H), 7.56 (s, 1 H), 7.40 (d, J = 8.8 Hz, 2 H), 4.01–3.97 (m, 1 H), 3.52 (dd, J=12, 8 Hz, 1 H), 3.23 (dd, J = 12, 8 Hz, 1 H), 2.50 (s, 1 H), 1.22 ppm (d, J = 8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 186.3, 162.1, 141.2, 132.6, 131.5, 128.9, 66.9, 46.6, 20.9 ppm; mp 87.0–87.5 °C; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₁H₁₂CINO₃Na 264.0397; found 264.0399; IR v_{max} (KBr)/ cm⁻¹ 3401, 3246, 3100, 2966, 2933, 2875, 1682, 1653, 1636, 1584, 1447, 1376, 813, 737; chiral HPLC conditions: Chiralcel OD-H, (*n*-hexane/isopropanol, 80:20), flow rate = 1.0 mL/min, R_t = 23.0, and 24.1 min, respectively. Enantiomeric excess was determined to be >99% ee using the HPLC conditions.

1-(4-Benzoylpiperazin-1-yl)-2-(1-methyl-1H-indol-3-yl)ethane-1,2-dione (3vp).²⁰ Following general procedure B, 3vp was isolated as a white solid (122 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1 H), 7.87 (s, 1 H), 7.36 (d, J = 22.4 Hz, 8 H), 3.87–3.44 ppm (m, 11 H); ¹³C NMR (100 MHz, CDCl₃) δ 184.3, 170.6, 166.1, 139.6, 137.6, 134.9, 130.1, 128.6, 127.0, 126.0, 124.1, 123.4, 122.2, 113.2, 110.0, 45.9, 41.6, 33.8 ppm; mp 237.6–238.3 °C.

(2S,3S,5S,6R)-2-(acetoxymethyl)-6-(4-(2-morpholino-2-oxoacetyl)phenoxy)tetrahy dro-2H-pyran-3,4,5-triyl triacetate (3wb). Following general procedure A, 3wb was isolated as a white oil (192 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.8 Hz, 2 H), 7.03 (d, J = 8.8 Hz, 2 H), 5.27 (t, J = 6.4 Hz, 2 H), 5.19 (d, J = 7.6 Hz, 1 H), 5.14 (t, J = 9.6 Hz, 1 H), 4.24 (dd, J=12.4, 5.2 Hz, 1 H), 4.13 (dd, J=12.4, 2 Hz, 1 H), 3.89 (ddd, J=10, 5.2, 2.4 Hz, 1 H), 3.76–3.69 (m, 4H), 3.61 (t, J =4 Hz, 2 H), 3.33 (t, J =4 Hz, 2 H), 2.02 (s, 3 H), 2.01 (s, 6 H), 2.00 ppm (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 189.6, 170.4, 170.1, 169.3, 169.2, 165.3, 161.5, 132.0, 128.1, 116.7, 97.8, 72.3, 72.2, 70.8, 67.9, 66.7, 66.6, 61.7, 46.2, 41.5, 20.6, 20.5 ppm; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₆H₃₁NO₁₃Na 588.1687; found 588.1668; IR v_{max} (KBr)/cm⁻¹ 2967, 2931, 2859, 1726, 1641, 1596, 1575, 1506, 1447, 1436, 1373, 1227, 1113, 1067, 1033, 847, 700.

Hg(0) Poisoning Test. As *general procedure A*, a reaction of 1-chloro-4-iodobenzene **1a** (0.5 mmol, 122.9 mg), cyclohexylamine **2a** (0.75 mmol, 58 μ L), Pd(OAc)₂ (0.01 mmol, 2.3 mg), sodium carbonate (1.0 mmol, 106.5 mg), and PEG-400 (2.0 mL), with the addition of Elemental mercury (1.0 mmol, 100equiv., 201 mg) (relative to palladium) was conducted. Following the reaction for 6 h at room temperature, the desired product **3aa** was formed in a trace amount, suggesting that the reaction is completely inhibited by the introduction of Hg(0).

Acknowledgements

The work was sponsored by the Natural Science Foundation of China (21302099), the Natural Science Foundation of Jiangsu Province (BK2012449), the SRF for ROCS, SEM, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Supporting Information.

