Tetrahedron 72 (2016) 3436-3442

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Highly regioselective tandem formal substitution and decarboxylation of 2-acyl-1-chlorocyclopropanecarboxylates with sodium sulfinates

Yuequan Zhu, Yuefa Gong*

School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China

ARTICLE INFO

Article history: Received 19 February 2016 Received in revised form 21 April 2016 Accepted 22 April 2016 Available online 25 April 2016

Keywords: Tandem reaction Decarboxylation Sodium sulfinate Cyclopropene

ABSTRACT

This article reported a highly regioselective tandem formal nucleophilic substitution and decarboxylation reaction of alkyl 2-acyl-1-chlorocyclopropanecarboxylates with sodium sulfinates under basic conditions. Actually, alkyl 2-acyl-1-chlorocyclopropanecarboxylates could be easily converted into cyclopropene intermediates by simple 1,2-elimination of hydrogen chloride, and this highly reactive cyclopropene quickly combines with sodium sulfinate via a regioselective 1,4-Michael addition. Subsequent esterolysis and decarboxylation of the 1,4-Michael adducts afforded 1-aroylsulfonyl-2aroylcyclopropanes in high yields. This observation firstly demonstrates that direct Michael addition of sodium sulfinates with reactive cyclopropene is really workable.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cyclopropenes, for their unique reactivity that extends far beyond chemical properties typical for common alkenes, has attracted increasing attention of chemists in the past decades.¹ Recently, a more reactive cyclopropene intermediate I (Scheme 1A) bearing two electron-withdrawing groups on its C=C bond was observed during our investigation in the formal fluorination reaction of ethyl 2-aroyl-1-chlorocyclopropanecarboxylates with HF₂ or H₂F₃.² To our knowledge, this is one successful example for unique nucleophilic addition reaction of hydrogen fluoride with electro-deficient alkenes under weakly basic conditions.

Inspired by this observation, we want to evaluate nucleophilic addition reactions of other typical weak nucleophiles with the electron-deficient cyclopropenes generated in situ. Among them, sodium sulfinates as a kind of weaker nucleophile, to date, are rarely reported in direct Michael addition reaction with electron-deficient alkenes except with some special olefines such as alkenyliodonium salt (Scheme 1B).³ For the wide applications of cyclopropyl sulfones in synthesis^{4–8} and potential antimicrobial and pesticidal activities,⁹ our attention was focused on the possibility to prepare cyclopropyl sulfones through direct Thia-Michael

A: our previous work

B: previous work

C: proposed reaction in this work

Scheme 1. The additive reactions of weak nucleophiles with alkenes.

addition of sodium sulfinates with the reactive electron-deficient cyclopropenes (Scheme 1C).

In general, cyclopropyl sulfones could be prepared from the cycloaddition of vinylic sulfones with active methylene compounds,¹⁰ cyclization of sulfone-stabilized carbanions and electrondeficient alkenes,¹¹ or cycloisomerization of terminal epoxides with sodium salts of diethyl (phenylsulfonyl)-methylphosphonate.¹² Moreover, they could also be formed from further oxidation of

. Tetrahedro

^{*} Corresponding author. Tel.: +86 027 87543232; fax: +86 027 87543632; e-mail address: gongyf@mail.hust.edu.cn (Y. Gong).

cyclopropyl sulfides.¹³ There is still a great demand for a general and convenient procedure from readily available starting materials.

Based on the above idea and current research situation, we have tried the possible reaction between 2-aroyl-1-chlorocyclopropanecarboxylates and sodium sulfinates. As a consequence, a highly regioselective tandem reaction involving 1,2-elimination of HCl, 1,4-Michael addition of arylsulfinate, esterolysis and decarboxylation occurred smoothly, affording a variety of cyclopropyl sulfones in high yields with dr>20:1. In fact, it was the first instance reported hitherto about direct Michael addition of sodium arylsulfinate with cyclopropene intermediate I. Moreover, the introduction of sulfonyl group makes the subsequent esterolysis and decarboxylation proceed more easily in a tandem process.

2. Results and discussion

Initially, we began our study choosing ethyl 2-benzoyl-1-chlorocyclopropanecarboxylate **1a** and sodium benzenesulfinate **2a** as benchmark substrates. Fortunately, the product **4aa** in 74% yield with *dr*>20:1 was observed in the presence of 1 equiv Cs₂CO₃ in DMSO at 80 °C (Scheme 2). The structure of product for this process was carefully characterized by ¹H and ¹³C NMR spectros-copy and HRMS, and the major isomer was assigned to be *trans*-**4aa**. This assignment was further supported by single crystal X-ray analysis of product **4bd** (see Supplementary data). It should be mentioned that product **3aa** (in 18% yield) yielded through simple sulfonate addition, which was hardly separated from **4aa** by silica gel column chromatography.

Scheme 2. Formal substitution reaction of 1a with sodium sulfinate 2a.

In order to get the optimal reaction conditions, several parameters including base, solvent and reaction temperature were screened using the above reaction of 1a with 2a as the model. The observed results are summarized in Table 1. Firstly, a variety of inorganic and organic bases were assessed. From the results listed in Table 1 (entries 2–11), we can conclude all of the inorganic bases can promote this reaction, but their property has a great influence on the reaction. Common bases like K₂CO₃ or Na₂CO₃ showed inferior catalytic activity, and gave only low conversions after 24 h (Table 1, entries 1–2). Strong base was conducive to the further decarboxylation of this reaction process. Among all the inorganic bases such as K₃PO₄. NaOH. KOH. and CH₃ONa. C₅₂CO₃ was the most suitable one, and the product 4aa was produced in 89% yield with dr>20:1 possibly owing to its high solubility in DMSO (Table 1, entries 3-7). In contrast, strong base t-BuOK obviously accelerated the consumption rate of 1a, but led to a significant decline in the yield of 4aa (Table 1, entry 8). This decline could be attributed to much faster 1,2-elimination of 1a and subsequent polymerization of the cyclopropene intermediate generated in situ under the strongly basic conditions. On the other hand, organic bases such as DIPEA, TEA and DBU also can promote the reaction, but the product yields were unsatisfied (Table 1, entries 9-11). Then, some commonly used solvents were screened. Strong polar aprotic solvents such as DMSO, DMF seems to be good choice for the high yields of 4aa (Table 1, entries 4, 12–16). We realized that the solubility of base has a marked influence on the reaction in solvents, and DMSO was the most appropriate one. Decreasing the loading of base to 1.5 equiv or lowering reaction temperature resulted in the

