COMMUNICATIONS

Advanced
Synthesis &
Catalysis

@ Very Important Publication

DOI: 10.1002/adsc.201500510

Copper-Catalyzed Cascade Cyclization for the Synthesis of
Trifluoromethyl-Substituted Spiro-2H-azirines from 1,6-Enynes

Yu-Tao He," Qiang Wang,” Jiahui Zhao,” Xiao-Zhen Wang,” Yi-Feng Qiu,*
Yu-Chen Yang,* Jing-Yuan Hu,* Xue-Yuan Liu,* and Yong-Min Liang®"*

4 State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science,

Lanzhou 730000, People’s Republic of China

Fax: (486)-931-891-2582; phone: (+86)-931-891-2596; e-mail: liangym@Izu.edu.cn

Received: May 27, 2015; Revised: July 12, 2015; Published online: September 11, 2015

Abstract: A method for the synthesis of trifluoro-
methyl CF;-substituted spirocyclic compounds con-
taining with a unique quaternary carbon center
from readily available starting materials has been
developed. The reaction provides a facile access to
2H-azirines via cascade cyclization. These com-
pounds constitute a new class of functionalized syn-
thetic intermediates, which can be used for the syn-
thesis of various nitrogen-containing heterocycles
and biologically active CF;-containing compounds.
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The unusual synthetic motif of the 2H-azirines makes
them important reactive intermediates with ever-in-
creasing applications in organic synthesis."! They are
stable towards manipulation of the unique structure
featuring a C=N bond embedded in a highly strained
three-membered cycle, and they have been exploited
as useful precursors for constructing different azacy-
clic compounds by using transition metal catalysis or
UV light irradiation.”” In addition, as unique building
blocks, 2H-azirines have been used for the synthesis
of various nitrogen-containing heterocycles, such as
indoles,” pyrroles,” pyridines,®! isoxazoles!® and
others.”! Both the cleavage of C—N and C—C bonds
were classified to be general strategies for the ring-
opening reaction of 2H-azirines. Despite broad utility,
the synthesis of this unique structure is rarely stud-
ied.’l The traditional synthetic method relied on the
use of the corresponding ketones (Scheme 1a).”) The
limited approaches to 2H-azirines has seriously ham-
pered the further exploitation of their synthetic po-
tential. Thus, the development of practical synthetic
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methods to construct new functionalized 2H-azirines
is of great interest. With these demands in mind, Park
and co-workers developed a method for the synthesis
of quaternary carbon centered 2H-azirine-2-carboxyl-
ic esters by the rearrangement of a-diazo oxime
ethers (Scheme 1b).' Although this process enables
an efficient synthesis of 2H-azirines, the hardly acces-
sible substrates and the use of noble-metal catalysts
restrict its further application in synthetic chemistry.

Highly substituted pyrrolidines are ubiquitous sub-
structures in a large number of natural alkaloids ex-
hibiting important biological activities.'!! Various syn-
thetic methods have been developed reported towards
substituted pyrrolidine derivatives synthesis, such as
the reaction via cyclization of N-linked 1,6-enynes.!'”!
However, the construction of quaternary carbon cen-
tered spirocyclic pyrrolidines is still a challenge. With
recent development of radical chemistry, the cascade
radical cyclization of 1,6-enynes provides a new way
for the synthesis of valuable pyrrolidines.

Thus, we speculated whether both azirine and pyr-
rolidine could be simultaneously achieved in one pro-
cess. On the other hand, the introduction of important
functionalized groups, such as CF; group,*' into
building blocks is also highly desirable. In this con-
text, we are interested in the synthesis of trifluoro-
methyl-substituted azirines with structural complexity,
which could show great potential of subsequent trans-
formation in organic synthesis. The synthesis of such
a unique structure was previously studied by the
Roschenthaler group who used imine substrates with
a pre-introduced CF; group (Scheme 1¢).'! To the
best of our knowledge, the introduction of a new CF;
group to construct trifluoromethyl-substituted 2H-
azirine from readily available starting materials has
not been reported. Herein, we disclose a one-pot
route to trifluoromethylated spiro-2H-azirines via
a copper-catalyzed cascade cyclization of 1,6-enynes
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Scheme 1. Previous and proposed methodologies for the
synthesis of 2H-azirines.

