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Lysyl oxidase (LOX) is implicated in several extracellular matrix related disorders, including fibrosis and
cancer. Methods of inhibition of LOX in vivo include antibodies, copper sequestration and toxic small mol-
ecules such as b-aminopropionitrile. Here, we propose a novel approach to modulation of LOX activity based
on the kinetic isotope effect (KIE). We show that 6,6-D2-lysine is oxidised by LOX at substantially lower rate,
with apparent deuterium effect on Vmax/Km as high as 4.35 ± 0.22. Lys is an essential nutrient, so dietary
ingestion of D2Lys and its incorporation via normal Lys turnover suggests new approaches to mitigating
LOX-associated pathologies.

� 2010 Elsevier Ltd. All rights reserved.
The lysyl oxidase family (LOX, EC 1.4.3.13) comprises five iso-
forms of homologous Cu-dependent amine oxidases that catalyze
oxidative deamination of e-amino groups of lysine residues in some
proteins.1 The resulting allysine can form Schiff bases, allysine-aldol
and pyridinoline cross-links that stabilize some types of collagen
and elastin; and modify other peptides and proteins such as an
important cytokine TGF-b.2 LOX modulates properties of extracellu-
lar matrix/stromal tissue, and as such has been implicated in a vari-
ety of pathologies related to connective tissue, including fibrotic
processes, neurodegenerative, ophthalmological and cardiovascular
diseases.3 LOX expression is up-regulated in hypoxic tumors and af-
fects cell motility.4 For this reason, LOX is important for metastasis in
many cancers including breast, colon, and esophagus cancers,5 and
recruitment of bone marrow-derived cells for premetastatic niche
formation.6 LOX is secreted by cells and processed in the extracellu-
lar space, but some LOX is transported to nuclei where it may have an
effect on gene expression and cell cycle.1,7 This LOX-mediated con-
trol of intracellular activities can be due to the oxidation of Lys in nu-
clear proteins, affecting gene transcription. Histone H1 can be
oxidized within nuclei of vascular smooth muscle cells in a BAPN-
inhibitable manner,1 consistent with the role of nuclear LOX
catalysis. Oxidation of Lys in H1 may have an epigenetic effect on
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DNA-histone and histone-histone interactions similar to that of
histone acetylation (although histone acetylation, unlike LOX oxida-
tion, is reversible).

Development of new methods for LOX inhibition in vivo is
important for further elucidation of the role that LOX isoforms play
in these pathologies. LOX may be inhibited by copper sequestra-
tion,8 antibodies,6,9 and small molecules10 such as BAPN and deriv-
atives.11 However, it is desirable to modulate rather than inhibit
LOX, in order to avoid side-effects such as increased elasticity of
blood vessels that may lead to aneurisms.12

LOX requires the presence of a Cu (II) atom and a unique qui-
none carbonyl cofactor, lysyl tyrosyl quinone (LTQ13), which forms
an initial Schiff base with the e-amino group of Lys. This mecha-
nism of amine oxidation consists of five steps14 and can be summa-
rised as a reductive amination of LOX, followed by its O2-mediated
oxidation, which yields ammonia and H2O2. The major rate-limit-
ing step of the process is the base-assisted hydrogen abstraction
from the e-CH2 group.15,16

An isotope effect is an influence of substitution of a heavy atom
for a light one (e.g., deuterium for hydrogen) on the strength of a
chemical bond. The bonds between heavier isotopes will have low-
er energy in the ground state, so the dissociation of these bonds
will require more energy. The primary KIE arises when the bond
is cleaved during or before the transition state (rate-limiting step).
Since the discovery that deuterated substances may have signifi-
cantly improved pharmacological properties due to the KIE,17,18

various deuterated substrates for MAO family were prepared and
tested. The in vivo effects of deuteration may be substantially
larger than the in vitro measured KIE values. For example, a signif-

http://dx.doi.org/10.1016/j.bmcl.2010.11.018
mailto:misha@retrotope.com
http://dx.doi.org/10.1016/j.bmcl.2010.11.018
http://www.sciencedirect.com/science/journal/0960894X
http://www.elsevier.com/locate/bmcl


