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A B S T R A C T   

In this study, we reported the discovery of pyridazine based 1,2,3-triazole derivatives as inhibitors of α-gluco-
sidase. All target compounds exhibited significant inhibitory activities against yeast and rat α-glucosidase en-
zymes compared to positive control, acarbose. The most potent compound 6j, ethyl 3-(2-(1-(4-nitrobenzyl)-1H- 
1,2,3-triazol-4-yl)ethyl)-5,6-diphenylpyridazine-4-carboxylate exhibited IC50 values of 58, and 73 µM. Docking 
studies indicated the responsibility of hydrophobic and hydrogen bonding interactions in the ligand-enzyme 
complex stability. The in-vitro safety against the normal cell line was observed by toxicity evaluation of the 
selected compounds.   

1. Introduction 

A progressive metabolic disorder, Diabetes (diabetes mellitus), 
characterized by high glucose levels, affects millions of people’s life 
worldwide. Assorted into type 1 and type 2, diabetes is resulted from the 
unevenness in the action or in the secretion of insulin [1,2]. The type 2 
diabetes mellitus (T2DM) and its total societal costs have the sensible 
and tremendous impact on societies. Regarding the expectations about 
the growing rate and high risks associated with diabetic patients, the 
pharmacological treatment strategies along with the changes in lifestyle 
should be considered to improve the well-being of patients. Most of 
diabetes mellitus type-2 patients, a non-insulin dependent diabetes, are 
suffering from hyperglycemia which led to the serious health disorders 
including heart disease and stroke, renal failure, optic neuropathy, nerve 
damage, foot problems, and skin complications. Due to the importance 
of hyperglycemia and its serious long-term complications, many treat-
ment approaches have been devised. α-Glucosidase inhibitors have been 
considered as the subject of several research studies during the last 

decades for the treatment of diabetes. α-Glucosidase is a catabolic 
enzyme of intestinal brush border which catalyzes the hydrolysis of 
α-1,4-glucoside bond in oligosaccharides to form absorbable mono-
saccharides [3,4]. The inhibition of this enzyme could reduce or slow the 
postprandial hyperglycemia by retarding the absorption of glucose 
[5–9]. Biguanides [10], sulfonylureas [11], and thiazolidindiones 
[12,13] were found effective in the treatment of diabetes. Moreover, 
miglitol, nojirimycin, voglibose, and acarbose [14–17] are therapeuti-
cally glucosidase inhibitors in the market, effectively manage the 
symptoms of this metabolic disorder by regulating the glucose level. The 
reported side effects involving hepatic disorders, gastrointestinal, and 
diarrhea [18,19] along with limited hyperglycemic activity have moti-
vated medicinal chemists to design selective and potent non-glycosidic 
based compounds as potential therapeutic agents. 

Click reaction is one of the most important chemical transformations, 
employed in academic and pharmaceutical researches to form triazole 
ring [20]. In particular, copper (I)-catalyzed azide-alkyne cycloaddition 
(CuAAC) is known for its distinct advantages, such as exquisite 
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selectivity, broad scope, and mild reaction condition [21–23]. Triazoles 
are one of the most important toolkits in medicinal chemistry [24–29], 
extensively used to synthesize lead analogues by providing the good 
mimics of different functional groups involving amide bond, ester bond 
and various heterocycles. This valuable heterocyclic core have also 
found applications in functional materials [30–33]. Therefore, several 
hybrid molecules containing 1,4-disubstituted-1,2,3-triazoles with 
diverse range of bioactivities have been reported and found their way to 
the market [34]. 

Pyridazine is the ubiquitous nitrogen containing heterocyclic core 
found in a wide range of molecules with immense biological function-
alities [35–37]. Some investigations reported that applications of pyr-
idazinones as antihypertensive, antifungal, anti-inflammatory, 
anticancer, and antimicrobial agents [38–43]. Accordingly, tremendous 
effort has been devoted to the hybridization of this valuable core to 
afford multi-target novel bioactive compounds. To date, different classes 
of glucosidase inhibitors with different chemical scaffolds have been 
developed. Given the importance of triazines in the inhibition of 
glucosidase, we were keen to demonstrate the utility of pyridazine as its 
bioisostere. In addition, many triazole-containing glucosidase inhibitors 
have been found in the literature. Fig. 1, schematically presented the 
previously reported compounds bearing these prominent cores [44–50]. 

Previously, we have reported on the synthesis of glucosidase in-
hibitors [51,52], so, in pursuit of our goal of discovering novel bioactive 
agents [53–55], herein, we designed and synthesized a series of gluco-
sidase inhibitors based on the pyridazine core according to the bio-
isosterism principle. The sixteen final compounds showed better 
activities compared to the activity of the positive control. 

2. Experimental 

2.1. General chemistry 

All commercially available reagents and solvents, used without 
further purification, were purchased from Merck and Sigma-Aldrich 
companies. Bruker FT-500 MHz spectrometer was used to confirm the 
structure of the target compounds by 1H- and 13C NMR spectra in 
DMSO‑d6 as the solvent. Chemical shifts reported in δ parts per million 
(ppm) downfield from tetramethylsilane (TMS) as the internal standard. 
All reactions were monitored through thin-layer chromatography (TLC) 
on silica gel 250 mm, F254 plastic sheets. Elemental analysis was 
recorded by a Perkin Elmer 2400 (automatic elemental analyzer). 
Melting points were determined with a Kofler hot-plate microscope 

apparatus and are uncorrected. IR spectroscopy was performed using a 
Nicolet FT-IR Magna 550 spectrograph (KBr disks). 

2.1.1. Synthesis of ethyl-2,3-dihydro-3-oxo-5,6-diphenylpyridazine-4- 
carboxylate (3) 

A cooled flask was charged with sodium (0.05 mol) and ethanol (200 
mL). Upon disappearance of sodium, compound 2 (0.05 mol) and 
diethyl malonate (0.075 mol) were added at 0 ◦C. The mixture was 
cooled to room temperature and was stirred at reflux temperature for 3 
h. After this time, the mixture was evaporated under reduced pressure 
and the residue was acidified with HCl (1 N). The slight yellow solid was 
simply filtered and washed with cold water. mp. lit. 218–219 ◦C [56], 
mp. obtained; 217–219 ◦C. 