Table 1	Tal	ole	1
---------	-----	-----	---

Entry	Base	Solvent	Time (h) ^b	Conversion (%)	Yield(%) ^c	
					3aa	4aa
1	K ₂ CO ₃	DMSO	24	62	62(38)	16(10)
2	Na_2CO_3	DMSO	24	40	64(26)	12(5)
3	K ₃ PO ₄	DMSO	10	100	19	70
4	Cs_2CO_3	DMSO	2	100	_	89
5	NaOH	DMSO	5	100	10	48
6	KOH	DMSO	4	100	4	48
7	CH₃ONa	DMSO	3	100	16	33
8	t-BuOK	DMSO	0.5	100	_	26
9	DIPEA	DMSO	24	26	27(7)	_
10	TEA	DMSO	24	44	51(22)	_
11	DBU	DMSO	2	100	16	43
12	Cs_2CO_3	DMF	4	100	11	74
13	Cs ₂ CO ₃	CH₃CN	4	100	4	37
14	Cs_2CO_3	1,4-Dioxane	24	100	17	15
15	Cs_2CO_3	1,2-DCE	24	46	_	43(20)
16	Cs ₂ CO ₃	Toluene	24	30	_	38(11)
17 ^d	Cs_2CO_3	DMSO	10	100	9	81
18 ^e	Cs ₂ CO ₃	DMSO	24	100	34	5

 a Unless otherwise noted, the reaction was performed with 1a (0.2 mmol), 2a (0.4 mmol), and the indicated base in solvent at 80 °C.

Determined by TLC.

^c Yields based on converted **1a**, and isolated yields in parentheses.

^d Cs_2CO_3 (0.3 mmol).

^e Reaction was performed at room temperature.

formation of **4aa** in relatively low yields (Table 1, entries 17-18). Based on the above observations, the optimized reaction conditions chosen for further investigation were as follows: substrate (1 equiv), sodium sulfinate (2 equiv), Cs₂CO₃ (2 equiv) in DMSO at 80 °C (Table 1, entry 4).

Under the optimized conditions, the reactions of sodium benzenesulfinate 2a with a variety of alkyl 2-acyl-1chlorocyclopropanecarboxylates 1a-10 were studied. All the observed results were summarized in Table 2. In all the cases, the corresponding products **4ba**–**4ka** were respectively produced with excellent diastereoselectivities (dr up to 20:1). In contrast, the product yields obviously varied with the change of R¹ groups for **1**, though the effect of their electronic property seems to be irregular (entries 1–10). For example, both **1b** with electron-donating 4-Me group and 1d with electron-withdrawing 4-Cl group gave the corresponding products 4ba and 4da in excellent yields, whereas 1c with 4-MeO group and 1e with 4-Br group provided moderate yields of 4ca and 4ea. Among them, the lowest yield was observed in the case of 1g with a 4-Ph group (entry 7). In addition, substrates **1h**–**1k** with 2-furyl, 2-thienyl, 1-naphthyl or 1-pyrenyl groups were also tolerated in this process, affording almost the corresponding products **4ga**–**4ka** in moderate yields with high *dr* values (up to 20:1), respectively (Table 2, entries 8-11). Moreover, it should be noted that the electronic property of R¹ groups of **1** has an obvious influence on the reaction rates, and the electrondonating group decelerated the reaction. By the way, the steric effect of R² group on this reaction was also examined under the same conditions. According to the results listed in Table 2 (entries 12–15), we realized that the steric hindrance had a little influence on this cascade process. In fact, both small methyl ester 11 and the bulky t-butyl ester 1m gave the product 4aa in highest yields in 89%, 87% with excellent dr value (entries 13–14). When R^2 is a functional group like (CH₂)₂Cl or benzyl, substrates 1n or 10 were also adapted to the reaction, furnishing the expected product 4aa in high yields (Table 2, entries 15-16).

Next, we examined the reaction of 2-benzoyl-1chlorocyclopropaneformate **1a** with a group of sodium sulfinates. And the results were summarized in Table 3. The introduction of electronically different substituents such as Me, OMe and Cl groups

Table 2

Substrate scope for the reaction of 1 with 2aa^a

>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1

^a Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol) and Cs₂CO₃ (0.4 mmol) in DMSO (2 mL) was stirred at 80 °C.

^b Determined by TLC.

^c Isolated by column chromatography.

^d Diastereomeric ratios (trans:cis) determined by ¹H NMR of the crude product.

on the para position of benzene ring of sodium benzenesulfinate caused a marked decrease in the yields of the expected products **4ab**, **4ac** and **4ad**, despite of the high *dr* values (Table 3, entries 2–4). Sodium thiophene-2-sulfinate **2e** can also take reaction with **1a** smoothly to give the expected product **4ae** in 68% yield with *dr*>20:1 (Table 3, entry 5). In the case of sodium methanesulfinate **2f**, the reaction also underwent smoothly and afforded the formal substitution product **3af** with high *dr* value (Table 3, entry 6) rather than the desired decarboxylation product, indicative that the property of sulfonyl group has a big influence on the subsequent esterolysis. Sodium trifluoromethanesulfinate **2g**, a much weaker nucleophile, did not react with **1a** under the same conditions (Table 3, entry 7). Similar substituent effect of R¹ group of **1** on the

Table 3

Substrate scope for the reaction of **1** with **2**^a

		I O DOEt R ^{3.S}	ONa DM	ISO, 80°C		∑ ″′S≂O O′R ³ 4
Entry	1	2	Time (h) ^b	Product	Yield (%) ^c	dr ^{.d}
1	1a	$2a(R^3 = C_6H_5)$	2	4aa	89	>20:1
2	1a	$2b(R^3 = 4 - MeC_6H_4)$	9	4ab	50	>20:1
3 ^e	1a	$2c(R^3 = 4 - OMeC_6H_4)$	7	4ac	66	>20:1
4	1a	$2d(R^3 = 4 - ClC_6H_4)$	9	4ad	51	>20:1
5 ^e	1a	2e (R ³ =2-thienyl)	6	4ae	68	>20:1
6	1a	$2f(R^3 = Me)$	24	3af	53	>20:1
7	1a	$2g(R^3 = CF_3)$	24	NR	_	_
8	1b	2b	12	4bb	51	>20:1
9	1b	2d	12	4bd	33	>20:1
10	1d	2b	5.5	4db	63	>20:1
11	1d	2d	6	4dd	43	>20:1
12 ^e	1i	2b	12	4ib	51	>20:1
13 ^e	1i	2d	12	4id	19	>20:1

 a Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol) and Cs_2CO_3 (0.4 mmol) in DMSO (2 mL) was stirred at 80 $^\circ C.$

^b Determined by TLC.

