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The phenolic “A-ring” of natural and synthetic estrogen receptor (ER) ligands was effectively
replaced by a planar six-member ring formed through an intramolecular hydrogen bond within
a salicylaldoxime. Thus, oxime 1, a structural analogue of a triarylethylene estrogen, showed
a significant binding affinity for the ER. The OH of the oxime function appears to mimic the
phenolic OH present in more “classical” ER ligands because the binding reduced when the
oxime OH is methylated (2) or absent (3).

Introduction

Estrogens are hormones that play important roles in
regulating the development and function of reproductive
tissues, and they have significant effects on a wide
variety of other tissues, such as bone, the cardiovascular
and central nervous systems, and the liver.1 The effects
of estrogens are mediated by a specific receptor, which
functions as a ligand-inducible nuclear transcription
factor.2 Two subtypes of the estrogen receptor, ERR and
ERâ, have been described.3,4 Although it is not clear
what roles ERR and ERâ play in the various physiologi-
cal effects of estrogens, these ER subtypes have different
tissue distributions, and, in some cases, they show
considerable differences in their response to certain
receptor ligands.5-7 ER is also involved in several
diseases, such as breast and endometrial cancer, pros-
tate hypertrophy, and osteoporosis;8 for this reason,
some ER ligands that possess partial antagonist proper-
ties, like tamoxifen and raloxifene, have proven to be
effective in the treatment or prevention of these dis-
eases.9

One intriguing aspect of the pharmacology of estro-
gens is that they demonstrate remarkable patterns of
selectivity. Some estrogens, particularly those of the
newly designated class of selective estrogen receptor
modulators, or SERMs, are able to stimulate estrogenic
actions in those tissues where they are desired, such
as the bone, liver, and cardiovascular system but are
inactive or block estrogen action at other sites where
stimulation might be undesirable, such as the breast
and uterus.5,9 The search for SERMs that would have
an ideal profile of tissue selectivity for menopausal
hormone replacement or for the prevention or treatment
of breast cancer is an active aspect of current pharma-
ceutical and academic research endeavors.5,9

While the mechanistic basis of the tissue-selective
pharmacology of estrogens is not well understood, it has
been proposed to result either from selective action

through the two ER subtypes, ERR and ERâ,3,5 or from
differential interactions that an ER-hormone complex
might have with the different constellation of coregu-
latory proteins or effector components that are present
within the cells of different tissues and at different gene
regulatory sites.1 Regardless of the underlying mecha-
nism, however, it is the structure of the ER ligand that
plays the critical determining role in the pharmacologi-
cal character of estrogens. This has led to a search for
estrogens having novel structures and thereby, poten-
tially, novel pharmacology.

The classes of nonsteroidal ER ligands known so far
embody a remarkably heterogeneous variety of molec-
ular structures.10-12 Nevertheless, the striking chemical
feature common to nearly all synthetic ER ligands
possessing a good binding affinity is the presence of a
phenolic ring that seems to mimic the steroid “A-ring”
present in natural estrogens. This phenolic group is
thought to be responsible for the strongest attractive
polar interaction between ligand and receptor, through
the formation of a hydrogen bond network that includes
a bound water molecule and two amino acid residues of
the ER ligand binding domain (Glu353 and Arg394).13,14

In connection with our ongoing interest in discovering
new classes of chemical structures that possess good
estrogen receptor binding affinity with potential SERM
activity,6,7 we have investigated an unprecedented bio-
isosteric replacement of the phenolic A-ring.