2.1.2. Synthesis of ethyl-3-mercapto-5,6-diphenylpyridazine-4-carboxylate 
(4) 

Compound 3 (20 mmol), toluene (150 mL), and Lawesson’s reagent 
(10 mmol) were added to the flask and the mixture was refluxed for 18 h. 
After this time, the mixture was concentrated and the residue was 
recrystallized from petroleum ether/ethyl acetate, mp. lit. 230 ◦C [57], 
mp. obtained; 228–230 ◦C. 

2.1.3. Synthesis of ethyl-5,6-diphenyl-3-(prop-2-ynylthio)pyridazine-4- 
carboxylate (5) 

To the stirred solution of ethyl-3-mercapto-5,6-diphenylpyridazin-4- 
carboxylate (5 mmol), K2CO3 (5 mmol) in DMF (10 mL), propargyl 
bromide (6 mmol) was added dropwise and the mixture was stirred at 
50 ◦C. After completion, checked by TLC, the reaction was quenched 
with ice/water solution and the resulted precipitate was filtered, washed 
with water and used without further purification. 

2.1.3.1. Ethyl 5,6-diphenyl-3-(prop-2-yn-1-ylthio)pyridazine-4-carbox-
ylate (5). Light-yellow solid; yield: 92%; mp: 79–81 ◦C; IR (KBr, 
cm− 1): 2173, 1734 (C––O), 1322, 1192; 1H NMR (500 MHz, DMSO‑d6) δ: 
1.34 (t, J = 6.9 Hz, 3H, CH3), 2.38 (t, J = 3.0 Hz, 1H), 4.00 (d, J = 2.9 Hz, 
2H, S-CH2), 4.33 (q, J = 6.9 Hz, 2H, CH2-CH3), 7.38–7.41 (m, 2H, Ar), 
7.47–7.56 (m, 5H, Ar), 7.57–7.58 (m, 1H, Ar), 7.97 (d, J = 8.0 Hz, 2H, 
Ar); 13C NMR (125 MHz, DMSO‑d6) δ: 14.22 (CH3), 18.66 (SCH2), 60.68 
(OCH2), 72.36 (C–––CH), 79.23 (C–––CH), 127.06 (CH), 127.92 (CH), 
128.45 (CH), 129.02 (CH), 129.85 (CH), 129.99 (CH), 130.37 (C), 
134.87 (C), 135.95 (C), 138.35 (C), 155.72 (C––N), 159.20 (C––N), 
166.88 (C––O); Anal. Calcd. For C22H18N2O2S: C, 70.57; H, 4.85; N, 
7.48. Found: C, 70.16; H, 4.83; N, 7.52; ESI-MS m/z: 375.11 [M + H]+. 
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Fig. 1. Previously described triazole and triazine-containing analogues with alpha-glucosidase inhibitory activity.  
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2.1.4. General procedure for the preparation of compounds (6a-6 m) 
A solution of benzyl bromide/chloride derivatives (1 mmol), sodium 

azide (1 mmol) were stirred in a H2O/tert-buthanol (1:1, 10 mL) for 1 h. 
After this time, compound 5 (1 mmol), triethyl amine (1 mmol), sodium 
ascorbate (10 mol%) and copper (II) sulfate (10 mol%) were added to 
the reaction mixture and the reaction was stirred for 6–10 h. After this 
time, the ice/water solution was added to the mixture and the resultant 
solid was recrystallized from ethanol. 

2.1.4.1. Ethyl 3-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)thio)-5,6-diphe-
nylpyridazine-4-carboxylate (6a). White solid; yield: 83%; mp: 
118–120 ◦C; IR (KBr, cm− 1): 1723 (C––O), 1639, 1458, 1319, 1194; 1H 
NMR (500 MHz, DMSO‑d6) δ: 0.84 (t, J = 7.2 Hz, 3H, CH3), 4.02 (q, J =
7.2 Hz, 2H, CH2-CH3), 4.74 (s, 2H, S-CH2), 5.58 (s, 2H, N-CH2), 7.12 (d, 
J = 7.1 Hz, 2H, Ar), 7.27–7.35 (m, 13H, Ar), 8.16 (s, 1H, N-CH); 13C 
NMR (125 MHz, DMSO‑d6) δ: 13.78 (CH3), 25.23 (SCH2), 53.22 (NCH2), 
62.56 (OCH2), 124.43, 124.47, 128.37, 128.57, 128.79, 129.10, 129.18, 
129.31, 129.45, 129.47, 130.13, 130.90, 134.08, 135.64, 136.42, 
136.49, 143.36 (S-CH2-C), 155.88 (C––N), 157.81 (S-C––N), 164.51 
(C––O); Anal. Calcd. For C29H25N5O2S. C, 68.62; H, 4.96; N, 13.80. 
Found: C, 68.47; H, 4.67; N, 13.96; ESI-MS m/z: 508.18 [M + H]+. 

2.1.4.2. Ethyl 3-(((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)thio)- 
5,6-diphenylpyridazine-4-carboxylate (6b). Gray solid; yield: 63%; mp: 
116–118 ◦C; IR (KBr, cm− 1): 1728 (C––O), 1640, 1456, 1322, 1184; 1H 
NMR (500 MHz, DMSO‑d6) δ: 0.87 (t, J = 7.1 Hz, 3H, CH3), 4.04 (q, J =
7.1 Hz, 2H, CH2-CH3), 4.76 (s, 2H, S-CH2), 5.66 (s, 2H, N-CH2), 7.14 (d, 
J = 6.7 Hz, 2H, Ar), 7.19–7.35 (m, 11H, Ar), 7.40–7.42 (m, 1H, Ar), 8.14 
(s, 1H, N-CH); 13C NMR (125 MHz, DMSO‑d6) δ: 13.79 (CH3), 25.24 
(SCH2), 47.36 (NCH2), 62.57 (OCH2), 116.06 (d, 2JC-F = 20.0 Hz), 
123.30 (NCH), 124.56, 125.28, 128.36 (2C), 128.79, 129.11 (2C), 
129.32 (2C), 129.47 (2C), 130.14, 130.96, 131.15, 131.21, 134.10, 
135.65, 136.45, 143.32 (S-CH2-C), 155.90 (C––N), 157.84 (S-C––N), 
160.54 (d, 1JC-F = 246.7 Hz), 164.51 (C––O); Anal. Calcd. For 
C29H24FN5O2S. C, 66.27; H, 4.60; N, 13.32; Found: C, 66.01; H, 4.82; N, 
13.06; ESI-MS m/z: 526.17 [M + H]+. 