¹H NMR and ¹³C NMR spectra for products. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Clercq, E. D. *Nat. Rev. Drug Discovery*, 2007, *6*, 1001. (b) Njoroge, F.; Chen, K. X.; Shih, N.-Y.; Piwinski, J. J. *Acc. Chem. Res.* 2008, *41*, 50. (c) Knust, H.; Nettekoven, M.; Pinard, E.; Roche, O.; Rogers Evans, M. *PCT Int. Appl.* WO 2009016087, 2009. (d) Avolio, S.; Robertson, K.; Hernando, J. I. M.; DiMuzio, J.; Summa, V. *Bioorg. Med. Chem. Lett.* 2009, *19*, 2295. (e) Álvarez, S.; Álvarez, R.; Khanwalkar, H.; Germain, P.; Lemaire, G.; Rodrgez-Barrios, F.; Gronemeyer, H.; de Lera, A. R. *Bioorg. Med. Chem.* 2009, *17*, 4345. (f) Blackburn, E. A.; Walkinshaw, M. D. *Curr. Opin. Pharmacol.* 2011, *11*, 365.

(2) (a) Lin, Y.; Alper, H. Angew. Chem. Int. Ed. 2001, 40, 779. (b) Yamatsugu, D. K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 6946. (c) Jia, Y. X.; Katayev, D.; Künding, E. P. Chem. *Commun.* 2010, 46, 130. (d) Nielsen, D. U.; Neumann, K.; Taaning, R. H.; Lindhardt, A. T.; Modvig, A.;
Skrydstrup, T. J. Org. Chem. 2012, 77, 6155. (e) Goncalves-Contal, S.; Gremaud, L.; Alexakis, A. Angew. *Chem. Int. Ed.* 2013, 52, 12701. (f) Mamillapalli, N. C.; Sekar, G. Chem. Commun. 2014, 50, 7881. (g)
Kou, K. G. M.; Le, D. N.; Dong, V. M. J. Am. Chem. Soc. 2014, 136, 9471.□

(3) (a) Ozawa, F.; Soyama, H.; Yamamoto, T.; Yamamoto, A. *Tetrahedron Lett.* 1982, 23, 3383. (b)
Kobayashi, T.; Tanaka, M. J. Organomet. Chem. 1982, 233, C64.

(4) For latest reviews on palladium-catalyzed double carbonylation reactions of aryl halides, see: (a) Grigg, R.; Mutton, S. P. *Tetrahedron*, **2010**, *66*, 5515. (b) Gadge, S. T.; Bhanage, B. M. *RSC Adv.* **2014**, *4*, 10367.

(5) Ozawa, F.; Sugimoto, T.; Yuasa, Y.; Santra, M.; Yamamoto, T.; Yamamoto, A. Organometallics, 1984, 3, 683. (b) Murphy, E. R.; Martinelli, J. R.; Zaborenko, N.; Buchwald, S. L.; Jensen, K. F. Angew. Chem. Int. Ed. 2007, 46, 1734 (c) Liu, J.; Zheng, S.; Su, W.; Xia, C. Chin. J. Chem. 2009, 27, 623 (d) Genelot, M.; Villandier, N.; Bendjeriou, A.; Jaithong, P.; Djakovitch, L.; Dufaudz, V. Catal. Sci. Technol. 2012, 2, 1886 (e) Papp, M.; Skoda-Földes, R. J. J. Mol. Catal. A: Chem. 2013, 378, 193 (f) Molla, R. A.; Iqubal, M. A.; Ghosh, K.; Roy, A. S.; Islam, S. M. RSC Adv. 2014, 4, 48177. (g) Zheng, S.; Wang, Y.; Zhang, C.; Liu, J.; Xia, C. Appl. Organomet. Chem. 2014, 28, 48; (h) Wang, Y.; Yang, X. L.; Zhang, C. Y.; Yu, J. Q.; Liu, J. H.; Xia, C. G. Adv. Synth. Catal. 2014, 356, 2539.