^c Isolated by column chromatography.

^d Diastereomeric ratios (trans:cis) determined by ¹H NMR of the crude product.

e Cs₂CO₃ (0.5 mmol).

reaction rate and the product yields was also observed in these cases (Table 3, entries 8-13).

In order to further investigate the tandem process, we conducted some control experiments shown in Scheme 3. First, we found that only the formal substitution product 3aa was generated and isolated in 83% yield when the reaction of 1a and 2a was performed in the presence of 1.5 equiv Cs₂CO₃ at room temperature (Scheme 3,a). When the isolated product 3aa was treated with 1 equiv Cs₂CO₃ in DMSO at 80 °C, it was readily converted into **4aa** in 88% yield with dr>20:1 (Scheme 3,b). In this case, the total yield for 4aa is 70%. When the crude product 3aa was further treated with additional 1 equiv of Cs₂CO₃ in DMSO at 80 °C without isolation, the desired decarboxylation product 4aa was obtained in total 66% yield (Scheme 3c). Compared with the 89% yield (Table 2, entry1), the relatively lower yields imply that the simultaneous esterolysis and decarboxylation would benefit the formal substitution reaction to some extent. In addition, the existence of arylsulfonyl group made the esterolysis and decarboxylation of 3aa proceed more easily in basic media.

According to the above investigation, a possible reaction mechanism was proposed and depicted in Scheme 4. The reaction was initiated by a simple 1,2-elimination of HCl, giving a highly reactive cyclopropene intermediate I. Next, sodium arylsulfinate attacked the intermediate I via Michael addition to furnish the formal substitution compound 3aa under basic conditions. Subsequent esterolysis and decarboxylation of **3aa** provided the cvclopropyl aryl sulfone **4aa**. Though the activation role of arylsulfonyl group is still kept unclear, we presumed that its orientation and coordination ability with cesium ion plays a crucial role in the esterolysis process depicted in Scheme 4, since the analogous methylsulfonyl group did not have the role. In addition, we speculated that stereoelectronic and steric effects between aroyl and sulfonyl groups played the key role for the excellently diastereoselective formation of trans-4aa during the final protonation step as shown in Scheme 4.

Scheme 4. Proposed mechanism for the tandem reaction.

3. Conclusions

In summary, a novel and metal-free method for the high regioselective addition of the electron-deficient reactive cyclopropene intermediate generated in situ from 2-acyl-1chlorocyclopropanecarboxylate with sodium sulfinate has been developed under mild conditions. A broad range of 1-aroylsulfonyl-2-aroylcyclopropane derivatives, which involves the 1,2elimination/addition/esterolysis/decarboxylation pathway, was obtained in up to 89% yield with excellent *dr* value. In addition, the synthetically useful research of this special electron-deficient cyclopropene intermediate generated in situ is currently underway in our laboratory.

4. Experimental section

4.1. General information

All isolated compounds were characterized on the basis of ¹H NMR and ¹³C NMR spectroscopic data, IR spectra, and HRMS data. All ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz spectrometer with solvent resonances as the internal standard (¹H NMR: CDCl₃ at 7.26 ppm; ¹³C NMR: CDCl₃ at 77.0 ppm). Infrared spectra were recorded with a FTIR spectrometer. High-resolution

mass spectra (HRMS) were recorded with a Bruker TOF-Q spectrometer in the El mode. Melting points were recorded with a melting point detector. All reactions were monitored by TLC analysis using silica gel 60 Å F-254 thin layer plates and visualized by UV. Flash column chromatography was performed on silica gel 60 Å, 10–40 μ m. All reagents and solvents were of commercial grade and purified prior to use when necessary. Unless otherwise noted, 2-acyl-1-chlorocyclopropanecarboxylate were synthesized according to literature.²

4.2. Typical procedure for the synthesis of cyclopropyl aryl sulfones 4

Compounds 2-benzoyl-1-chlorocyclopropanecarboxylate 1a (50 mg, 0.2 mmol), sodium benzenesulfinate 2a (66 mg, 0.4 mmol) and Cs₂CO₃ (131 mg, 0.4 mmol) were putted into 2 mL of DMSO at room temperature, and then the reaction mixture was heated and stirred at 80 °C. The reaction was followed by TLC until all the substrate 1a disappeared. The reaction was cooled to room temperature and was diluted with water (10 mL). Further treatment was followed by extraction with CH₂Cl₂ (2×20 mL). The combined organic extracts were washed with H₂O (20 mL) and brine (3×20 mL), dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether-EtOAc as eluent to afford the corresponding product 4aa. Unless otherwise specified, all other products 3 and 4 were obtained according to this typical procedure. All the products **4** with trans configuration prepared in this work are racemic.

4.3. Phenyl((15,2R)-2-(phenylsulfonyl)cyclopropyl)methanone (4aa)

White solid (51 mg, 89% yield). Mp 120.7–122.3 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.99 (d, *J*=7.7 Hz, 2H, ArH), 7.94 (d, *J*=7.7 Hz, 2H, ArH), 7.66 (dd, *J*=13.8, 6.2 Hz, 1H, ArH), 7.59 (dd, *J*=15.5, 7.5 Hz, 3H, ArH), 7.49 (t, *J*=7.7 Hz, 2H, ArH), 3.52 (ddd, *J*=9.7, 5.7, 4.2 Hz, 1H, CH-cyclo), 3.18 (ddd, *J*=9.8, 5.8, 4.2 Hz, 1H, CH-cyclo), 1.90–1.82 (m, 1H, CH₂-cyclo), 1.74 (dt, *J*=8.5, 5.3 Hz, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =195.2, 139.9, 136.49, 133.9, 129.5, 129.4, 128.8, 128.4, 127.7, 42.2, 23.0, 15.3. IR (neat): v 3025, 2923, 1731, 1664, 1592, 1447, 1385, 1306, 1266, 1225, 1149, 1084, 1063, 1023, 981, 916, 861, 794 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₆H₁₅O₃S [M+H]⁺: 287.0742, found: 287.0745.