(Scheme 1d). The significance of the present reaction
is three-fold: (i) The produced 2H-azirines represent
not only a highly valuable class of compounds found
in natural products,'® but also an important synthetic
motif in the synthesis of various heterocycles. (ii) The
introduction of CF; is of great importance for the
modification of this novel fragments. (iii) We have
synthesized a new pyrrolidine bearing a spirocyclic
skeleton motif via cascade cyclization.

On the basis of the above scenario, the commercial-
ly available azidotrimethylsilane (TMSNj3) was chosen
as the nitrogen source to explore the reaction with
1,6-enyne 1a and Togni’s reagent 2a.l'”! Initially, the
reaction was carried out in the present of 10 mol%
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Table 1. Optimization of the reaction conditions."!
CF3

TsN/_< Tij/(j
———Ph N)
1 catalyst (10 mol%) 3a
TMSN; N
* CF3 solvent, 90 °C, argon CF
0
©[K< TsN )
2a O N 3
Entry Catalyst Solvent t[h] Yield [%]™
1 Cu(OAc), DMF 5.0 69
2 CuSO, DMF 5.0 trace
3 Cu(OTY), DMF 5.0 62
4 Cu(MeCN),PF;, DMF 5.0 70
5 Cu DMF 5.0 76
6 Cu CH;CN 5.0 70
7 Cu DCE 5.0 59
8 Cu 1,4-dioxane 5.0 56
9 Cu NMP 5.0 35
10 Cu DMF 6.0 82 (2.0:1 dr)
11 Cu DMF 6.0 72
121 DMF 6.0 0
131 Cu DMF 6.0  trace

(4] Reaction conditions: 1a (0.2 mmol), Togni’s reagent 2a
(0.5 mmol), TMSN; (0.4 mmol), Cu powder (10 mol%),
solvent (1.5 mL), 90°C, under argon.

) Isolated yield (3a+3a’).

[l Under air conditions.

[ Without a copper catalyst.

[l NaN, was used instead of TMSNs.

Cu(OAc), in DMF at 90°C under argon. To our de-
light, the desired 2H-azirine product was isolated in
69% vyield after 5h (Table 1, entry 1). The molecular
structure of 3a was unambiguously confirmed by X-
ray crystallography (see Supporting Information).’]
The study of various Cu pre-catalysts revealed that
the Cu powder gave the best result (Table 1, entry 5).
A brief survey on the solvent revealed that DMF is
still the best choice for this reaction (Table 1, en-
tries 5-9). An increased yield of the desired 2H-azir-
ine (82%) was obtained when the reaction time was
prolonged to 6h (Table 1, entry 10). The reaction
worked well under an air atmosphere and gave 3a+
3a’ in 72% yield (Table 1, entry 11). Other attempts
to promote this process proved to be less effective
(see the Supporting Information). The control experi-
ment suggested that the copper catalyst was essential
to the transformation (Table 1, entry 12). In contrast,
only a trace amount of 2H-azirine was observed with
NaNj as nitrogen source (Table 1, entry 13). Finally, it
was confirmed that the optimal reaction conditions
were Cu powder (10 mol%) in DMF at 90°C under
argon for 6 h.1*"
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Table 2. Scope of the copper-catalyzed cascade cyclization of 1,6-enynes.
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3 TsN
TSN | /© \ O
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3p, 56%, 1.6:1dr

3t, 49%, >20:1 dr 3u, 78%, 1.7:1dr

1 Reaction conditions: 1 (0.2 mmol), Togni’s reagent 2a (0.5 mmol), TMSN; (0.4 mmol), Cu powder (10 mol%), DMF

(1.5 mL), 90°C, under argon, isolated yield.