256 N. B. Pestov et al. / Bioorg. Med. Chem. Lett. 21 (2011) 255–258
icantly higher stability of dideuterotryptamine to deamination by
MAO in the brain was demonstrated, the ratio of the remaining
substance after pulse-chase being as high as six,19 although the
measured KIE for this substrate was substantially lower, about
1.7.20,21 KIE may be much larger for copper-dependent AOs, which
include LOX. For example, for tyramine, substituted benzylamines,
and butylamine the measured DV values were 2–3, whereas for
DKV much larger KIEs of 4–6 were observed.16,21–23

KIE for the physiological LOX substrates, including free Lys, and
Lys residues in peptides and proteins were never measured before.
Moreover, the potential of ‘protection’ against LOX should be eval-
uated as a means to obtain ‘reinforced’ versions of LOX substrates
for pharmacological purposes. In this study, we have prepared deu-
terated substrates of LOX and compared their stability towards
LOX oxidation. The results show that site-specific deuteration of
Lys substantially slows down the LOX mediated oxidation, suggest-
ing new approaches to modulating LOX activity.

Deuteration of Lys at position 6 (e-CH2) was carried out as shown
in Figure 1.24 The side chain amino group was first converted to a ni-
trile,25 which was then deuterated26 giving the title compound. Site-
specific deuteration (position 6 only), rather than per-deuteration, is
important because other positions in the Lys side chain may have
functions that should not be compromised. For example, Lys resi-
dues in collagen hydroxylated at position 5 by lysyl hydroxylase
have an important function27,28 that can be affected by perdeutera-
tion. LOX-produced hydroxylysine and hydroxyallysine can form
Schiff bases which can undergo dehydration/Amadori rearrange-
ment, eventually forming pyridinoline derivatives or, upon
oxidation, adducts with Arg.29 Moreover, 5-hydroxylysine can play
other roles in collagen. We did not want to interfere with the forma-
tion of 5-hydroxylysine or other metabolic pathways, and so pre-
pared the selectively ‘reinforced’ 6,6-D2-Lys derivative. The
identity and isotope purity (>95%) of this compound was confirmed
by 1H and 13C NMR (Fig. 2). 6,6-D2-Lys was converted into an appro-
priately protected Fmoc(Boc) derivative 5, which was then used to
synthesise a LOX peptide substrate.29–31

LOX used for our studies was prepared from aorta32 by several
methods and was tested using immunoblotting with a monoclonal
antibody in parallel with a recombinant, bacterially expressed LOX
that was purified by immobilized metal chelate chromatography
(Fig. 3). Care was taken to prevent contamination by other amine
oxidases, like SSAO (also referred to as VAP-1, encoded by AOC3
gene), which is abundant in aorta. Although SSAO cannot oxidize
Lys,37 it may still interfere with LOX assays, especially because
BAPN, the standard inhibitor of LOX, is both a substrate and a com-
petitive inhibitor of SSAO.38 Methylamine is a specific substrate for
SSAO, and berenil is a highly potent inhibitor of SSAO and its
homologs,39 whereas LOX is insensitive to this benzamidine deriv-
ative. Thus, berenil-sensitive oxidation of methylamine was also
Figure 1. Synthesis of 6,6
monitored and the purification process34 was found to yield LOX
free of contamination by SSAO (data not shown).

KIE measurements for 6,6-D2-Lys are shown in Figure 4. To
monitor the oxidation process, we used a fluorometric assay based
on stoichiometric release of hydrogen peroxide.40The measured
DVK effect (DKIE on Vmax/Km) was 4.35 ± 0.22 (n = 4) at 37 �C, simi-
lar to that reported for butylamine (4.3)16,21 and smaller than that
for substituted benzylamines (5.1–6.4)22 or tyramine (4.8).23 This
is consistent with the view that the chemical structure proximal
to the –CH2NH2 moiety affects substrate properties; indeed, both
Lys and butylamine are similar in this respect. More distant sub-
stituents have a negligible influence on DVK. Interestingly, much
smaller DV effects (DKIE on Vmax) were reported for the various
amines;16,21–23 for Lys (Fig. 4) it is close to unity (1.34 ± 0.3). The
reaction cycle of LOX and other copper-containing AOs obeys a
ping-pong mechanism that involves hydrogen abstraction as one
rate-limiting step of the reaction cycle,16,21 the other being oxida-
tion of quinonimine by dioxygen. Therefore, low DV values suggest
a strong limitation by the oxidative half-reaction.

