

0040-4039(95)02034-9

Direct Anomeric O-Arylation and O-Hetarylation of Glucose – Electron Deficient Aromatic and Hetaromatic Compounds in Aryl and Hetaryl Glycoside Synthesis¹

Ursula Huchel, Christoph Schmidt, and Richard R. Schmidt*

Fakultät für Chemie, Universität Konstanz,

Postfach 5560 M 725, D-78434 Konstanz, Germany

Abstract: Anomeric O-arylation and O-hetarylation of tetra-O-benzyl-, tetra-O-acetyl-, and O-unprotected glucose (1a-c) can be directly performed with electron deficient aromatic and heteroaromatic systems having fluoro- (2A-2F) or phenylsulfonyl (3B, 3G-3K), respectively, as leaving groups. The reactions were carried out in DMF as solvent at room temperature with NaH as the base; they led in the products 4 to an exchange of the leaving group by the glucopyranosyloxy moiety; mainly β -products were obtained.

Direct anomeric O-alkylation of O-protected sugars has been recently extensively investigated yielding O-glycosides in a most convenient and effective manner²⁻⁴. Application of this method to O-unprotected sugars seemed to be rather difficult because not only α - and β -pyranosides but also α - and β -furanosides can be obtained; additionally, all the other hydroxy groups could be readily accessible to O-alkylation. However, studies with various alkylating agents exhibited highly regioselective and stereoselective O-glycoside bond formation⁴. Obviously, the anomeric hydroxy group is the most acidic and the generated 1-oxide sufficiently nucleophilic to overcome competing reactions at other hydroxy groups (Scheme 1)^{2,4,5}.

Scheme 1

These findings were reason to investigate direct anomeric O-arylation and O-hetarylation of sugars because sugar attachment to such systems may create interesting new physical and/or biological properties required for transport or for specific receptor binding, respectively, of active compounds in living systems⁶. Additionally, hetaryl O-glycosides could be interesting glycosyl donors, because leaving group character could be generated with the help of acid catalysts, thus, similar to the trichloroacetimidate method, experiencing energy gain by the imidate to amide transformation^{2,7}.

Nucleophilic substitution at aromatic and heteroaromatic compounds via an addition-elimination mechanism (S_N-Ar/AE) generally requires activation by electron-withdrawing groups (EWG) (Scheme 1).

Therefore, we investigated some typical aromatic and heteroaromatic substrate types and the required leaving groups. Because glucose exhibits typical sugar reactivity, tetra-O-benzyl-(1a), tetra-O-acetyl-(1b), and unprotected glucose (1c) were employed; thus, also typical protective group patterns were studied which greatly influence anomeric reactivity. Recent work on 2,4-dinitrophenyl glycoside formation⁸ and syntheses of some O-protected hetaryl glycosides employed in glycoside synthesis^{9,10} are reason to report on our results^{6,7,11}.

	1	1a		, <u>1b</u> ,		10	
2		PROD	JCT (YIELD, α, β)	PRODU	CT (YIELD, α, β)	PRC	DUCT (YIELD, α , β)
	(2A)	4Aa	(90 %, β)		a		a
	(2B)	4Ba	(75 %, β)	48b	(51 %, 1/3)	4Bc	(53 %, β)
	(2C)	4Ca	(26 %, 1/4)	4СЬ	(19 %, β)	4Cc	(20 %, β) b → 4Cb
	(2D)	4Da	(52 %, α:β - 3:7)	4Db	(36 %, β)	4Dc	(34 %, β) <mark>b</mark> ► 4Db
	(2E)	4Ea	(22 %, β)		c		c
	(2F)	4Fa	(92 %, β)	4Fb	(80 %, β)	4Fc	(48 %, β) b ► 4Fb

Table 1. FLUORIDE EXCHANGE AT AROMATIC AND HETEROAROMATIC SYSTEMS 2A - 2F

^a Not investigated; ^bPer-O-acetylation with Ac₂O/Pyr.; ^c No reaction.