[l The ratio of diastereomers was determined by crude '"H NMR. Structures of the major diastereomers are shown.

The optimal catalytic conditions were then applied
to a range of 1,6-enynes to examine the substrate
scope of this reaction. As summarized in Table 2, the
reaction was not significantly affected by the substitu-
ents on the phenyl ring of the 1,6-enynes. Both elec-
tron-donating and electron-withdrawing groups per-
formed well under the optimal reaction conditions
(3b-31). Meanwhile, this transformation was less af-
fected by the substituent with a 2-thiophenyl group
(3m) attached to the triple bond, which was obtained
in 79% yield. It is worth noting that the unsubstituted
allylic substrate (Im) afforded a decreased yield of
25% with a slightly improved diastereoselectivity
(4.0:1 d.r.). This diastereomeric ratio is higher than
those of all other substrates (except 3t). This case sug-
gests that the favored diastereomer may be a kinetic
product and the other a thermodynamic product. As
the yield increases, the thermodynamic diastereomer
may be more prevalent, decreasing the diastereomeric
ratio. In addition, enyne (1o) with a phenyl substitu-
ent efficiently participated in the reaction and provid-
ed the desired product 30 in 75% yield with the dia-
stereomeric ratio changed to 1:2. Substituents on the

Adpv. Synth. Catal. 2015, 357, 3069 -3075

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

internal position of the alkene had a dramatic effect
on the diastereoselectivities, and the selectivity to-
wards product 3" was increased with increased steric
hindrance of substituents from H, Me to Ph (3n, 3a
and 30). The reaction also proceeded smoothly with
a sterically-hindered naphthalene and gave the corre-
sponding product 3p. The reactivities of several
carbon-tethered 1,6-enynes (1q—1s) were subsequently
investigated, and the corresponding 2H-azirines (3q-
3s) were obtained in good yields. The use of oxygen-
tethered 1,6-enynes gave an excellent diastereoselec-
tivity for spiro amide 3t (>20:1 dr). Finally, the mo-
lecular structures of 3b’ and 3i" were unambiguously
confirmed through X-ray crystallography (see the
Supporting Information)?”.

The butyrolactone skeleton is present in a wide va-
riety of natural products with significant biological ac-
tivities, such as antibiotic and anti-tumor properties.*”!
It is also a versatile building block in organic synthe-
sis. Encouraged by those versatile results and the
unique role of butyrolactone, we wished to further in-
vestigate the scope of the reaction by using allylic al-
kynoates 4. As shown in Table 3, allylic alkynoates
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Table 3. Substrate scope of the allylic akynoates.[*"!

@«rf

‘\CF3

Cu powder
(10 mol%)

0\5 . <:: R Togms reagent

o} R2

\_§ DMF, 90 °C, argon,
4
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B - N */—CF
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Pt o
o
o
o’ © o7 ©

5b, 55%, 1:1dr
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5d, 62%,
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5f, 69%, 1:1dr

5c, 57%, 1:1dr

1:1dr 5e, 63%, 1:1dr

N 1 —cF,
i,
: o (o]

59, 45%, 1:1dr

[} Reaction conditions: 1 (0.2 mmol), Togni’s reagent 2a
(0.5 mmol), TMSN; (0.4 mmol), Cu powder (10 mol%),
DMF (1.5 mL), 90°C, under argon, isolated yield.

] The ratio of diastereomers was determined by crude
'"H NMR. Structures of the major diastereomers are
shown.

4a-4g were smoothly transformed into the corre-
sponding spiro-2H-azirines in moderate yields. The
tolerance of the process for the halogen substituent in
4f was remarkable, giving the desired product in 69%
yield. These butyrolactone skeletons might prove to
have some potential value in medicinal chemistry in
the future.