2.1.4.3. Ethyl 3-(((1-(3-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)thio)- 
5,6-diphenylpyridazine-4-carboxylate (6c). Gray solid; yield: 79%; mp: 
125–127 ◦C; IR (KBr, cm− 1): 1727 (C––O), 1639, 1458, 1321, 1183; 1H 
NMR (500 MHz, DMSO‑d6) δ: 0.87 (t, J = 7.1 Hz, 3H, CH3), 4.05 (q, J =
7.1 Hz, 2H, CH2-CH3), 4.77 (s, 2H, S-CH2), 5.63 (s, 2H, N-CH2), 
7.21–7.23 (m, 5H, Ar), 7.29–7.35 (m, 8H, Ar), 7.40–7.44 (m, 1H, Ar), 
8.21 (s, 1H, N-CH); 13C NMR (125 MHz, DMSO‑d6) δ: 13.79 (CH3), 25.25 
(SCH2), 52.56 (NCH2), 62.57 (OCH2), 115.14, 115.34, 115.53, 124.46 
(d, 4JC-F = 3.75 Hz), 124.61, 128.35 (2C), 128.79 (d, 2JC-F = 25.8 Hz), 
129.21 (d, 2JC-F = 25.8 Hz), 129.47 (2C), 130.14 (2C), 130.95 (2C), 
131.28 (d, 3JC-F = 8.5 Hz), 134.00, 135.65, 136.45, 139.18 (d, 3JC-F =

7.6 Hz), 143.49 (S-CH2-C), 155.87 (C––N), 157.84 (S-C––N), 162.58 (d, 
1JC-F = 244.3 Hz), 164.51 (C––O); Anal. Calcd. For C29H24FN5O2S. C, 
66.27; H, 4.60; N, 13.32; Found: C, 66.52; H, 4.43; N, 13.51. ESI-MS m/ 
z: 526.17 [M + H]+. 

2.1.4.4. Ethyl 3-(((1-(3-bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl)thio)- 
5,6-diphenylpyridazine-4-carboxylate (6d). Off-white solid; yield: 76%; 
mp: 136–137 ◦C; IR (KBr, cm− 1): 1721 (C––O), 1631, 1453, 1319, 1149; 
1H NMR (500 MHz, DMSO‑d6) δ: 0.88 (t, J = 7.1 Hz, 3H, CH3), 4.05 (q, J 
= 7.1 Hz, 2H, CH2-CH3), 4.77 (s, 2H, S-CH2), 5.61 (s, 2H, N-CH2), 
7.14–7.15 (m, 2H, Ar), 7.30–7.36 (m, 10H, Ar), 7.54–7.55 (m, 2H, Ar), 
8.21 (s, 1H, N-CH); 13C NMR (125 MHz, DMSO‑d6) δ: 13.27 (CH3), 33.94 
(SCH2), 52.03 (NCH2), 58.64 (OCH2), 112.44, 122.79 (C-Br), 122.93, 
127.58 (2C), 127.96 (2C), 128.03, 128.27 (2C), 128.40, 128.44 (2C), 
128.68, 129.89, 131.00, 132.25, 132.39, 132.45, 136.54, 137.96, 
143.40 (S-CH2-C), 146.76 (C––N), 153.87 (S-C––N), 164.32 (C––O); 
Anal. Calcd. For C29H24BrN5O2S. C, 59.39; H, 4.12; N, 11.94. Found: C, 

59.28; H, 4.15; N, 12.02. ESI-MS m/z: 586.09 [M + H]+. 

2.1.4.5. Ethyl 3-(((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)thio)- 
5,6-diphenylpyridazine-4-carboxylate (6e). White solid; yield: 85%; mp: 
124–126 ◦C; IR (KBr, cm− 1): 1721 (C––O), 1639, 1456, 1309, 1214; 1H 
NMR (500 MHz, DMSO‑d6) δ: 0.84 (t, J = 7.1 Hz, 3H, CH3), 4.02 (q, J =
7.1 Hz, 2H, CH2-CH3), 4.73 (s, 2H, S-CH2), 5.57 (s, 2H, N-CH2), 7.12 (dt, 
J = 6.8, 1.6 Hz, 2H, Ar), 7.16–7.20 (m, 2H, Ar), 7.29–7.39 (m, 10H, Ar), 
8.15 (d, J = 2.4 Hz, 1H, N-CH); 13C NMR (125 MHz, DMSO‑d6) δ: 13.79 
(CH3), 25.26 (SCH2), 50.16 (NCH2), 52.40 (OCH2), 115.24 (d, 2JC-F =

20.0 Hz), 122.02 (2C), 127.17, 128.09 (2C), 128.11, 129.07 (2C), 
129.88 (2C), 129.99 (2C), 130.01, 130.30 (d, 3JC-F = 7.9 Hz, 2C), 133.09 
(d, 4JC-F = 3.1 Hz), 134.97, 136.19, 138.45, 144.03 (S-CH2-C), 155.67 
(C––N), 158.66 (S-C––N), 163.13 (d, 1JC-F = 252.1 Hz), 164.49 (C––O); 
Anal. Calcd. For C29H24FN5O2S. C, 66.27; H, 4.60; N, 13.32. Found: C, 
65.93; H, 4.84; N, 13.06; ESI-MS m/z: 526.17 [M + H]+. 

2.1.4.6. Ethyl 3-(((1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)thio)- 
5,6-diphenylpyridazine-4-carboxylate (6f). White solid; yield: 81%; mp: 
161–162 ◦C; IR (KBr, cm− 1): 1724 (C––O), 1632, 1454, 1324, 1166; 1H 
NMR (500 MHz, DMSO‑d6) δ: 0.88 (t, J = 7.1 Hz, 3H, CH3), 4.04 (q, J =
7.1 Hz, 2H, CH2-CH3), 4.78 (s, 2H, S-CH2), 5.46 (s, 2H, N-CH2), 7.28 (d, 
J = 8.5 Hz, 2H, Ar), 7.38–7.46 (m, 6H, Ar), 7.53–7.58 (m, 4H, Ar), 7.97 
(d, J = 8.5 Hz, 2H, Ar), 8.11 (s, 1H, N-CH); 13C NMR (125 MHz, 
DMSO‑d6) δ: 13.82 (CH3), 31.64 (SCH2), 52.85 (NCH2), 59.62 (OCH2), 
122.05, 127.23, 128.09 (2C), 128.12, 128.66 (2C), 129.07 (2C), 129.88 
(2C), 129.91 (2C), 129.99 (2C), 130.13, 132.37, 134.97 (C-Cl), 135.05, 
136.19, 138.45, 144.03 (S-CH2-C), 154.62 (C––N), 156.63 (S-C––N), 
164.90 (C––O); Anal. Calcd. For C29H24ClN5O2S: C, 64.26; H, 4.46; N, 
12.92. Found: C, 64.41; H, 4.14; N, 12.67; ESI-MS m/z: 542.14 [M +
H]+. 