Fluoride has become a common leaving group in S_N-Ar/AE reactions because it exhibits generally excellent leaving group character. The monocyclic systems 2A-2F which were investigated are summarized in Table 112. All reactions with 1a and 1b were carried out in CH₂Cl₂ and with 1c in DMF as solvent at room temperature; sodium hydride and 15-crown-5 were employed as base system. Pentafluorobenzonitrile (2A) reacts readily with 1a to give 4Aa in high yield; only the B-product could be isolated, thus revealing high anomeric diastereocontrol. With 2,4-dinitro-fluorobenzene (2B) all sugars (1a-c) reacted cleanly to give 4Ba-4Bc, hence even unprotected glucose furnished directly known O-unprotected β-glucopyranoside 4Bc8 in good yield. For the structural assignment all products derived from 1c were O-acetylated by treatment with acetic anhydride in pyridine. Replacement of the 2-nitro group in **2B** by a trifluoromethyl group $(\rightarrow 2C)$ led to a decrease in reactivity; however, still all products (4Ca-4Cc) were directly obtained; 4Ca consisted of a 1:4 α/β mixture. 2,4,6-Trifluoronitrobenzene (2D) exhibited similar reactivity and afforded 4Da-4Dc in good yields; expectedly, the 4-fluorine atom was exchanged by the β-D-glucopyranosyloxy residue. Lower reactivity was observed for less activated 3,4-difluoronitrobenzene (2E); only with 1a product 4Ea was obtained; no reaction was found for 1b under the standard conditions. Replacement of nitro- or cyano substituents by nitrogen as a ring member generally leads to related reactivity in S_N-Ar/AE reactions. This is also confirmed for pentafluoropyridine (2F) which gives high product yields with la-c, affording exclusively the β -isomers 4Fa-4Fc.

The alkyl- and arylsulfonyl group have also become useful leaving groups in S_N -Ar/AE reactions; they can be readily generated from the corresponding this substituents via oxidation¹³; generally, they exhibit higher leaving group character than fluorine¹⁴. This is shown in Table 2¹² for 2,4-dinitro-1-phenylsulfonyl benzene (3B) which gives even higher product yields of 4Ba-4Bc than 2B; with unprotected glucose (1c) 4Bc is directly obtained in 60% yield as pure β -product. Replacement of the 4-nitro group by a ring nitrogen (\rightarrow 3G) led expectedly to a slight decrease in reactivity (\rightarrow 4Ga-4Gc); however, most surprisingly, in the reaction with 1a only the α -product was isolated. 4,6-Dichloro-2-methylsulfonylpyrimidine (3H) exhibited similar results (\rightarrow 4Ha-4Hc). Pyrimidine derivative 3J showed much lower reactivity; it gave only with 1a the corresponding glucoside 4Ja (only β -product). Similarly, with quinazoline derivative 3K only 4Ka could be obtained. The structures of all new products could be readily assigned by their ¹H NMR data¹⁵.

1	1a	1b	1c1	
3	PRODUCT (YIELD, α , β)	PRODUCT (YIELD, α , β)	PRODUCT (YIELD, α , β)	
	48a (89 %, β)	4Bb (65%,β)	4Bc (60 %,β) <mark>b</mark> ▶ 4Ba	
NO ₂ NSO ₂ Ph (3G)	4 Ga (69 %, α)	4Gb (50 %, β)	4Gc (29%,β) b ≽ 4Gb	
S→N SO ₂ Me (3H)	4Ha (83 %, α)	4Hb (61 %, β)	4Hc (57 %,β) b ▶ 4Hb	
Ci N SO ₂ Me (3J)	4Ja (10 %, β)	c	C	
$ \underbrace{ \begin{array}{c} & & \\ &$	4Ka (19 %, β)	c	c	

Table 2. METHYLSULFONYL AND PHENYLSULFONYL GROUP EXCHANGE AT AROMATIC AND HETEROAROMATIC SYSTEMS 3B, 3G - 3K

Preliminary investigation of some hetaryl glycosides as glycosyl donors (4Fa, etc.^{7,11}) exhibited for all cases studied lower reactivities than those observed for the corresponding trichloroacetimidates². Additionally, stereocontrolled formation of the hetaryl α - or β -glycoside was not possible because the anomeric O-hetarylation is irreversible under the reaction conditions. Yet, for this endeavour more appropriate systems can be envisaged.