This copper-catalyzed synthesis of spiro-2H-azirines
proved to be synthetically useful to construct complex
heterocycles in organic chemistry. For instance, spiro
azirine product 3u was reacted with ynamide 6 in the
presence of 3 mol% of gold complex M in DCM at
70°C for 12 h,”” the cycloaddition occurred smoothly
and gave the spiro product 7% in 43% yield
(Scheme 2).

Furthermore, the reaction could be easily scaled up
to 1.7 gram and gave the desired product in a good
yield (Scheme 3).

The possible mechanism for the transformation of
1,6-enynes into 2H-azirines was also studied
(Scheme 4). The reaction without TMSN; was carried
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= CF3
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N M
3u, 0.36 mmol 3 mol%
N R
o Ms DCM, 70 °C
Ph N\ argon, 12 h
. t-Bu =y
6, 0.3 mmol _BU‘P-AU—NCMG 7, 43% yield

Scheme 2. Further synthetic transformations.
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Ph DMF, 90 °C, argon, 6 h
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1.516 g (3a + 3a’)

Scheme 3. Gram-scale reaction.

out to detect the corresponding CF; addition prod-
ucts. Both oxytrifluoromethylation product 8 (38% )l
and hydrotrifluoromethylation product 9 (15%) were
obtained under the optimized conditions (Scheme 4a).
An increased yield of hydrotrifluoromethylation prod-
uct (46%) was observed when 2.0 equiv. of 9-borabi-
cyclo[3.3.1]nonane (9-BBN) were added as hydride
source (Scheme 4b). Moreover, when the radical scav-
enger 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)
was added to the reaction system, no product was de-
tected with 89% of the starting material being recov-
ered. With another radical inhibitor 2,6-di-fert-butyl-
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Scheme 5. Proposed mechanism.
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4-methylphenol (BHT), a decreased yield (46%) of
the desired product was observed. On the basis of the
above results, literature precedents,™! and our pre-
viously research results,””) we propose the following
mechanism (Scheme 5). Firstly, Togni’s reagent 2a is
reduced by Cu powder to afford a CF; radical, which
reacts with 1,6-enyne to generate the radical inter-
mediate A. After cyclization by a 5-exo-dig process,
the vinyl radical intermediate B is formed. Secondly,
the vinyl radical intermediate B reacts with (2-iodo-
benzoyloxy)-copper(Il) and TMSN; to generate the
copper(Il) azide complex D, which could also be ob-
tained from the cyclization of intermediate C. Subse-
quent reductive elimination of intermediate D gives
the azide E. The release of nitrogen from azide E
generates alkenyl nitrene F, which is considered as
a valuable synthetic equivalent of 2H-azirine. Finally,
the spiroketal products as pairs of diastereomers were
obtained followed by intermediate G, which is just
a resonance structure of the alkenyl nitrene F.

In summary, we have developed an efficient
copper-catalyzed cascade cyclization of 1,6-enynes for
the synthesis of spirocyclic skeleton 2H-azirines. Com-
pared to the traditional synthesis methodology, our
the developed reaction systems could introduce an
important pharmaceutically active group (CF;) simul-
taneously, and provide a facile access to various spiro-
cyclic skeleton motifs. Further exploration on the
basis of this strategy, especially the biological activity
of spirocyclic lactones, is currently underway in our
laboratory.

Experimental Section

General Procedure

An oven-dried tube was charged with 1,6-enyne (0.2 mmol),
Togni’s reagent 2a (0.5 mmol) and Cu powder (0.02 mmol).
The tube was evacuated and backfilled with argon. Then,
TMSN; (0.4 mmol) dissolved in DMF (1.5 mL) was added.
The reaction mixture was stirring at 90°C for 6 h and hen
extracted with DCM. The combined organic layers were
washed with saturated brine, dried over Na,SO,, concentrat-
ed under vacuum and purified by flash column chromatogra-
phy to afford the product.
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