2.1.4.7. Ethyl 3-(((1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl)thio)- 
5,6-diphenylpyridazine-4-carboxylate (6g). White solid; yield: 84%; mp: 
129–131 ◦C; IR (KBr, cm− 1): 1723 (C––O), 1636, 1457, 1323, 1156; 1H 
NMR (500 MHz, DMSO‑d6) δ: 0.84 (t, J = 7.1 Hz, 3H, CH3), 4.01 (q, J =
7.1 Hz, 2H, CH2-CH3), 4.72 (s, 2H, S-CH2), 5.55 (s, 2H, N-CH2), 7.11 (d, 
J = 7.3 Hz, 2H, Ar), 7.22–7.24 (m, 2H, Ar), 7.26–7.33 (m, 8H, Ar), 7.53 
(d, J = 8.2 Hz, 2H, Ar), 8.14 (s, 1H, N-CH); 13C NMR (125 MHz, 
DMSO‑d6) δ: 13.74 (CH3), 32.56 (SCH2), 51.41 (NCH2), 59.46 (OCH2), 
112.86, 121.06 (C-Br), 122.10, 127.55 (2C), 127.73 (2C), 128.06, 
128.30 (2C), 128.48 (2C), 128.79, 131.14 (2C), 131.90 (2C), 132.39, 
132.45, 136.10, 137.96, 143.40 (S-CH2-C), 146.76 (C––N), 153.87 (S- 
C––N), 164.73 (C––O); Anal. Calcd. For C29H24BrN5O2S. C, 59.39; H, 
4.12; N, 11.94. Found: C, 59.15; H, 4.39; N, 12.10; ESI-MS m/z: 586.09 
[M + H]+. 

2.1.4.8. Ethyl 3-(((1-(2,6-difluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl) 
thio)-5,6-diphenylpyridazine-4-carboxylate (6h). Off-white solid; yield: 
66%; mp: 148–150 ◦C; IR (KBr, cm− 1): 1723 (C––O), 1636, 1457, 1323, 
1156; 1H NMR (500 MHz, DMSO‑d6) δ: 0.87 (t, J = 7.0 Hz, 3H, CH3), 
4.04 (q, J = 7.1 Hz, 2H, CH2-CH3), 4.76 (s, 2H, S-CH2), 5.67 (s, 2H, N- 
CH2), 7.14–7.19 (m, 4H, Ar), 7.28–7.36 (m, 8H, Ar), 7.48–7.56 (m, 1H, 
Ar), 8.14 (s, 1H, N-CH); 13C NMR (125 MHz, DMSO‑d6) δ: 13.78 (CH3), 
25.18 (SCH2), 41.32 (NCH2), 62.56 (OCH2), 112.30 (d, 2JC-F = 4.9 Hz), 
112.46, 124.56, 128.37 (2C), 128.79 (2C), 129.11, 129.31, 129.47 (2C), 
130.14 (2C), 130.97, 132.18 (d, 3JC-F = 10.4 Hz), 134.11, 135.66 (2C), 
136.46, 143.22 (S-CH2-C), 155.89 (C––N), 157.85 (S-C––N), 161.28 (d, 
1JC-F = 249.1 Hz), 164.51 (C––O); Anal. Calcd. For C29H23F2N5O2S: C, 
64.08; H, 4.26; N, 12.88; Found: C, 63.88; H, 4.48; N, 12.92; ESI-MS m/ 
z: 544.16 [M + H]+. 

2.1.4.9. Ethyl 3-(((1-(2,5-dichlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl) 
thio)-5,6-diphenylpyridazine-4-carboxylate (6i). Off-white solid; yield: 
64%; mp: 110–112 ◦C; IR (KBr, cm− 1): 1721 (C––O), 1632, 1449, 1300, 
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1187; 1H NMR (500 MHz, DMSO‑d6) δ: 0.87 (t, J = 7.1 Hz, 3H, CH3), 
4.04 (q, J = 7.1 Hz, 2H, CH2-CH3), 4.78 (s, 2H, S-CH2), 5.70 (s, 2H, N- 
CH2), 7.13–7.14 (m, 2H, Ar), 7.27–7.37 (m, 9H, Ar), 7.48 (dd, J = 8.6, 
2.6 Hz, 2H), 8.18 (s, 1H, N-CH); 13C NMR (125 MHz, DMSO‑d6) δ: 13.79 
(CH3), 25.19 (SCH2), 50.68 (NCH2), 62.57 (OCH2), 125.02, 128.36 (2C), 
128.80 (2C), 129.12, 129.32, 129.46 (2C), 130.13 (2C), 130.51, 130.68, 
130.98, 131.81, 131.97 (C-Cl), 132.53 (C-Cl), 134.10, 135.63, 135.79, 
136.44, 143.38 (S-CH2-C), 155.80 (C––N), 157.82 (S-C––N), 164.50 
(C––O); Anal. Calcd. For C29H23Cl2N5O2S: C, 60.42; H, 4.02; N, 12.15; 
Found: C, 60.09; H, 3.90; N, 12.28; ESI-MS m/z: 579.09 [M + H]+. 