4.4. ((15,2*R*)-2-(Phenylsulfonyl)cyclopropyl)(*p*-tolyl)methanone (4ba)

Light yellow solid (48 mg, 80% yield). Mp 129.3–131.1 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.97–7.86 (m, 4H, ArH), 7.68–7.62 (m, 1H, ArH), 7.56 (dd, *J*=10.5, 4.7 Hz, 2H, ArH), 7.30–7.26 (m, 2H, ArH), 3.55–3.44 (m, 1H, CH-cyclo), 3.17 (ddd, *J*=8.5, 5.8, 4.1 Hz, 1H, CH-cyclo), 2.42 (s, 3H, CH₃), 1.83 (tt, *J*=13.8, 6.4 Hz, 1H, CH₂-cyclo), 1.72 (ddd, *J*=8.5, 5.8, 4.7 Hz, 1H, CH₂-cyclo), 1.72 (ddd, *J*=8.5, 5.8, 4.7 Hz, 1H, CH₂-cyclo), 1.72 (ddd, *J*=8.5, 5.8, 4.7 Hz, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =194.6, 144.9, 139.89, 133.9, 133.9, 129.5, 129.5, 128.6, 127.7, 42.1, 22.9, 21.7, 15.2. IR (neat): v 3027, 2922, 1734, 1662, 1603, 1447, 1418, 1383, 1307, 1233, 1209, 1178, 1148, 1086, 1061, 1033, 985, 920, 859, 817, 748 cm⁻¹. HRMS (EI): *m*/*z* calcd for C₁₇H₁₇O₃S [M+H]⁺: 301.0898, found: 301.0888.

4.5. (4-Methoxyphenyl)((15,2R)-2-(phenylsulfonyl)cyclopropyl)methanone (4ca)

Light yellow solid (43 mg, 68% yield). Mp 85.6–87.3 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.97 (t, *J*=7.5 Hz, 2H, ArH), 7.93 (d, *J*=7.2 Hz, 2H, ArH), 7.65 (t, *J*=7.4 Hz, 1H, ArH), 7.57 (t, *J*=7.6 Hz, 2H,

ArH), 6.95 (d, *J*=8.9 Hz, 2H, ArH), 3.88 (s, 3H, OCH₃), 3.51–3.43 (m, 1H, CH-cyclo), 3.15 (ddd, *J*=8.6, 5.8, 4.2 Hz, 1H, CH-cyclo), 1.86–1.77 (m, 1H, CH₂-cyclo), 1.71 (dt, *J*=8.5, 5.2 Hz, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =193.3, 164.2, 139.9, 133.8, 130.9, 130.8, 129.5, 129.3, 129.1, 127.6, 114.0, 113.9, 55.6, 41.9, 22.7, 15.1. IR (neat): v 3026, 2929, 1735, 1657, 1600, 1570, 1510, 1450, 1427, 1383, 1308, 1233, 1170, 1149, 1085, 1064, 1024, 980, 888, 856, 819, 762 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₇H₁₇O₄S [M+H]⁺: 317.0848, found: 317.0844.

4.6. (4-Chlorophenyl)((15,2*R*)-2-(phenylsulfonyl)-cyclopropyl) methanone (4da)

Light yellow solid (56 mg, 88% yield). Mp 122.8–123.6 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.93 (ddd, *J*=8.8, 6.2, 5.1 Hz, 4H, ArH), 7.72–7.61 (m, 1H, ArH), 7.57 (dd, *J*=17.0, 9.6 Hz, 2H, ArH), 7.51–7.41 (m, 2H, ArH), 3.54–3.41 (m, 1H, CH-cyclo), 3.17 (ddd, *J*=8.5, 5.9, 4.1 Hz, 1H, CH-cyclo), 1.85 (ddd, *J*=9.2, 5.8, 4.8 Hz, 1H, CH₂-cyclo), 1.74 (ddd, *J*=8.5, 5.7, 4.9 Hz, 1H, CH₂-cyclo), ^{1.3}C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =194.0, 140.5, 139.7, 134.7, 134.0, 129.8, 129.5, 129.2, 127.7, 42.3, 22.9, 15.4. IR (neat): v 3095, 3039, 1676, 1584, 1483, 1446, 1402, 1374, 1310, 1287, 1258, 1212, 1148, 1083, 1022, 981, 915, 889, 866, 779, 754 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₆H₁₄ClO₃S [M+H]⁺: 321.0352, found: 321.0350.

4.7. (4-Bromophenyl)((1*S*,2*R*)-2-(phenylsulfonyl)-cyclopropyl) methanone (4ea)

White solid (43 mg, 60% yield). Mp 117.4–118.2 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.96–7.90 (m, 2H, ArH), 7.84 (d, *J*=8.6 Hz, 2H, ArH), 7.71–7.55 (m, 5H, ArH), 3.45 (ddd, *J*=9.5, 5.8, 4.1 Hz, 1H, CH-cyclo), 3.17 (ddd, *J*=8.5, 5.9, 4.1 Hz, 1H, CH-cyclo), 1.90–1.81 (m, 1H, CH₂-cyclo), 1.78–1.70 (m, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =194.2, 139.7, 135.1, 133.9, 132.2, 129.9, 129.5, 129.3, 127.7, 42.3, 22.9, 15.4. IR (neat): v 3029, 2924, 1734, 1671, 1583, 1481, 1447, 1422, 1402, 1382, 1308, 1226, 1175, 1148, 1069, 1035, 1009, 985, 921, 857, 826, 750 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₆H₁₄BrO₃S [M+H]⁺: 364.9847, found: 364.9841.

4.8. (2-Bromophenyl)((15,2*R*)-2-(phenylsulfonyl)-cyclopropyl) methanone (4fa)

Yellowish oil (35 mg, 48% yield). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.93 (d, *J*=7.3 Hz, 2H, ArH), 7.62 (dq, *J*=30.7, 7.6 Hz, 4H, ArH), 7.45–7.30 (m, 3H, ArH), 3.39–3.30 (m, 1H, CH-cyclo), 3.26 (ddd, *J*=8.8, 6.0, 4.2 Hz, 1H, CH-cyclo), 1.94–1.84 (m, 1H, CH₂-cyclo), 1.78 (dt, *J*=8.7, 5.2 Hz, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =198.7, 140.2, 139.7, 133.9, 133.9, 132.6, 129.5, 127.8, 127.6, 119.4, 43.4, 26.9, 16.7. IR (neat): v 3062, 2923, 1690, 1586, 1468, 1445, 1430, 1379, 1315, 1287, 1213, 1188, 1152, 1087, 1069, 1026, 985, 952, 917, 861, 748 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₆H₁₄BrO₃S [M+H]⁺: 364.9847, found: 364.9833.