In conclusion, direct anomeric O-arylation and O-hetarylation can be employed successfully not only for the synthesis of O-protected glucopyranosyloxy derivatives but also for the direct generation of O-unprotected representatives. O-Benzyl protected **1a** exhibits generally higher reactivity than O-acetyl (**1b**) or unprotected glucose (**1c**). Because the O-benzyl group has an inductive effect comparable to that of hydrogen the lower reactivity of **1c** must be due to other effects (solvent, hydrogen bonding, etc.). For monocyclic aromatic systems activation by at least two EWG's is required when fluorine or phenylsulfonyl are the leaving groups. Because still better leaving groups and also catalysts for S_N -Ar/AE reactions are available and condensed systems exhibit higher reactivity, this reaction should have a wide scope. As found for anomeric O-alkylation, generally high β -selectivity is observed. Two examples exhibiting high α -selectivity cannot be fully rationalized yet. **References and Notes**

- Anomeric O-Alkylation Part 15.- For Part 14 see: W. Klotz, R.R. Schmidt, Synthesis, submitted. -1. This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Bundesministerium für Ernährung, Landwirtschaft und Forsten, and BASF AG Ludwigshafen.
- 2. R.R. Schmidt, Angew. Chem. 1986, 98, 213-236; Angew. Chem. Int. Ed. Engl. 1986, 25, 212-235; Pure Appl. Chem. 1989, 61, 1257-1270; and references therein.
- Y.E. Tsvetkov, W. Klotz, R.R. Schmidt, Liebigs Ann. Chem. 1992, 371-375; H. Rembold, R.R. Schmidt, Carbohydr. Res. 1993, 246, 137-159. 3
- 4. R.R. Schmidt, W. Klotz, Synlett 1991, 168-170; W. Klotz, R.R. Schmidt, Liebigs Ann. Chem. 1993, 683-690; J. Carbohydr. Chem. 1994, 13, 1093-1101.
- R.R. Schmidt, J. Michel, Tetrahedron Lett. 1984, 25, 821-824; R.R. Schmidt, J. Michel, M. Roos, 5. Liebigs Ann. Chem. 1984, 1343-1357.
- U. Huchel, Diplomarbeit, Universität Konstanz, 1995.
- R. Bommer, unpublished results, Universität Konstanz, 1987; H. Gaden, Dissertation, Universität 7. Konstanz, 1989.
- 8. S.K. Sharma, G. Corrales, S. Penadés, Tetrahedron Lett. 1995, 36, 5627-5630.
- M. Palme, A. Vasella, Helv. Chim. Acta 1995, 78, 959-969; and references therein. 9
- 10. S. Hanessian, J.J. Condé, B. Lou, Tetrahedron Lett. 1995, 36, 5865-5868; and references therein.
- C. Schmidt, Diplomarbeit, Universität Konstanz, 1994. 11.