(6) For examples of phosphine-Pd catalyst system for double carbonylation of aryl iodides at an atmospheric pressure of CO, see: (a) Satoh, T.; Kokubo, K.; Miura, M.; Nomura, M. Organometallics, 1994, 13, 4431. (b) Uozumi, Y.; Arii, T.; Watanabe, T. J. Org. Chem. 2001, 66, 5272. (c) Szarka, Z.; Skoda-Földes, R.; Kollr, L. Tetrahedron Lett. 2001, 42, 739. (d) Tsukada, N.; Y. Ohba,; Inoue, Y. J.

The Journal of Organic Chemistry

Organomet. Chem. 2003, 687, 436. (e) Szarka, Z.; Kuik, Á.; R.; Kollár, Skoda-Földes, L. J. Organomet.
Chem. 2004, 689, 2770. (f) Iizuka, M.; Kondo, Y. Chem. Commun., 2006, 1739. (g) Takács, E.; Varga, C.;
Skoda-Földes, R.; Kóllar, L. Tetrahedron Lett. 2007, 48, 2453. (h) Balogh, J.; Kuik, Á.; Ürge, L.; Darvas,
F.; Bakos, J.; Skoda-Földes, R. J. Mol. Catal. A. 2009, 302, 76.

(7) For examples of phosphine-free Pd catalyst system for double carbonylation of aryl iodides at an atmospheric pressure of CO, see: (a) Fuente, V. de la; Godard, C.; Zangrando, E.; Claver, C.; Castillón, S. *Chem. Commun.* 2012, *48*, 1695. (b) Fernández-Alvarez, V. M.; de la Fuente, V.; Godard, C.; Castillón, S.; Claver, C.; Maseras, F.; Carb, J. J. *Chem.-Eur. J.* 2014, *20*, 10982. (c) Saito, N.; Taniguchi, T.; Hoshiya, N.; Shuto, S.; Arisawa, M.; Sato, Y. *Green Chem.* 2015, *17*, 2358.

(8) Zhou, Q.; Wei, S. H.; Han, W. J. Org. Chem. 2014, 79, 1454.

(9) Han, W.; Jin, F. L.; Zhou, Q. Synthesis, 2015, 47, 1861.

(10) (a) Han, W.; Liu, C.; Jin, Z. L. Org. Lett. 2007, 9, 4005. (b) Han, W.; Liu, C.; Jin, Z. L. Adv. Synth. Catal. 2008, 350, 501.

(11) Carbonylation process can cause racemization, see: Grimm, J. B.; Wilson, K. J.; Witter, D. J. *Tetrahedron Lett.* **2007**, *48*, 4509.

(12) Wang, J.; Le, N.; Heredia, A.; Song, H.; Redfield, R.; Wang, L.-X. Org. Biomol.Chem. 2005, 3, 1781.

(13) Liu, J. M.; Zhang, R. Z.; Wang, S. F.; Sun, W.; Xia, C. G. Org. Lett. 2009, 11, 1321.

(14) Mupparapu, N.; Khan, S.; Battula, S.; Kushwaha, M.; Gupta, A. P.; Ahmed, Q. N.; Vishwakarma, R.

A. Org. Lett. 2014, 16, 1152.

(15) Konstantinova, L. S.; Bol'shakov, O. I.; Obruchnikova, N. V.; Golova, S. P.; Nelyubina, Y. V.;

Lyssenko, K. A.; Rakitin, O. A. Tetrahedron, 2010, 66, 4330.

(16) Murphy, E. R.; Martinelli, J. R.; Zaborenko, N.; Buchwald, S. L.; Jensen, K. F. Angew.Chem.Int.Ed.2007, 46, 1734.

(17) Shanmugapriya, D.; Shankar, R.; G. Satyanarayana,; Dahanukar, V. H.; Syam Kumar, U. K.; Vembu,

N. Synlett. 2008, 19, 2945.

(18) M. Bouma,; Masson, G.; Zhu, J. P. J. Org. Chem. 2010, 75, 2748.

(19) Faggi, C.; Neo, A. G.; Marcaccini, S.; Menchi, G.; Revuelta, J. Tetrahedron Letters. 2008, 49, 2099.

(20) Xing, Q.; Shi, L. J.; Lang, R.; Xia, C. G.; Li, F. W. Chem. Commun. 2012, 48, 11023.