4.9. (4-Biphenyl)((1*S*,2*R*)-2-(phenylsulfonyl)cyclopropyl)methanone (4ga)

Light yellow solid (24 mg, 33% yield). Mp 176.5–178.1 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =8.06 (d, *J*=8.4 Hz, 2H, ArH), 7.95 (d, *J*=7.5 Hz, 2H, ArH), 7.74–7.69 (m, 2H, ArH), 7.65 (dd, *J*=8.7, 7.4 Hz, 3H, ArH), 7.57 (dd, *J*=15.1, 7.7 Hz, 2H, ArH), 7.49 (t, *J*=7.4 Hz, 2H, ArH), 7.42 (t, *J*=7.3 Hz, 1H, ArH), 3.56 (ddd, *J*=9.6, 5.7, 4.2 Hz, 1H, CH-cyclo), 3.20 (ddd, *J*=8.6, 5.8, 4.2 Hz, 1H, CH-cyclo), 1.88 (dt, *J*=9.3, 5.3 Hz, 1H, CH₂-cyclo), 1.80–1.72 (m, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =194.7, 146.6, 139.9, 139.6, 135.1, 133.9, 129.5, 129.1, 129.0, 128.5, 127.7, 127.5, 127.3, 42.2, 23.1, 15.4. IR (neat): v 3027, 2923, 1733, 1663, 1601, 1559, 1516, 1481, 1448, 1406,

1381, 1307, 1267, 1227, 1207, 1183, 1150, 1085, 1067, 1028, 982, 920, 863, 839, 745 cm⁻¹. HRMS (EI): m/z calcd for C₂₂H₁₉O₃S [M+H]⁺: 363.1055, found: 363.1051.

4.10. (Furan-2-yl)((15,2R)-2-(phenylsulfonyl)cyclopropyl)methanone (4ha)

White solid (43 mg, 78% yield). Mp 140.6–142.2 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.95–7.91 (m, 2H, ArH), 7.70–7.62 (m, 2H, ArH), 7.57 (t, *J*=7.6 Hz, 2H, ArH), 7.31 (t, *J*=4.3 Hz, 1H, ArH), 6.59 (dd, *J*=3.6, 1.6 Hz, 1H, ArH), 3.43 (ddd, *J*=9.6, 5.7, 4.2 Hz, 1H, CH-cyclo), 3.15 (ddd, *J*=8.6, 5.9, 4.1 Hz, 1H, CH-cyclo), 1.89–1.78 (m, 1H, CH₂-cyclo), 1.78–1.66 (m, 1H, CH₂-cyclo), ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =183.4, 152.2, 147.6, 139.8, 133.9, 129.4, 127.7, 118.6, 112.8, 41.8, 23.2, 14.9. IR (neat): v 3039, 2924, 1735, 1664, 1568, 1466, 1403, 1381, 1308, 1286, 1234, 1196, 1153, 1084, 1039, 1015, 992, 920, 879, 855, 794, 755 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₄H₁₃O₄S [M+H]⁺: 277.0535, found: 277.0532.

4.11. ((1*S*,2*R*)-2-(Phenylsulfonyl)cyclopropyl)(thiophen-2-yl) methanone (4ia)

Yellow solid (43 mg, 78% yield). Mp 120.1–121.8 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.95–7.90 (m, 2H, ArH), 7.88 (dd, *J*=3.8, 0.8 Hz, 1H, ArH), 7.72 (dd, *J*=4.9, 0.8 Hz, 1H, ArH), 7.66 (t, *J*=7.4 Hz, 1H, ArH), 7.57 (t, *J*=7.6 Hz, 2H, ArH), 7.18 (dd, *J*=4.7, 4.0 Hz, 1H, ArH), 3.43–3.33 (m, 1H, CH-cyclo), 3.18 (ddd, *J*=8.6, 5.9, 4.1 Hz, 1H, CH-cyclo), 1.84 (ddd, *J*=9.2, 5.8, 5.0 Hz, 1H, CH₂-cyclo), 1.74 (dt, *J*=8.6, 5.3 Hz, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =187.4, 143.4, 139.8, 135.2, 133.9, 133.2, 129.5, 128.6, 127.7, 41.9, 23.9, 15.1. IR (neat): v 3022, 2924, 1731, 1652, 1515, 1447, 1413, 1381, 1353, 1305, 1246, 1223, 1194, 1147, 1086, 1065, 1022, 957, 920, 864, 843, 727 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₄H₁₃O₃S₂ [M+H]⁺: 293.0306, found: 293.0301.

4.12. (Naphthalen-4-yl)((1*S*,2*R*)-2-(phenylsulfonyl)cyclopropyl)methanone (4ja)

Yellow solid (59 mg, 72% yield). Mp 133.6–134.7 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =8.42 (d, *J*=8.3 Hz, 1H, ArH), 7.94 (d, *J*=8.2 Hz, 1H, ArH), 7.92–7.85 (m, 3H, ArH), 7.79 (dd, *J*=9.3, 7.9 Hz, 1H, ArH), 7.60 (t, *J*=7.4 Hz, 1H, ArH), 7.47 (dddd, *J*=15.5, 11.5, 8.9, 5.9 Hz, 5H, ArH), 3.45–3.35 (m, 1H, CH-cyclo), 3.21 (ddd, *J*=8.5, 5.9, 4.1 Hz, 1H, CH-cyclo), 1.80 (ddt, *J*=10.5, 8.5, 4.7 Hz, 2H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =198.27, 139.87, 134.94, 133.94, 133.86, 133.66, 129.96, 129.53, 129.04, 128.58, 128.28, 127.75, 126.72, 125.50, 124.49, 42.80, 26.28, 15.83. IR (neat): v 3029, 2924, 1729, 1663, 1585, 1506, 1447, 1400, 1372, 1308, 1278, 1231, 1149, 1101, 1069, 1025, 960, 920, 889, 864, 809, 778, 733 cm⁻¹. HRMS (EI): *m/z* calcd for C₂₀H₁₇O₃S [M+H]⁺: 337.0898, found: 337.0892.