The typical estrogen ligand pharmacophore model12

(Figure 1, left) contains a generic and quite variable core
structure bearing one phenolic ring (A) and a second
aromatic substituent which can be differently substi-
tuted (R). In addition, this generalized ligand structure
typically tolerates (or, in fact, may prefer) the presence
of one or two additional substituents, one of which may
be another aromatic group. An example of a typical
nonsteroidal estrogen that conforms to this pharma-
cophore model are the diarylnaphthalene systems shown
in the middle of Figure 1. Such systems, and their
B-ring dihydro- and tetrahydro-analogues, are well
represented in the nafoxidine class of antiestrogens.15

We envisaged the possibility that 3,4-disubstituted
salicylaldoxime derivatives (Figure 1, right) might be
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good estrogen receptor ligands because they possess a
hydroxy-substituted six-membered pseudo-ring (A′),
formed by an intramolecular hydrogen bond present in
a salicylaldoxime moiety. The existence of this hydrogen
bond can be verified by IR and NMR experiments, and
it confirms that the oxime in this system has the (E)-
geometry.16

This ring (A′) presents several features that indicate
its similarity with the phenolic A-ring: (i) both rings
have approximately same size and same planar π-con-
jugated (at least partially, in the case of the salicyl-
aldoximes) hexagonal geometry; (ii) the OH of the oxime
group is attached to an sp2 hybridized atom (nitrogen)
that is intramolecularly hydrogen-bonded to the ortho
phenol and has a pKa value around 10, within the pKa
range of typical phenolic OH groups; (iii) the position
of the oxime OH group corresponds to the position 3 of
the phenolic A ring, i.e., the position actually occupied
by an OH in classical ER ligands. Moreover, salicyl-
aldoximes have an aromatic ring that can act as the
“core structure” carrying additional substituents, at
least one of which should be an aromatic group. The
structural similarity of the salicylaldoxime to the phenol
is further supported by the ligand molecular modeling
presented below.

We began our investigation with 3,4-diaryl-substitut-
ed salicylaldoximes since they closely resemble the
diarylnaphthalenes, a chemical motif that includes
many good ligands for the ER.15 In this paper we report
the synthesis, molecular modeling, and an evaluation
of the ER receptor binding affinity properties of 3,4-
diphenylsalicylaldoxime 1, its O-methyl analogue 2, and
their aldehyde precursor 3, as well as that of a diaryl-
naphthalene compound (8),17 a nonsteroidal estrogen
that is isosteric with salicylaldoxime 1.

Results and Discussion

Chemical Synthesis. The synthesis of compounds
1-3 was accomplished as shown in Scheme 1, starting
from 2,3-dichloro-6-allylphenol 4, which was prepared
from commercially available 2,3-dichlorophenol as pre-
viously reported.18 Rearrangement of the terminal
double bond of 4 to an internal, conjugated position was
achieved by treatment with potassium t-butoxide in
DMSO;19 the product, compound 5, consisted of a 9:1
mixture E/Z isomers. Salicylaldehyde 6 was obtained
by oxidative cleavage of the double bond present in 5
(E/Z mixture), using sodium periodate and catalytic
amounts of osmium tetroxide.20 The aldehyde was then
protected as a cyclic acetal with ethylene glycol21 to
obtain compound 7.

This dichloride 7 was then submitted to two identical,
sequential Pd-catalyzed cross-coupling steps with phen-
ylboronic acid (1.5 equiv each step). It is known that
typical Suzuki conditions are suitable for aryl bromides
and iodides, but they are inefficient for cross-coupling
reactions of aryl chlorides.22 However, aryl chlorides do
react well under appropriate conditions, using Pd2(dba)3
as the catalyst, a trialkylphosphine as the ligand, Cs2-
CO3 as the base, and dioxane as the solvent.23 In fact,
under these conditions, dichloride 7 gave reasonable
yields of the diphenyl-substituted product 3. It should
be noted that under these conditions, the acetal protect-
ing group is cleaved, giving the free aldehyde 3. Nev-
ertheless, we determined that protection of the aldehyde
is important; otherwise, the yields of the two cross-
coupling steps decline significantly. The free salicyl-
aldehyde probably acts as a bidentate chelate that
competes with other ligands for the metal centers
(palladium or boron) during the Suzuki coupling reac-
tions. We have also tried to effect a double substitution
of the two phenyl groups in one step, by using 3 equiv
or more of phenylboronic acid at one time. This ap-
proach, however, resulted in the formation of consider-
able quantities of biphenyl, a self-coupling product of
phenylboronic acid, together with only very low amounts
of the desired di-adduct. Therefore, the sequential
sequence, using 1.5 equiv of phenylboronic acid each
step, turned out to be the best way that we found to
obtain compound 3.