2.1.4.10. Ethyl 3-(((1-(3-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methyl)thio)- 
5,6-diphenylpyridazine-4-carboxylate (6j). Gray solid; yield: 82%; mp: 
137–139 ◦C; IR (KBr, cm− 1): 1728 (C––O), 1641, 1459, 1325, 1188; 1H 
NMR (500 MHz, DMSO‑d6) δ: 0.87 (t, J = 7.1 Hz, 3H, CH3), 4.05 (q, J =
7.1 Hz, 2H, CH2-CH3), 4.77 (s, 2H, S-CH2), 5.78 (s, 2H, N-CH2), 
7.14–7.15 (m, 2H, Ar), 7.29–7.37 (m, 8H, Ar, N-CH), 7.67–7.70 (m, 1H, 
Ar), 7.77 (d, J = 7.7 Hz, 1H, Ar), 8.20–8.22 (m, 2H), 8.27 (s, 1H, Ar); 13C 
NMR (125 MHz, DMSO‑d6) δ: 13.79 (CH3), 25.19 (SCH2), 52.20 (NCH2), 
62.57 (OCH2), 122.02, 122.19, 123.45, 127.17, 128.12, 128.19 (2C), 
129.12 (2C), 129.63, 129.88 (2C), 129.98 (2C), 130.38, 133.73, 134.97, 
136.09, 137.49, 138.45, 144.03 (S-CH2-C), 148.14 (C-NO2), 155.83 
(C––N), 157.85 (S-C––N), 164.50 (C––O); Anal. Calcd. For C29H24N6O4S: 
C, 63.03; H, 4.38; N, 15.21. Found: C, 62.90; H, 4.60; N, 15.40; ESI-MS 
m/z: 553.16 [M + H]+. 

2.1.4.11. Ethyl 3-(2-(1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)ethyl)-5,6- 
diphenylpyridazine-4-carboxylate (6k). Gray solid; yield: 89%; mp: 
149–151 ◦C; IR (KBr, cm− 1): 1730 (C––O), 1642, 1459, 1325, 1187; 1H 
NMR (500 MHz, DMSO‑d6) δ: 0.85 (t, J = 7.0 Hz, 3H, CH3), 4.01 (q, J =
7.1 Hz, 2H, CH2-CH3), 4.75 (s, 2H, S-CH2), 5.76 (s, 2H, N-CH2), 7.11 (d, 
J = 7.0 Hz, 2H, Ar), 7.26–7.34 (m, 8H, Ar), 7.50 (d, J = 8.3 Hz, 2H, Ar), 
8.20 (d, J = 8.7 Hz , 2H, Ar), 8.23 (s, 1H, N-CH); 13C NMR (125 MHz, 
DMSO‑d6) δ: 14.24 (CH3), 22.20 (SCH2), 52.42 (NCH2), 60.61 (OCH2), 
122.02, 123.76 (2C), 127.17, 128.12, 128.19 (2C), 129.12 (2C), 129.17 
(2C), 129.88 (2C), 129.98 (2C), 130.38, 134.97, 136.09, 138.45, 
140.28, 144.03 (S-CH2-C), 147.03 (C-NO2), 155.68 (C––N), 158.66 (S- 
C––N), 164.49 (C––O); Anal. Calcd. For C29H24N6O4S: C, 63.03; H, 4.38; 
N, 15.21. Found: C, 63.22; H, 4.51; N, 15.35; ESI-MS m/z: 553.16 [M +
H]+. 

2.1.4.12. Ethyl 3-(((1-(3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl) 
thio)-5,6-diphenylpyridazine-4-carboxylate (6l). Gray solid; yield: 71%; 
mp: 154–156 ◦C; IR (KBr, cm− 1): 1730 (C––O), 1641, 1462, 1325, 1188; 
1H NMR (500 MHz, DMSO‑d6) δ: 0.86 (t, J = 7.1 Hz, 3H, CH3), 3.71 (s, 
3H, OCH3), 4.03 (q, J = 7.0 Hz, 2H, CH2-CH3), 4.74 (s, 2H, S-CH2), 5.54 
(s, 2H, N-CH2), 6.84–6.90 (m, 3H, Ar), 7.12–7.15 (m, 3H, Ar), 7.25–7.36 
(m, 8H, Ar), 8.15 (s, 1H, N-CH); 13C NMR (125 MHz, DMSO‑d6) δ: 14.24 
(CH3), 22.20 (SCH2), 52.84 (NCH2), 55.15 (OCH3), 60.61 (OCH2), 
112.78, 113.00, 121.87, 122.02, 127.17, 128.12, 128.15 (2C), 129.12 
(2C), 129.50, 129.88 (2C), 129.99 (2C), 130.13, 134.97, 136.19, 
136.58, 138.45, 144.03 (S-CH2-C), 155.67 (C––N), 158.66 (S-C––N), 
159.53 (C-OMe), 167.00 (C––O); Anal. Calcd. For C30H27N5O3S: C, 
67.02; H, 5.06; N, 13.03. Found: C, 66.92; H, 5.31; N, 13.22; ESI-MS m/ 
z: 538.19 [M + H]+. 

2.1.4.13. Ethyl 3-(((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl) 
thio)-5,6-diphenylpyridazine-4-carboxylate (6m). Off-white solid; yield: 
74%; mp: 123–125 ◦C; IR (KBr, cm− 1): 1722 (C––O), 1639, 1458, 1300, 
1161; 1H NMR (500 MHz, DMSO‑d6) δ: 0.87 (t, J = 7.1 Hz, 3H, CH3), 
3.73 (s, 3H, OCH3), 4.04 (q, J = 7.2 Hz, 2H, CH2-CH3), 4.74 (s, 2H, S- 
CH2), 5.50 (s, 2H, N-CH2), 6.92 (d, J = 8.7 Hz, 2H, Ar), 7.13 (d, J = 7.1 
Hz, 2H, Ar), 7.28–7.37 (m, 10H, Ar), 8.10 (s, 1H, N-CH); 13C NMR (125 
MHz, DMSO‑d6) δ: 14.25 (CH3), 23.60 (SCH2), 52.03 (NCH2), 55.23 
(OCH3), 60.67 (OCH2), 112.44, 113.80 (2C), 122.93, 127.72 (2C), 

128.03, 128.10 (2C), 128.44 (2C), 128.50, 128.65, 125.68, 132.39, 
135.55, 137.03, 138.27, 146.76 (S-CH2-C), 147.59 (C––N), 154.94 (S- 
C––N), 159.16 (C-OMe), 164.27 (C––O); Anal. Calcd. For C30H27N5O3S: 
C, 67.02; H, 5.06; N, 13.03. Found: C, 67.22; H, 5.28; N, 13.21; ESI-MS 
m/z: 538.19 [M + H]+. 

2.1.5. General procedure for the preparation of compounds (7a-7c) 
The appropriate compounds (6a, 6e, 6 g, 1 mmol) were dissolved in 

ethanol (5 mL) and the NaOH solution (1 M, 5 mL) was added and the 
mixture was refluxed. Upon completion (1–2 h), checked by TLC, the 
mixture was acidified to pH = 1 and the resultant solid was filtered and 
washed with water. 