- Compounds 2A-2F are commercially available; 3B: J.D. London, J. Chem. Soc. 1936, 218-220; 3G: 12. H.C. Winter, F.E. Reinhart, J. Am. Chem. Soc. 1940, 62, 3508-3510; 3H, 3J: J.M. Spargue, T.B. Johnson, J. Am. Chem. Soc. 1935, 57, 2252-2258; 3K was prepared following known procedures; see ref. 6.
- 13. W.H. Nyberg, C.C. Cheng, J. Heterocycl. Chem. 1972, 9, 745-746; and references therein.
- 14. R.J. Badger, G.B. Barlin, J. Chem. Soc., Perkin Trans. II 1974, 1854-1859; G. Bartoli, P.E. Todesco, Acc. Chem. Res. 1977, 10, 125-132; and references therein.
- Selected physical data ($[\alpha] = [\alpha]_{589}^{-22}$): **4Aa**: Colorless oil; TLC (PE/EE, 7:3): $R_f = 0.67$, $[\alpha] = +19$ (c = 1, CHCl₃); ¹H-NMR (250 MHz, CDCl₃): $\delta = 5.35$ (d, $J_{1,2} = 8.1$ Hz, 1 H, 1-H β). **4Ba**: Colorless crystals, m.p. 108°C; TLC (PE/EE, 7:3): $R_f = 0.53$; ¹H-NMR (250 MHz, CDCl₃), $\delta = 5.20$ (d, $J_{1,2} = 7.1$ Hz, 1 H, 1-H β). **4Ba**: Colorless crystals, m.p. 108°C; TLC (PE/EE, 7:3): $R_f = 0.53$; ¹H-NMR (250 MHz, CDCl₃), $\delta = 5.20$ (d, $J_{1,2} = 7.1$ Hz, 1 H, 1-H β). **4Ba**: Colorless crystals, m.p. 108°C; TLC (PE/EE, 7:3): $R_f = 0.53$; ¹H-NMR (250 MHz, CDCl₃), $\delta = 5.20$ (d, $J_{1,2} = 7.1$ Hz, 1 H, 1-H β). **4Ba**: Colorless crystals, m.p. 108°C; TLC (PE/EE, 7:3): $R_f = 0.53$; ¹H-NMR (250 MHz, CDCl₃), $\delta = 5.20$ (d, $J_{1,2} = 7.1$ Hz, 1 H, 1-H β). 15 7.1 Hz, 1 H, 1-H β). 4Bb(α): Colorless crystals, m.p. 184°C, [α] = +16.8 (c = 1, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.41$; ¹H-NMR (250 MHz, CDCl₃), $\delta = 6.03$ (d, $J_{1,2} = 3.6$ Hz, 1 H, 1-Ha). **4Bb**(β): Colorless crystals, m.p. 176°C, [α] = +35.2 (c = 1, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CHCl₃); ¹H-NMR (1) (Hz); ¹Hcrystals, m.p. 176°C, $[\alpha] = +35.2$ (c = 1, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.54$; ¹H-NMR (600 MHz, CDCl₃), $\delta = 5.27$ (d, $J_{1,2} = 7.19$ Hz, 1 H, 1-H β). **4Bc**: TLC (Aminophase, CH₃CN/H₂O, 8:1): $R_f = 0.46$. **4Ca**: Colorles crystals, m.p. 91°C, $[\alpha] = -28.1$ (c = 0.5, CHCl₃); TLC (PE/EE, 7:3): $R_f = 0.66$ - 0.72; ¹H-NMR (250 MHz, CDCl₃), $\delta = 5.21$ (d, $J_{1,2} = 7.1$ Hz, 0.8 H, 1-H β), 5.50 (d, $J_{1,2} = 3.6$ Hz, 0.2 H, 1-H α). **4Cb**: Colorless crystals, m.p. 142°C, $[\alpha] = -38.2$ (c = 1, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.50$; ¹H-NMR (600 MHz, CDCl₃), $\delta = 5.24$ (d, $J_{1,2} = 7.67$ Hz, 1 H, 1-H β). **4Cc**: TLC (Aminophase, CH₃CN/H₂O, 8:1), $R_f = 0.48$. **4Da**: Colorless crystals, m.p. 