Figure 1. Structural relatedness of salicylaldoxime (bottom)
and diarylnaphthalene (center) analogues with the estrogen
ligand pharmacophore model (left).

Scheme 1a

a Key: (a) t-BuOK, DMSO, 55 °C, 3 h; (b) OsO4 (0.4 mol %),
NaIO4 (2.3 equiv), dioxane-H2O (1:1), rt, 30 min; (c) (CH2OH)2,
p-TsOH (cat.), dry benzene, reflux, Dean-Stark trap; (d) 2 times:
Pd2(dba)3 (3.2 mol %), Cy3P (8.3 mol %), PhB(OH)2 (1.5 equiv),
Cs2CO3 (1.7 equiv), dioxane, 80 °C, 16 h; (e) NH2OH‚HCl, MeOH-
H2O (10:1), 50 °C, 2 h; (f) NH2OCH3‚HCl, EtOH-H2O (10:1), 50
°C, 15 min.
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Salicylaldoxime 1 was obtained by treating aldehyde
3 with hydroxylamine hydrochloride. Analogously, O-
methyl salicylaldoxime 2 was obtained by condensation
of 3 with methoxylamine hydrochloride. In both cases
(1 and 2), the (E)-form of the oxime was the only
diastereoisomer formed, presumably, because the in-
tramolecular hydrogen bond, which can only form in the
(E)-isomer, contributes to the oxime stability. A confir-
mation of the (E)-configuration of the oxime moiety was
evident from the chemical shift value of the oxime
proton, which is found well below 8 ppm (8.31 ppm for
1 and 8.24 ppm for 2). Such a downfield value is typical
for aromatic oximes possessing an (E)-configuration,
whereas the same group with a (Z)-configuration is
usually reported between 7.3-7.6 ppm. This is due to
the fact that when the oxime proton is on the same side
and in a close spatial contact with an electronegative
heteroatom such as an oxygen atom ((E)-configuration
of the oxime), it is deshielded to a greater extent than
when it is positioned on the other side ((Z)-configura-
tion).24

Estrogen Receptor Binding Assays. The binding
affinity of the new estrogen mimic 1 and its two
analogues 2 and 3, as well as the reference estrogen 8,
for both estrogen receptor subtypes, ERR and ERâ, was
determined in a radiometric competitive binding assay,
using methods that we have described elsewhere in
detail.25,26 In Table 1, we report the relative binding
affinity (RBA) values for these compounds, determined
in a uterine cytosol ER preparation, as well as with
purified full-length human ERR and ERâ; these binding
affinity values are reported relative to estradiol, which
is set at 100%.

Of the salicylaldehyde compounds we prepared, we
expected that the oxime 1 was most likely to be a good
ligand, because only it possesses an OH group that
might mimic the phenolic OH group present in the
A-ring of natural and synthetic ER-ligands (cf. Figure
1). On the other hand, we also wanted to verify the effect
of removing this oxime OH group, either by its meth-
ylation, as in compound 2, or by its absence, as in
compound 3.

From the results shown in Table 1, it is evident that
oxime 1 is an effective ligand for the estrogen receptor
in all three preparations, having RBA values in the
range of ca. 1-2% that of estradiol. It shows no
significant difference in its affinity for ERR or ERâ.

Compared to the affinity of the diarylnaphthalene
structural reference compound 8, oxime 1 has an affinity
that is from 30 to 100-fold less. Thus, its Kd value for
these estrogen receptors can be estimated to be 10-30

nM, vs 0.3 nM for estradiol. This places the binding
affinity of the salicylaldoxime estrogen mimic 1 on a par
with that of tamoxifen, as well as that of many other
estrogens and antiestrogens.11 The affinity of oxime 1
is, in fact, rather high for a compound that does not have
a phenolic function, and it is comparable to that of many
estrogens that do have phenols.27

The importance of the oxime OH group in compound
1 is evident from the considerable reduction in the RBA
values that was experienced when this group is meth-
ylated, as in 2. In fact O-methylated oxime 2 showed a
ER binding affinity ca. 100-fold lower than “free” oxime
1, depending on the receptor preparation. An even more
dramatic reduction in binding affinity is shown by
salicylaldehyde 3. This compound possesses the same
carbon skeleton as 1 and 2, but it completely lacks the
oxime function. In this case the relative binding affinity
values are 150-300 times lower than the ones found
with salicylaldoxime 1. Neither compound 2 nor 3
showed any appreciable ERR/â selectivity.