2.1.5.1. 3-(((1-Benzyl-1H-1,2,3-triazol-4-yl)methyl)thio)-5,6-diphe-
nylpyridazine-4-carboxylic acid (7a). White solid; yield: 76%; mp: 
192–194 ◦C; IR (KBr, cm− 1): 3056 (COOH), 1719 (C––O), 1642, 1463, 
1326, 1200; 1H NMR (500 MHz, DMSO‑d6) δ: 4.74 (s, 2H, S-CH2), 5.59 
(s, 2H, N-CH2), 7.15–7.17 (m, 2H, Ar), 7.28–7.38 (m, 13H, Ar), 8.16 (s, 
1H, N-CH), 14.12 (s, 1H, OH); 13C NMR (125 MHz, DMSO‑d6) δ: 21.48 
(SCH2), 52.10 (NCH2), 121.99, 128.03, 128.04 (2C), 128.07 (2C), 
128.09, 128.42 , 129.08, 129.67, 129.85, 129.98, 130.02, 134.78, 
136.21, 136.26, 138.36, 144.03 (S-CH2-C), 157.65 (C––N), 158.37 (S- 
C––N), 166.88 (C––O); Anal. Calcd. For C27H21N5O2S: C, 67.62; H, 4.41; 
N, 14.60. Found: C, 67.43; H, 4.29; N, 14.75; ESI-MS m/z: 480.14 [M +
H]+. 

2.1.5.2. 3-(((1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-5,6- 
diphenylpyridazine-4 carboxylic acid (7b). White solid; yield: 93%; mp: 
212–213 ◦C; IR (KBr, cm− 1): 3051 (COOH), 1705 (C––O), 1636, 1468, 
1301, 1166; 1H NMR (500 MHz, DMSO‑d6) δ: 4.74 (s, 2H, S-CH2), 5.58 
(s, 2H, N-CH2), 7.16–7.21 (m, 4H, Ar), 7.28–7.33 (m, 8H, Ar), 7.37–7.40 
(m, 2H, Ar), 8.17 (d, J = 2.5 Hz, 1H, N-CH), 13.02 (s, 1H, OH); 13C NMR 
(125 MHz, DMSO‑d6) δ: 22.20 (SCH2), 52.17 (NCH2), 115.24 (d, 2JC-F =

20 Hz, 2C), 122.02, 128.07, 128.09, 129.03, 129.67, 129.85, 130.03 
(2C), 130.06, 130.30 (d, 3JC-F = 7.5 Hz, 133.09 (2C), 134.78, 136.21, 
138.36, 144.03 (S-CH2-C), 157.52 (C––N), 158.23 (S-C––N), 162.27 (d, 
1JC-F = 252.1 Hz), 167.42 (C––O); Anal. Calcd. For C27H20FN5O2S: C, 
65.18; H, 4.05; N, 14.08. Found: C, 65.36; H, 3.87; N, 14.22; ESI-MS m/ 
z: 498.14 [M + H]+. 

2.1.5.3. 3-(((1-(4-Bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-5,6- 
diphenylpyridazine-4-carboxylic acid (7c). White solid; yield: 81%; mp: 
211–213 ◦C; IR (KBr, cm− 1): 3105 (COOH), 1695 (C––O), 1649, 1451, 
1309, 1217; 1H NMR (500 MHz, DMSO‑d6) δ: 4.74 (s, 2H, S-CH2), 5.58 
(s, 2H, N-CH2), 7.14 (dd, J = 7.7, 1.9 Hz, 2H, Ar), 7.25 (d, J = 8.4 Hz, 
2H, Ar), 7.28–7.34 (m, 8H, Ar), 7.56 (d, J = 8.4 Hz, 2H, Ar), 8.17 (s, 1H, 
N-CH), 12.99 (s, 1H, OH); 13C NMR (125 MHz, DMSO‑d6) δ: 23.29 
(SCH2), 53.79 (NCH2), 121.87 (C-Br), 122.16, 128.09, 128.10, 129.09, 
129.68, 129.88, 130.02, 130.03, 130.28, 131.57, 134.79, 135.31, 
136.11, 138.36, 144.03 (S-CH2-C), 157.49 (C––N), 158.23 (S-C––N), 
167.51 (C––O); Anal. Calcd. For C27H20BrN5O2S: C, 58.07; H, 3.61; N, 
12.54. Found: C, 57.81; H, 3.44; N, 12.71; ESI-MS m/z: 558.06 [M +
H]+. 

2.2. Biological results 

2.2.1. In-vitro α-glucosidase inhibition assay 
α-Glucosidase (Saccharomyces cerevisiae, EC3.2.1.20, 20 U/mg) and 

substrate (p-nitrophenyl glucopyranoside) were purchased from Sigma- 
Aldrich. Desired concentrations of enzyme were prepared by potassium 
phosphate buffer (pH 6.8, 50 mM), and the target compounds were 
dissolved in DMSO (10% final concentration). The enzyme solution (20 
μL), different concentrations of compounds (20 μL), and potassium 
phosphate buffer (135 μL) were added to the 96-well plate and incu-
bated at 37 ◦C for 10 min. Then, p-nitrophenyl glucopyranoside as 
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substrate (25 μL, 4 mM) was added to each well and allowed to be 
incubated at 37 ◦C for 20 min. Finally, the change in the absorbance was 
measured at 405 nm by using spectrophotometer (Gen5, Power wave 
xs2, BioTek, America). DMSO and acarbose were used as the control and 
standard inhibitor, respectively. The percentage of inhibition for target 
compounds, control, and the standard inhibitor was calculated by using 
the following formula: 

%Inhibition = [(Abs control Abs sample)/Abs control] × 100 

IC50 values of tested compounds were obtained from the nonlinear 
regression curve using the Logit method. 