The KIE may be used to reduce the activity of LOX without com-
plete blocking of its activity, by selectively ‘reinforcing’ Lys resi-
dues with deuterium thus creating stronger bonds that are less
susceptible to oxidation. The effect on Vmax/Km is a better estimate
of stability gain in vivo that may be achieved by site-specific deu-
teration of proteins and peptides, since their physiological concen-
tration may be quite low. Also, in case of high molecular weight
substrates, formation and dissociation of enzyme-substrate com-
plexes may significantly limit reaction rate and mask isotope
effects. For this reason, it is important to measure the KIE on a
polypeptide substrate.

LOX is sensitive to anionic residues vicinal to peptidyl-Lys.29 For
instance, Glu (but not Gln or Asp) N-terminal to Lys substantially in-
creased the catalytic efficiency of LOX oxidation as compared to Glu
C-terminal to Lys.41 LOX oxidizes basic globular proteins (pI >8) such
as histone H1, but does not oxidize neutral or acidic proteins (pI
<8).42 The rate of autocatalytic oxidation of LOX is low as it has a
small number of Lys residues (six Lys residues out of 417 in the hu-
man enzyme) in its pro-LOX sequence compared to an average of
about 7% for other proteins.1 We have prepared a typical peptide
fragment of collagen containing a single deuterated Lys residue31

and known to be a good substrate for LOX.27–29 Rate of its oxidation
was measured in the concentration range from 0.1 to 0.8 mM and it
was found that the isotope effect on Vmax/Km of the 6,6-D2-Lys-con-
taining peptide is 3.1 at 37 �C (Fig. 5). This confirms that the KIE mea-
surements for 6,6-D2-Lys described above are consistent with the
estimates that deuterated peptides and proteins should be approxi-
mately three times more resistant to oxidation by LOX in vivo.

Lys is an essential amino acid for many animals including prima-
tes. Thus, a mechanism is in place to take up Lys, as well as isotope
-dideutrolysine.24,30



Figure 2. Characteristic areas of 1H and 13C spectra of 6,6-D2-lysine in D2O, all values in ppm. Note the absence of signal at dH = 2.85 ppm (1H NMR; CD2NH2); and at
dC = 40 ppm (13C NMR; CD2NH2). The weaker 13C signal is due to combination of nuclear Overhauser effect, and splitting of this particular carbon atom into a quintet by two
D atoms of the CD2 group.

Figure 3. Immunoblotting of recombinant mouse LOX expressed in E. coli (A) and of
LOX isolated from sheep aorta (B). For a typical Western blot image shown, the
proteins were separated by SDS–PAGE, electrotransferred onto a PVDF membrane,
incubated with anti-LOX mouse monoclonal antibody, and developed using
peroxidase-based chemiluminescence. Slower electrophoretic mobility of recombi-
nant mouse LOX is mainly due to the presence of N-terminal MRGSHHHHHHGS tag.

Figure 4. Lineweaver-Burk plot of DKIE for oxidation of free Lys by LOX. Double
reciprocal plot of peroxide production rate versus Lys concentration. Squares:
unlabeled lysine; triangles: 6,6-D2-Lys (means of three measurements). DVK was
determined as ratio of slopes and as DV—as ratio of y-intercepts. Four independent
preparations of LOX from sheep aorta gave DVK = 4.35 ± 0.22 and DV = 1.34 ± 0.3
(mean ± standard deviation).

Figure 5. Lineweaver-Burk plot of DKIE for oxidation of Lys-containing peptide
Ac-RGGGGEKGGGGG-NH2 by lysyl oxidase from sheep aorta. Double reciprocal plot
of peroxide production rate versus peptide concentration. Squares: peptide with
unprotected lysine residue; triangles: peptide with 6,6-D2-Lys residue. Results are
representative of three independent experiments.
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reinforced D2-Lys provided as supplement, as illustrated by the daily
requirement for Lys (30 mg per kg body weight) and published data
on Lys turnover.43 The toxicity associated with heavy water (D2O) is
unlikely to be an issue here due to a non-exchangeable nature of deu-
terium in D2-Lys and a small total amount of deuterium involved.44

Importantly, the oxidation of Lys by LOX reported here is not com-
pletely blocked, thus still allowing for metabolic processes45 that in-
volve Lys metabolism. The results obtained here suggest a potential
medicinal application for the reinforced Lys in cases where LOX is
implicated in disease aetiology.
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