The salicylaldoxime group appears to be an effective
mimic of a phenol in the context that we have studied
here, that of the estrogen receptor and its ligands.
Nevertheless, the binding affinity of the oxime mimic 1
is still 30-100 fold less than that of the structurally
congruent phenol 8. This raises the interesting question
whether the lower affinity of compound 1 results from
a specific structural or electronic deficiency in precisely
how the pseudocyclic salicylaldoxime group is mimick-
ing the phenol or from a more general difference between
ligand 1 and ligand 8.

Molecular Modeling. To confirm the structural
similarity of salicylaldoxime 1 with the reference naph-
thol 8, we have subjected both compounds to molecular
mechanics minimization.

Comparison of the minimized structures (Figure 2)
shows that they are very similar, with the salicyl-
aldoxime system providing a nice structural mimic for
the phenol and the two phenyl substituents having very
similar dihedral angles (see Figure 2 legend). The
slightly smaller dihedral angles in the oxime 1 (69° and
68° vs 83° and 80° for the naphthol 8) suggest that the
oxygen lone pairs in the oxime provide less nonbonded
repulsion of the proximal phenyl than does the C-H
bond in the naphthol. It seems unlikely that these small
differences in dihedral angles are responsible for the
difference in binding affinity of the two compounds (see
Table 1), but is it of note that the lower affinity oxime

Table 1. Relative Binding Affinitiesa of
Salicylaldehyde-Related Compounds 1-3 and Reference
Compound 8 for the Estrogen Receptors R and â

ligand uterine ER hERR hERâ

estradiol (100) (100) (100)
1 0.85 ( 0.21 1.13 ( 0.18 1.71 ( 0.42
2 <0.010 0.012 ( 0.001 0.013 ( 0.003
3 <0.010 0.0084 ( 0.001 0.0080 ( 0.003
8 27.7 ( 3.6 116 ( 23 74.4 ( 20.9

a Determined by a competitive radiometric binding assay with
[3H]estradiol. Cytosol preparations of lamb uterus or full-length
human ERR and ERâ (PanVera) were used.24,25 Values are
reported as the mean ( SD under these conditions. The Kd for
estradiol in all three receptor preparations is 0.3 nM.

Figure 2. Left: oxime 1. Right: naphthol 8. The dihedral
angles for the two phenyl groups, listing first the proximal
and then the distal one, are: oxime 1, 69° and 68°; naphthol
8, 83° and 80°. These structures were obtained by molecular
mechanics minimization with the MMFF94 force field within
SYBYL 6.7, using the conjugate gradient minimizer to a
gradient of 0.05 kcal/(mol Å).
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is more planar than is the naphthol. In some related
ligands it is thought that ligand “thickness” in this
portion of the receptor contributes to high affinity
binding.28,29

Conclusion
In this investigation we demonstrate that the six-

member ring formed by the intramolecular hydrogen
bond in the salicylaldoxime 1 appears to be an effective
stereoelectronic replacement of the aromatic A-ring of
typical estrogen ligands and that the hydroxyl group of
the oxime in compound 1 seems to effectively mimic the
fundamental role played by the hydroxyl of the phenolic
A-ring in the interaction with the estrogen receptor. It
is not difficult to see that salicylaldoxime 1 represents
the first and simplest member of what might prove to
be a large class of novel estrogen receptor ligands, other
members of which could be accessed by modifying the
aromatic substituents in positions 3 and 4. Investiga-
tions along these lines are underway.

Supporting Information Available: Characterization
data of compounds 1-3 and 5-7 and experimental details.
This material is available free of charge via the internet at
http://pubs.acs.org.
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