2.2.2. Rat α- glucosidase assay 
Rat small intestine α-glucosidase (EC 3.2.1.20) was prepared ac-

cording to the method published by Lossow et al. (1964). Enzyme in 
vitro activity was determined by recording the release of 4-nitrophenol 
from Pnitrophenyl α-D glucopyranoside as previously described by Kim 
et al. [59,60]. Final volume of 200 μL of assay solution was prepared in a 
96-well plate as follow: the enzyme solution (190 μL, 0.15 units/ml), 
different concentrations of compounds 1, 10, 20, 50, 100, 500 and 1000 
μM (5 μL), and potassium phosphate buffer. Test compounds were dis-
solved in DMSO (not exceed than 5% of final volume). After 10 min. of 
pre-incubation at 37 ◦C, p-nitrophenyl glucopyranoside as substrate (5 
μL, 3 mM), was added to the enzyme solution and let to be incubated for 
one hour at 37 ◦C. Finally, the change in the absorbance was followed at 
405 nm using Cytation 3 hybrid microplate reader (BioTek, USA). DMSO 
and acarbose were used as the control and standard inhibitor, respec-
tively. The extent of enzyme inhibition was calculated in the presence of 
different concentrations of compounds by using the following formula 
and data presented as percentage of inhibition. 

%Inhibition = [(Abs control Abs sample)/Abs control] × 100 

IC50 values of tested compounds were obtained from the nonlinear 
regression curve using GraphPadprism 6.0 (San Diego, California, USA). 

2.2.3. Kinetic studies 
The mode of inhibition of the most active compound 6j, identified 

with the lowest IC50, was investigated against α-glucosidase activity 
with different concentrations of p-nitrophenyl α-D-glucopyranoside 
(2–10 mM) as substrate in the absence and presence of sample 6j at 
different concentrations (0, 45, 65, and 85 µM). A Lineweaver–Burk plot 
was generated to identify the type of inhibition and the Michae-
lis–Menten constant (Km) value was determined from plot between 

reciprocal of the substrate concentration (1/[S]) and reciprocal of 
enzyme rate (1/V) over various inhibitor concentrations. Experimental 
(Ki) value was constructed by secondary plots of the inhibitor concen-
tration [I] versus Km. 

2.2.4. Cytotoxic studies 
The cytotoxic studies of selected compounds were performed ac-

cording to the previously reported literature [52]. 

2.2.5. Docking studies 
Docking study of compound 6j was done using Autodock 4.2.1 

software. The structure of S. cerevisiae isomaltase (PDB: 3A4A with 1.6 Å 
resolution) was taken from RCSB data bank and the docking procedure 
was carried out as previously reported [52]. The docking results were 
analyzed by Discovery Studio visualizer 4.5. 

3. Results and discussion 

3.1. Chemistry 

The synthesis of final compounds (6a-m) was achieved through the 
five step reaction. Scheme 1 showed the synthetic route used to prepare 
final compounds, starting from benzil. Benzil constituted a useful 
starting material for the synthesis of heterocyclic compounds. According 
to the related reports on the construction of pyridazine core, the reaction 
of benzil and hydrazine gave 2-hydrazonoe-1,2-diphenyl ethanone 2 
which upon treatment with diethyl malonate by using sodium ethano-
late afforded cyclized product 3. Ethyl-2,3-dihydro-3-oxo-5,6- 
diphenylpyridazine-4-carboxylate was converted to compound 4 by 
the action of Lawesson’s reagent. The propargylic unit at the side chain 
was installed by the treatment of compound 4 in N,N-dimethyl form-
amide (DMF) with propargyl bromide in the presence of potassium 
carbonate. The click reaction proceeded smoothly by employing 10 mol 
percent sodium ascorbate/copper sulfate and 1 equiv. of triethyl amine 
in water/tert-buthanol, affording 1,4-disubstituted triazole ring in good 
yields with complete regioselectivity. The corresponding acids could be 
easily obtained from the saponification reaction with ethanolic sodium 
hydroxide solution. The synthetic protocol was examined on a series of 
substituted benzyl bromides/chlorides and the data are collated in 
Table 1. 

PhO

OPh

PhH2NN

OPh
Ph

Ph

NHN

COOEt

O Ph

Ph

NN

COOEt

SH Ph

Ph

NN

COOEt

S

Ph

Ph

NN

COOEt

S N N
N R

a b c d

e

4321 5

6a-m

R = H, 2-F, 3-F, 4-F, 3-Br, 4-F, 4-Cl, 4-Br, 2,6-dif,
2,5-diCl, 3-NO2, 4-NO2, 3-OMe, 4-OMe

f Ph

Ph

NN

COOH

S N N
N R

7a-c

R = H, 4-F, 4-Br

Scheme 1. Synthesis of target compounds. Reagents and conditions: a) hydrazine hydrate, methanol, reflux, 15 min., 79%, m.p. lit. 149–151 ◦C [58], m.p. obtained; 
148–150 ◦C; b) Na, EtOH, diethyl malonate, reflux, 3 h, 47%; c) Lawesson’s reagent, toluene, reflux, 18 h, 94%; d) propargyl bromide, DMF, K2CO3, 50 ◦C, 2 h, 92%; 
e) (i) benzyl bromide/chloride derivatives, NaN3, H2O/tert-buthanol, Et3N, 1 h; (ii) sodium ascorbate, copper (sulfate, 5, 6–10 h; f) NaOH (1 M), EtOH, reflux, 1–2 h. 
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3.2. α-Glucosidase inhibitory activity 

All target compounds were evaluated for their abilities to inhibit 
α-glucosidase activity of the extracted enzyme from Saccharomyces cer-
evisiae and rat small intestine α-glucosidase. The activity against both 
enzymes showed same trend and the most active compound was 6j. 
From the reported data, the preliminary structure–activity relationship 
against Saccharomyces cerevisiae can be drawn. All synthesized com-
pounds had better inhibitory activities than acarbose, exhibiting IC50 
values ranging from 85.6 to 634.0 µM. The most potent compound was 
3-nitro containing derivative, 6j. The influence of halogens involving 
fluorine, chlorine, and bromine at different positions was examined. 
Moving fluorine from ortho to meta led to the decreased potency. Sub-
stitution of the most electronegative atom, fluorine as the lipophilic 
group, at para position was not tolerated and led to the less potent 
compound 6e with IC50 = 449.5 µM among halogen containing 
derivatives. 