4.13. (1,9-Dihydropyren-5-yl)((1*S*,2*R*)-2-(phenylsulfonyl)-cyclopropyl)methanone (4ka)

Yellow solid (59 mg, 72% yield). Mp 162.8–163.2 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =8.77 (d, *J*=9.4 Hz, 1H, ArH), 8.35 (d, *J*=8.0 Hz, 1H, ArH), 8.21 (d, *J*=7.7 Hz, 2H, ArH), 8.18–8.07 (m, 3H, ArH), 8.06–7.96 (m, 4H, ArH), 7.69–7.62 (m, 1H, ArH), 7.58 (t, *J*=7.5 Hz, 2H, ArH), 3.67–3.60 (m, 1H, CH-cyclo), 3.38 (ddd, *J*=8.1, 6.2, 4.1 Hz, 1H, CH-cyclo), 2.01–1.92 (m, 2H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =198.4, 134.0, 134.4, 133.9, 131.1, 131.0, 130.4, 130.03, 130.00, 129.5, 127.8, 127.1, 127.0, 126.6, 126.5, 126.4, 124.8, 124.4, 124.1, 43.0, 26.7, 16.0. IR (neat): v 3043, 2957, 2922, 1735, 1659, 1587, 1537, 1502, 1446, 1381, 1311, 1259, 1214, 1184, 1145, 1116, 1080, 1021, 982, 959, 918, 889, 844, 782, 765, 747 cm⁻¹.

HRMS (EI): m/z calcd for C₂₆H₂₁O₃S [M+H]⁺: 413.1211, found: 413.1209.

4.14. Phenyl((1S,2R)-2-tosylcyclopropyl)methanone (4ab)

Light yellow solid (30 mg, 50% yield). Mp 117.4–118.6 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =8.04–7.95 (m, 2H, ArH), 7.79 (t, *J*=9.8 Hz, 2H, ArH), 7.61 (t, *J*=7.4 Hz, 1H, ArH), 7.48 (dd, *J*=17.0, 9.5 Hz, 2H, ArH), 7.36 (d, *J*=8.0 Hz, 2H, ArH), 3.55–3.45 (m, 1H, CH-cyclo), 3.16 (ddd, *J*=8.6, 5.8, 4.2 Hz, 1H, CH-cyclo), 2.45 (s, 3H, CH₃), 1.84 (ddd, *J*=9.3, 5.7, 4.8 Hz, 1H, CH₂-cyclo), 1.76–1.68 (m, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =195.3, 144.9, 136.9, 136.5, 133.8, 130.1, 128.8, 128.4, 127.7, 42.4, 23.1, 21.6, 15.3. IR (neat): v 3046, 2923, 1734, 1682, 1593, 1456, 1383, 1317, 1268, 1217, 1145, 1086, 1025, 986, 917, 883, 815, 798, 746 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₇H₁₇O₃S [M+H]⁺: 301.0898, found: 301.0879.

4.15. ((1*S*,2*R*)-2-(4-Methoxyphenylsulfonyl)cyclopropyl) (phenyl)-methanone (4ac)

Yellow solid (42 mg, 66% yield). Mp 122.3–123.4 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.99 (d, *J*=7.4 Hz, 2H, ArH), 7.85 (d, *J*=8.9 Hz, 2H, ArH), 7.61 (t, *J*=7.4 Hz, 1H, ArH), 7.49 (t, *J*=7.7 Hz, 2H, ArH), 7.03 (t, *J*=7.4 Hz, 2H, ArH), 3.88 (s, 3H, OCH₃), 3.49 (ddd, *J*=9.5, 5.7, 4.2 Hz, 1H, CH-cyclo), 3.15 (ddd, *J*=8.6, 5.8, 4.2 Hz, 1H, CH-cyclo), 1.87–1.79 (m, 1H, CH₂-cyclo), 1.75–1.69 (m, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =195.3, 163.9, 136.5, 133.8, 131.4, 129.9, 128.8, 128.4, 114.7, 55.7, 42.6, 23.1, 15.4. IR (neat): v 3044, 2936, 1734, 1672, 1594, 1497, 1387, 1297, 1262, 1222, 1146, 1089, 1024, 987, 858, 801, 741 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₆H₁₃O₃S [M+H]⁺: 285.0585, found: 285.0577.

4.16. ((15,2R)-2-(4-Chlorophenylsulfonyl)cyclopropyl)(phenyl) -methanone (4ad)

Light yellow solid (33 mg, 51% yield). Mp 127.8–129.1 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.99 (d, *J*=7.5 Hz, 2H, ArH), 7.87 (d, *J*=8.5 Hz, 2H, ArH), 7.63 (t, *J*=7.6 Hz, 1H, ArH), 7.57–7.47 (m, 4H, ArH), 3.56–3.47 (m, 1H, CH-cyclo), 3.22–3.13 (m, 1H, CH-cyclo), 1.88–1.80 (m, 1H, CH₂-cyclo), 1.73 (dt, *J*=8.6, 5.3 Hz, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =194.9, 140.7, 138.3, 136.3, 133.9, 129.8, 129.2, 128.9, 128.4, 42.0, 23.1, 15.4. IR (neat): v 3047, 2923, 1732, 1671, 1578, 1473, 1449, 1389, 1308, 1270, 1222, 1151, 1086, 1018, 984, 919, 887, 856, 830, 794, 760, 731 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₆H₁₄ClO₃S [M+H]⁺: 321.0352, found: 321.0350.

4.17. ((15,2R)-2-(2-Thienylsulfonyl)cyclopropyl)(phenyl)methanone (4ae)

Yellow solid (40 mg, 68% yield). Mp 113.4–114.2 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =8.04–7.98 (m, 2H, ArH), 7.73 (ddd, *J*=6.1, 4.3, 1.1 Hz, 2H, ArH), 7.62 (t, *J*=7.4 Hz, 1H, ArH), 7.50 (t, *J*=7.7 Hz, 2H, ArH), 7.16 (dd, *J*=4.8, 3.9 Hz, 1H, ArH), 3.54 (ddd, *J*=9.6, 5.8, 4.1 Hz, 1H, CH-cyclo), 3.30 (ddd, *J*=8.6, 5.8, 4.1 Hz, 1H, CH-cyclo), 1.82–1.75 (m, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =195.0, 140.5, 136.3, 134.2, 133.9, 128.9, 128.5, 128.0, 43.4, 23.7, 15.8. IR (neat): v 3088, 3048, 1733, 1676, 1595, 1449, 1401, 1380, 1314, 1265, 1225, 1142, 1097, 1068, 1016, 984, 863, 736 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₄H₁₃O₃S₂ [M+H]⁺: 293.0306, found: 293.0298.

