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Formal Synthesis of (�)-Aphanorphine Using Sequential
Photomediated Radical Reactions of Dithiocarbamates**
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Aphanorphine (1), an alkaloid isolated from the freshwater
blue-green alga Aphanizomenon flos-aquae,[1] has attracted
considerable attention from the synthetic community owing
to its structural similarity to natural and non-natural analge-
sics such as morphine, eptazocine, and pentazocine
(Scheme 1).[2] Approaches to aphanorphine developed to
date have all relied on the formation of the B or C ring to
complete theC-norbenzomorphan skeleton, typically exploit-
ing the rigidity of the bridged tricyclic 3-benzazepine struc-
ture to set the second stereocenter from a preexisting
quaternary benzylic stereocenter at C1,[2a–d,i,k] or from an a-
branched amine at C4.[2n,o,r,t–v,x,y] In this communication we
present a complementary strategy for the synthesis of
aphanorphine which is characterized by the late-stage incor-
poration of the aromatic A ring, and formation of the
pyrrolidine C ring through a novel carbon–carbon bond-
forming reaction.

We have recently reported a new method for the
generation of carbamoyl (aminoacyl) radicals from dithiocar-
bamate precursors, and their subsequent intramolecular
addition—dithiocarbamate group-transfer reactions with
alkenes.[3] Application of this methodology to the synthesis
of the core 6-azabicyclo[3.2.1]octane ring system of aphanor-
phine was envisaged based upon a regioselective 5-exo-trig
cyclization of carbamoyl radical 2 followed by dithiocarba-
mate group transfer to give the functionalized bicyclic lactam
3 (Scheme 1). It was further envisaged that the dithiocarba-
mate group in 3 would provide a handle for phenol
annulation. Critical to the success of such an approach is
the ability of carbamoyl radicals generated from dithiocarba-
mate precursors to undergo potentially difficult cyclizations
onto unactivated alkenes.[3, 4] Previous work by Quirante,

Bonjoch, et al. had shown that a-amino radicals undergo
analogous cyclizations onto alkenes carrying electron-with-
drawing groups at C9a (aphanorphine numbering);[5] how-
ever, unactivated alkenes did not undergo cyclization. The
effect of a further alkene substituent at C1, which may also
disfavor 5-exo-trig cyclization, was not evaluated.[6]

An asymmetric synthesis of the requisite secondary
cyclohexenylamine is outlined in Scheme 2 and relies on
Ellman6s sulfinamide auxiliary to set the amino-substituted
stereocenter destined to be C4 of aphanorphine.[7, 8] Conden-
sation of enantiomerically pure (R)-tert-butanesulfinamide
(5) with commercially available cis-4-heptenal gave the
expected (E)-sulfinimine 6 (Scheme 2).[9,10] Addition of 2-
methylallylmagnesium chloride gave rise to sulfinamide 7 in
excellent yield as a 83:17 mixture of diastereoisomers.[11] The
configuration of the major stereoisomer 7 was predicted to be
R on the basis of the Ellman model[7] and was ultimately
proven through a formal synthesis of (�)-aphanorphine.
Separation of the two diastereomers could not be achieved at
this stage, and so the mixture was carried through the
following steps. Following N-methylation of 7,[12] 1,7-diene 8
was subjected to ring-closing metathesis using the Grubbs
second-generation catalyst,[13] which furnished the trisubsti-
tuted alkene 9 in excellent yield.[14] Finally removal of the
sulfinyl auxiliary under acidic conditions gave the hydrochlo-
ride salt 10.[7] At this stage, a single recrystallization of 10 gave
enantiomerically pure material.[15]

Scheme 1. Analgesics structurally related to aphanorphine and a retro-
synthesis of (�)-aphanorphine (1).
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We have previously developed a two-step synthesis of
carbamoyl dithiocarbamates from secondary amines by first
treatment with triphosgene and pyridine to give the carba-
moyl chloride, followed by chloride displacement with sodium
diethyldithiocarbamate at room temperature in acetone.[3]

Although such a procedure could in principle be used in the
case of the free base derived from 10, we were wary of
volatility issues associated with such a low-molecular-weight
amine and instead sought to develop a method that avoided
the isolation of the free amine. Batey et al. have recently
reported carbamoylimidazolium salts as synthetic alternatives
to carbamoyl chorides in displacement reactions with amines,
alcohols, and thiols.[16] Treatment of ammonium salt 10 with
carbonyldiimidazole in the presence of potassium carbonate
gave the carbamoylimidazole 11 in essentially quantitative
yield (Scheme 3). Activation of 11 through N-methylation
gave a carbamoyl imidazolium salt.[16] Using sodium dieth-
yldithiocarbamate as a nucleophile, displacement was best
achieved in refluxing acetone to give the radical-cyclization
precursor 4 in 86% yield over two steps. Gratifyingly, 4
underwent clean photoinitiated group-transfer radical cycli-
zation under our standard conditions[3] to give a single

product 3, isolated in 71% yield. The structure of 3 was
ultimately confirmed by X-ray crystallography.[17]