104°C, $[\alpha] = -2.2$ (c = 1, CHCl₃); TLC (PE/EE, 7:3): R_f = 0.78; ¹H-NMR (600 MHz, CDCl₃), $\delta = 5.04$ (d, $J_{1,2} = 7.36$ Hz, 0.7 H, 1-H β , 5.28 (d, $J_{1,2} = 3.64$ Hz, 0.3 H, 1-H α). **4Db**: Colorless crystals, m.p. 104°C, $[\alpha] = +28.2$ (c = 1, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.46$; ¹H-NMR (600 MHz, CDCl₃), $\delta = 5.07$ (d, $J_{1,2} = 7.46$ Hz, 0.7 H, 1-H β , 5.28 (d, $J_{1,2} = 3.64$ Hz, 0.3 H, 1-H α). **4Db**: Colorless crystals, m.p. 139°C, $[\alpha] = +28.2$ (c = 1, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.46$; ¹H-NMR (600 MHz, CDCl₃) $\delta = 5.07$ (d, $J_{1,2} = 7.46$ Hz, 0.7 H, 1-H β). **4DC**: TLC (Aminophase, CH₃CN/H₂O, 8:1): $R_f = 0.81$; ¹H-NMR (250 MHz, CDCl₃): $\delta = 5.05$ (d, $J_{1,2} = -3.64$ Hz, 0.7 H, 1-H β). **4Fa**: Colorless oil; TLC (PE/EE, 7:3): $R_f = 0.61$, $[\alpha] = +8.1$ (c = 1.0, CHCl₃); ¹H-NMR (250 MHz, CDCl₃): $\delta = 5.19$ (d, $J_{1,2} = 7.3$ Hz, 1 H, 1-H β). **4Fb**: Colorless crystals, m.p. 135°C; TLC (PE/EE, 6:4): $R_f = 0.81$, $[\alpha] = +25.2$ (c = 1, CHCl₃); ¹H-NMR (250 MHz, CDCl₃): $\delta = 5.44$ (d, $J_{1,2} = 7.8$ Hz, $J_H = 3.6$ Hz, 1 H, 1-H β). **4Ga**: Colorless crystals, m.p. 76°C, $[\alpha] = +99.3$ (c = 1, CHCl₃); ¹H-NMR (250 MHz, CDCl₃): $\delta = 5.44$ (d, $J_{1,2} = 7.8$ Hz, $J_H = 3.6$ Hz, 1 H, 1-H β). **4Ga**: Colorless crystals, m.p. 76°C, (12) EE, 0.4), $R_f = 0.01$, $R_f = 12.2$ (c = 1, CHCl₃), H-Min (250 MHz, CD Cl₃), c = 0.11 (c, r_{12}), 7.8 Hz, $J_{H,F} = 3.6$ Hz, 1 H, 1-H β). **4Ga:** Colorless crystals, m.p. 76°C, $[\alpha] = +99.3$ (c = 1, CHCl₃); TLC (PE/EE): $R_f = 0.74$; ¹H-NMR (250 MHz,CDCl₃): $\delta = 6.73$ (d, $J_{1,2} = 3.4$ Hz, 1 H, 1-H α). **4Gb:** Colorless crystals, m.p. 141°C, $[\alpha] = +15.4$ (c = 1, CHCl₃); TLC (PE/EE, 1:1): $R_f = 0.61$; ¹H-NMR (250 MHz, CDCl₃): $\delta = 6.23$ (d, $J_{1,2} = 8.0$ Hz, 1 H, 1-H β). 4Gc: TLC (Aminophase, CH₃CN/H₂O, CDCl_3 : $\delta = 6.03$ (d, $J_{1,2} = 8.0$ Hz, 1 H, 1-H β). **4Hc:** TLC (Aminophase, CH₃CN/H₂O, 8:1): $R_f = 0.41$. **4 Ja:** Colorless crystals, m.p. 132°C, $[\alpha] = +12.3$ (c = 0.5, CHCl₃); TLC (PE/EE, 7:3): $R_f = 0.57$; ¹H-NMR (250 MHz, CDCl₃): $\delta = 5.93$ (d, $J_{1,2} = 7.9$ Hz, 1 H, 1-H β). **4Ka**: Pale yellow oil, $[\alpha] = +8.7$ (c = 1, CHCl₃); TLC (PE/EE, 7:3): $R_f = 0.72$; ¹H-NMR (250 MHz, CDCl₃): $\delta = 6.17$ (d, $J_{1,2} = 7.7$ Hz, 1 H, 1-HB).

(Received in Germany 11 October 1995; accepted 25 October 1995)