4.18. p-Tolyl((1S,2R)-2-tosylcyclopropyl)methanone (4bb)

Light yellow solid (32 mg, 51% yield). Mp 143.7–145.2 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.89 (d, *J*=8.2 Hz, 2H, ArH),

7.80 (d, *J*=8.3 Hz, 2H, ArH), 7.35 (d, *J*=8.0 Hz, 2H, ArH), 7.28 (d, *J*=8.0 Hz, 2H, ArH), 3.51–3.44 (m, 1H, CH-cyclo), 3.14 (ddd, *J*=8.5, 5.8, 4.1 Hz, 1H, CH-cyclo), 2.44 (s, 3H, CH₃), 2.43 (s, 3H, CH₃), 1.81 (ddd, *J*=9.2, 5.8, 4.7 Hz, 1H, CH₂-cyclo), 1.73–1.69 (m, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =194.7, 144.9, 144.9, 137.0, 134.0, 130.1, 129.5, 128.6, 127.7, 42.2, 22.9, 21.7, 21.6, 15.2. IR (neat): v 3028, 2923, 1732, 1661, 1602, 1491, 1455, 1419, 1383, 1305, 1271, 1232, 1210, 1178, 1145, 1085, 1064, 1032, 986, 919, 860, 818, 759, 716 cm⁻¹. HRMS (EI): *m*/*z* calcd for C₁₈H₁₉O₃S [M+H]⁺: 315.1055, found: 315.1049.

4.19. ((15,2R)-2-(4-Chlorophenylsulfonyl)cyclopropyl)(*p*-tolyl) methanone (4bd)

Light yellow solid (22 mg, 33% yield). Mp 156.2–157.1 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.96–7.80 (m, 4H, ArH), 7.59–7.51 (m, 2H, ArH), 7.29 (t, *J*=6.9 Hz, 2H, ArH), 3.49 (ddd, *J*=9.6, 5.8, 4.1 Hz, 1H, CH-cyclo), 3.15 (ddd, *J*=8.5, 5.8, 4.1 Hz, 1H, CH-cyclo), 2.44 (s, 3H, CH₃), 1.82 (ddd, *J*=9.3, 5.7, 4.8 Hz, 1H, CH₂-cyclo), 1.72 (ddd, *J*=8.5, 5.8, 4.8 Hz, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =194.4, 145.0, 140.7, 138.4, 133.9, 129.8, 129.6, 129.2, 128.6, 41.9, 22.9, 21.7, 15.3. IR (neat): v 3039, 2920, 1733, 1663, 1604, 1574, 1470, 1423, 1386, 1322, 1269, 1232, 1205, 1177, 1147, 1086, 1035, 1012, 990, 861, 827, 761, 721 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₇H₁₆ClO₃S [M+H]⁺: 335.0509, found: 335.0504.

The procedure for crystal growth: Compound **4bd** was soluble in mixtures of chloroform and petroleum ether, crystal could be prepared by the slow volatilization of solvents at room temperature.

4.20. (4-Chlorophenyl)((1*S*,2*R*)-2-tosylcyclopropyl)methanone (4db)

Light yellow solid (42 mg, 63% yield). Mp 130.4–132.3 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.94 (dd, *J*=11.4, 9.6 Hz, 2H, ArH), 7.80 (d, *J*=8.3 Hz, 2H, ArH), 7.49–7.44 (m, 2H, ArH), 7.36 (d, *J*=8.0 Hz, 2H, ArH), 3.44 (ddd, *J*=9.5, 5.8, 4.1 Hz, 1H, CH-cyclo), 3.14 (ddd, *J*=8.5, 5.9, 4.1 Hz, 1H, CH-cyclo), 2.45 (s, 3H, CH₃), 1.83 (ddd, *J*=9.2, 5.8, 4.8 Hz, 1H, CH₂-cyclo), 1.79–1.67 (m, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =194.1, 145.0, 140.4, 136.8, 134.8, 130.1, 129.8, 129.2, 127.7, 42.5, 22.9, 21.6, 15.4. IR (neat): v 3042, 2922, 1736, 1667, 1588, 1487, 1425, 1404, 1384, 1318, 1289, 1266, 1174, 1147, 1116, 1089, 1066, 1034, 986, 925, 862, 834, 814, 780, 755 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₇H₁₆ClO₃S [M+H]⁺: 335.0509, found: 335.0501.

4.21. ((15,2R)-2-(4-Chlorophenylsulfonyl)cyclopropyl)(4-chlorophenyl)methanone (4dd)

Light yellow solid (30 mg, 43% yield). Mp 160.4–161.5 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.97–7.92 (m, 2H, ArH), 7.88–7.84 (m, 2H, ArH), 7.58–7.54 (m, 2H, ArH), 7.50–7.46 (m, 2H, ArH), 3.46 (ddd, *J*=9.5, 5.8, 4.1 Hz, 1H, CH-cyclo), 3.16 (ddd, *J*=8.5, 5.9, 4.1 Hz, 1H, CH-cyclo), 1.83 (ddd, *J*=9.2, 5.8, 4.8 Hz, 1H, CH₂-cyclo), 1.73 (ddd, *J*=8.5, 5.7, 4.9 Hz, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =193.8, 140.8, 140.6, 138.2, 134.6, 129.9, 129.8, 129.2, 129.2, 42.1, 22.9, 15.5. IR (neat): v 3090, 2924, 1730, 1670, 1585, 1476, 1426, 1400, 1308, 1276, 1221, 1178, 1146, 1087, 1036, 991, 865, 766, 751 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₆H₁₃Cl₂O₃S [M+H]⁺: 354.9962, found: 354.9951.