The formation of 3 is consistent with a 5-exo-trig cycliza-
tion of carbamoyl radical 2 to form a bridged azabicyclo-
[3.2.1]octane ring system (path a, Scheme 4), followed by a

stereoselective group-transfer to the secondary radical 12 to
give the axial dithiocarbamate 3. We did not observe
formation of any products 14 containing the azabicyclo-
[2.2.2]octane ring system derived from a 6-endo-trig cycliza-
tion onto the less-substituted end of the double bond (path b).
The presence of a methyl group at the site of attack on the
double bond is clearly not sufficient to unduly influence this
particular radical cyclization.[6]

With formation of the bridged 6-azabicyclo[3.2.1]octane
ring system in hand, our attention turned to using the
dithiocarbamate group as a means to introduce the phenol
ring of the natural product. We were particularly attracted by
the idea of having a carbonyl group in place of the
dithiocarbamate in 3 (see below). Although a number of
sequences can be envisaged for such a transformation,[18] we
were intrigued by the possibility of initiating a new radical
process from dithiocarbamate 3. Although the trapping of
free radicals with both the 2,2,6,6-tetramethyl-1-piperidinoxyl
radical (TEMPO) and oxygen to form new carbon–oxygen
single bonds is well precedented,[19] use of dithiocarbamates
as precursors to alkyl radicals is relatively rare,[20] and we are
aware of only one example of a radical-chain process using
Bu3SnH having been reported.[21] Keen to avoid the use of
Bu3SnH due to toxicology and potential separation issues,[22]

we instead elected to further our investigations into the use of
light to initiate radical processes from dithiocarbamates. To
our delight, irradiation of a solution of dithiocarbamate 3 with
a medium-pressure mercury arc lamp in a quartz reaction
vessel in the presence of TEMPO resulted in the formal
replacement of a carbon–sulfur bond with a carbon–oxygen
bond and the clean formation of a single adduct 15
(Scheme 5). We believe this result is consistent with radical
12 being regenerated and stereoselectively trapped with
TEMPO[23] and represents a new reaction manifold for
dithiocarbamates.[24]

The TEMPO adduct 15 was directly oxidized to ketone 16
usingmCPBA (Scheme 5).[25] Initial attempts to use ketone 16

Scheme 2. Asymmetric synthesis of secondary amine. Cy=cyclohexyl,
Mes=mesityl.

Scheme 3. Formation of carbamoyl dithiocarbamate and group-transfer
radical cyclization.

Scheme 4. Regio- and stereoselectivity in dithiocarbamate group--
transfer radical cyclization.
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for phenol formation using modified Robinson annulation
conditions met with failure.[26] However, use of an alternative
procedure developed by Boger and Mullican proved more
successful.[27] Hence, reaction of 16 with dimethoxymethylene
malonate under basic conditions followed by acid-catalyzed
dehydration gave the electron-deficient pyrone 17 in 73%
overall yield. Inverse-electron-demand Diels–Alder reaction
with dimethoxyethylene ketal followed by in situ loss of CO2

and MeOH gave the tetrasubstituted aromatic compound 18.
Removal of the ester group was accomplished by first
hydrolysis to the corresponding carboxylic acid, followed by
copper-mediated decarboxylation.[27] The resulting lactam 19
had an optical rotation consistent with that reported in the
literature,[2v] and its preparation constitutes a formal total
synthesis of (�)-aphanorphine (1). Conversion of 19 to the
natural product has previously been accomplished in two
steps—reduction of the amide to the amine using LiAlH4 in
87–93% yield,[2o,v,w] followed by O-demethylation using BBr3

in yields ranging from 61–88%.[2a,b,i,k,o,x]

In conclusion, a formal total synthesis of (�)-aphanor-
phine has been achieved using a carbamoyl radical cyclization
to prepare the 6-azabicyclo[3.2.1]octane ring system of the
natural product, followed by a novel photomediated dithio-
carbamate–TEMPO exchange reaction to introduce oxygen
functionality and facilitate formation of the aromatic ring.
Lactam 19, a known intermediate in aphanorphine synthesis,
was prepared in 13 steps and 14 % overall yield starting from
commercially available materials. In the course of this work a
new method for the synthesis of carbamoyl dithiocarbamates
has also been developed.
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