Replacing fluorine at meta position (6c, IC50 = 321.5 µM) with 
bromine resulted in increased potency, (6d, IC50 = 238.4 µM). The 
replacement of the fluorine at para position with chlorine and bromine 
yielded more potent compounds with IC50 values of 213.3, 190.7 µM, 
respectively. The introduction of second fluorine atom at ortho position, 
6h, did not lead to the significant enhancement in the activity compared 
to mono substituted derivative 6b. 2,5-Dichloro-substituted compound 
6i vs 6h exhibited 2-fold improvements in activity indicating that 
dichloro substitution was more favorable than difluoro substituted one. 
Interestingly, the introduction of nitro group at meta position produced 
the most potent compound 6j, IC50 = 85.6 µM, with almost 10-fold more 
potency compared to acarbose. IC50 = 750.0 µM. While, moving this 
functional group to the para position led to the compound with 5-times 
less activity compared to 6j. The presence of electron-donating group at 
para position, 6m, dramatically decreased the enzyme inhibition 
compared to unsubstituted and meta-substituted analogue, resulted in 
the weakest compound with IC50 value of 634.0 µM. 

We expanded the scope of our investigation by the replacement of 
ester with acidic group. Compared with ester containing compounds, no 
improvement in the inhibitory profile was observed. For compounds 
bearing hydrogen, chlorine and fluorine at para position, the presence of 
acidic group led to the decreased inhibitory effects, (7a, 7b, and 7c; IC50s 

= 489.2, 453.0, 249.4 µM, respectively). Based on the evaluation against 

rat enzyme, all compounds except 6l and 6 m were more active 
compared to acarbose. The IC50 inhibition of acarbose against rat a- 
glucosidase was found to be 318.2 ± 23.9 μM. Comparing the presence 
of halogens at para position, the less electronegative atom, meaning 
bromine (6 g) exhibited the less inhibitory activity. The reverse trend 
was observed by replacing fluorine with bromine at meta position. The 
introduction of second fluorine enhanced the inhibitory activity (6b vs 
6h). The most active compounds was 6j. The interesting point is moving 
this group to para position decreased the activity. The less active com-
pounds contained methoxy group at meta and para positions (Table 1). 

3.3. Kinetic studies 

The mode of inhibition of the target derivatives was investigated by 
kinetic studies on compound 6j (Fig. 2). The competitive mode of in-
hibition was determined for the most active compound. The unchanged 
Vmax value and increased km value which were determined by 
Lineweaver-Burk plot, indicated this fact. Moreover, by drawing the plot 
of the Km versus different concentration of inhibitor, Ki of 82 µM, was 
determined for compound 6j. 

3.4. Cytotoxic studies 

In order to investigate the cytotoxicity of these compounds, the 
active ones, 6g, 6j, and 7c, from both series were tested against the 
normal cell line. In case of this cell line, HDF, no toxicity was observed 
with either compound. 

3.5. Docking study 

According to the biological results, the most active compound 6j was 
selected and docked into the active site of α-glucosidase enzyme to 
identify the binding modes and interactions. Molecular docking study 
was accomplished by Autodock 4.2.1 software package and the 3D and 
2D structure of docking interactions were depicted by Discovery Studio 
visualizer 4.5. Crystal structure of S. cerevisiae α-glucosidase is not pre-
pared yet, so the crystal structure of S. cerevisiae isomaltase (PDB: 
3A4A) was used due to its high similarity to S. cerevisiae α-glucosidase. 

The best score docking conformation of 6j was shown in Fig. 3. 
Compound 6j established two conventional hydrogen bonds and several 
hydrophobic interactions with the active pocket of enzyme which 
enhanced the stability of the ligand-enzyme complex. The triazole ring 
of 6j formed a hydrogen bond with His 280 of distance 2.46 Å and the 
nitro group made the second hydrogen bond with Asn 415 of distance 
2.87 Å. This ligand exhibited π-cation and π-anion interactions with Arg 
442 and Asp 352, respectively. Moreover, the sulfide group of this 
compound made π-sulfur interaction with Phe 303. Other interactions 
including π-π stacked, π-π T-shaped, and van der Waals were observed 
between two phenyl moieties of this ligand and a number of residues. 

4. Conclusion 

In conclusion, for the first time, we have demonstrated the α-gluco-
sidase inhibitory activity of pyridazine-containing compounds. By this 
method, sixteen compounds have been synthesized through the five-step 
approach and their in-vitro inhibitory activity against yeast and rat small 
intestine α-glucosidase enzymes were investigated. Structure-activity 
relationship investigation indicated compound 6j with nitro group at 
meta position as the most active compound. The enhanced activity of 
final compounds suggested this series as the good candidates for further 
development. Our group is also engaged in expanding the library of 
pyridazine-containing compounds as glucosidase inhibitors. 
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Table 1 
α-Glucosidase inhibitory activity of the target compounds, presented as IC50 

(μM).a

Compound X R IC50 (μM)b IC50 (μM)c 

6a COOEt H 307.4 ± 4.3 220.7 ± 52.6 
6b COOEt 2-F 198.0 ± 2.0 119.7 ± 12.9 
6c COOEt 3-F 321.5 ± 4.5 148.3 ± 16.3 
6d COOEt 3-Br 238.4 ± 3.7 278.5 ± 57.2 
6e COOEt 4-F 449.5 ± 6.6 166.2 ± 31.3 
6f COOEt 4-Cl 213.3 ± 3.3 284.5 ± 59.1 
6g COOEt 4-Br 190.7 ± 1.9 304.7 ± 46.9 
6h COOEt 2,6-diF 202.5 ± 3.1 89.1 ± 15.7 
6i COOEt 2,5-diCl 107.7 ± 1.2 193.1 ± 42.6 
6j COOEt 3-NO2 85.6 ± 0.5 73.7 ± 11.4 
6k COOEt 4-NO2 414.2 ± 6.3 118.4 ± 21.2 
6l COOEt 3-OMe 220.6 ± 3.5 466.8 ± 39.1 
6m COOEt 4-OMe 634.0 ± 9.2 412.5 ± 45.4 
7a COOH H 489.2 ± 7.0 294.6 ± 43.7 
7b COOH 4-F 453.0 ± 6.8 179.1 ± 33.2 
7c COOH 4-Br 249.4 ± 3.9 215.4 ± 20.8  

Acarbose – 750.0 ± 10.0 318.2 ± 23.9  

a Values are the means of three replicates ± standard deviation (SD). 
b The activity against Saccharomyces cerevisiae. 
c The activity against rat small intestine α-glucosidase. 
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Fig. 3. The 3D binding conformation and 2D binding conformation of compound 6j.  

S. Moghimi et al.                                                                                                                                                                                                                                



Bioorganic Chemistry 109 (2021) 104670

8

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.bioorg.2021.104670. 
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