4.22. (Thiophen-2-yl)((15,2R)-2-tosylcyclopropyl)methanone (4ib)

Light yellow solid (31 mg, 51% yield). Mp 126.3–127.6 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ =7.88 (dd, *J*=5.8, 4.9 Hz, 1H,

ArH), 7.79 (t, J=7.9 Hz, 2H, ArH), 7.74-7.71 (m, 1H, ArH), 7.36 (d, *I*=8.1 Hz, 2H, ArH), 7.18 (dd, *I*=4.8, 4.0 Hz, 1H, ArH), 3.40–3.33 (m, 1H, CH-cyclo), 3.16 (ddd, J=8.7, 5.9, 4.1 Hz, 1H, CH-cyclo), 2.44 (s, 3H, CH₃), 1.82 (ddd, *J*=9.2, 5.8, 4.9 Hz, 1H, CH₂-cyclo), 1.72 (dt, *J*=8.6, 5.2 Hz, 1H, CH₂-cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =187.5, 144.9, 143.5, 136.8, 135.1, 133.2, 130.1, 128.6, 127.7, 42.1, 23.9, 21.7, 15.1. IR (neat): v 3022, 2923, 1724, 1645, 1594, 1515, 1454, 1416, 1382, 1293, 1247, 1222, 1189, 1142, 1109, 1084, 1065, 1020, 957, 921, 864, 842, 818, 758 cm⁻¹. HRMS (EI): *m/z* calcd for C₁₅H₁₅O₃S₂ [M+H]⁺: 307.0463, found: 307.0461.

4.23. ((1S,2R)-2-(4-Chlorophenylsulfonyl)cyclopropyl)-(thiophen-2-yl)methanone (4id)

Light yellow solid (13 mg, 20% yield). Mp 170.4–171.8 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ=7.89 (dd, *J*=3.8, 1.0 Hz, 1H, ArH), 7.88–7.83 (m, 2H, ArH), 7.74 (dd, /=5.0, 1.0 Hz, 1H, ArH), 7.58-7.52 (m, 2H, ArH), 7.20 (dd, J=4.9, 3.9 Hz, 1H, ArH), 3.44-3.33 (m, 1H, CH-cyclo), 3.21-3.12 (m, 1H, CH-cyclo), 1.83 (ddd, J=9.2, 5.8, 4.9 Hz, 1H, CH₂-cyclo), 1.78-1.71 (m, 1H, CH₂cyclo). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =187.2, 143.3, 140.8, 138.2, 135.3, 133.3, 129.9, 129.2, 128.6, 41.8, 23.9, 15.2. IR (neat): v 3042, 2923, 1724, 1650, 1578, 1513, 1473, 1412, 1352, 1308, 1275, 1238, 1220, 1150, 1085, 1011, 957, 919, 861, 847, 831, 764, 740 cm⁻¹. HRMS (EI): m/z calcd for $C_{14}H_{12}CIO_3S_2$ [M+H]⁺: 326.9916, found: 326.9911.

4.24. Ethyl 2-benzoyl-phenylsulfonylcyclopropanecarboxylate (3aa)

Yellowish oil. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ=8.02-7.97 (m, 2H, ArH), 7.97-7.92 (m, 2H, ArH), 7.71 (t, J=7.5 Hz, 1H, ArH), 7.63–7.56 (m, 3H, ArH), 7.45 (t, J=7.7 Hz, 2H, ArH), 4.02-3.93 (m, 2H, COOEt), 3.66 (dd, J=9.4, 7.5 Hz, 1H, CH-cyclo), 2.36 (dd, J=7.4, 5.4 Hz, 1H, CH₂-cyclo), 2.24 (dd, J=9.5, 5.3 Hz, 1H, CH₂-cyclo), 0.97 (t, *J*=7.1 Hz, 3H, COOEt). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ=192.4, 163.3, 138.4, 136.4, 134.3, 133.8, 129.3, 129.1, 128.8, 128.6, 62.5, 53.3, 30.1, 18.4, 13.5. IR (neat): v 3065, 2985, 1736, 1681, 1598, 1582, 1449, 1372, 1310, 1228, 1202, 1161, 1138, 1081, 1017, 933, 871, 856, 827, 756, 728 cm⁻¹. HRMS (EI): *m*/*z* calcd for C₁₉H₁₉O₅S [M+H]⁺: 359.0953, found: 359.0952.

4.25. Ethyl 2-benzoyl-1-methylsulfonylcyclopropanecarboxylate (3af)

Yellowish oil (32 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ=8.13-7.95 (m, 2H, ArH), 7.63 (t, J=7.4 Hz, 1H, ArH), 7.52 (t, J=7.7 Hz, 2H, ArH), 4.29–4.14 (m, 2H, COOEt), 3.51 (dd, J=9.7, 7.4 Hz, 1H, CH-cyclo), 3.25 (s, 3H, CH₃), 2.38-2.25 (m, 1H, CH₂-cyclo), 2.17 (dd, *J*=9.8, 5.3 Hz, 1H, CH₂-cyclo), 1.17 (t, *J*=7.1 Hz, 3H, COOEt). ¹³C NMR (101 MHz, CDCl₃, 25 °C, TMS): δ =192.3, 164.2, 136.2, 134.1, 128.9, 128.5, 62.9, 51.3, 40.8, 29.8, 17.4, 13.6. IR (neat): v 2984, 2935, 1730, 1682, 1597, 1581, 1450, 1372, 1312, 1229, 1161, 1129, 1097, 1019, 965, 929, 856, 779, 763 cm⁻¹. HRMS (EI): *m*/*z* calcd for C₁₄H₁₇O₅S [M+H]⁺: 297.0797, found: 297.0793.

Acknowledgements

This work was financially supported by grants from National Science Foundation of China (no. 21472053, 21172082). The Center of Analysis and Testing of Huazhong University of Science and Technology is gratefully acknowledged for characterization of the new compounds.

Supplementary data

Supplementary data (Copies of ¹H and ¹³C NMR spectra for all compounds; X-ray structure of **4bc**.) related to this article can be found at http://dx.doi.org/10.1016/j.tet.2016.04.062.

References and notes

- 1. For selected recent examples, see: (a) Fisher, L. A.; Smith, N. J.; Fox, J. M. J. Org. Chem. 2013, 78, 3342-3348; (b) Liu, Y.; Yu, Q.; Ma, S. M. Eur. J. Org. Chem. 2013, 3033-3040; (c) Young, P. C.; Hadfield, M. S.; Arrowsmith, L.; Macleod, K. M.; Mudd, R. J.; Jordan-Hore, J. A.; Lee, A. Org. Lett. 2012, 14, 898–901; (d) Liu, Y.; Ma, S. M. Org. Lett. 2012, 14, 720-723; (e) Miege, F.; Meyer, C.; Cossy, J. Chem.-Eur. J. 2012, 18, 7810-7822; (f) Miege, F.; Meyer, C.; Cossy, J. Angew. Chem. 2011, 123, 6054 Angew. Chem. Int. Ed. 2011, 50, 5932-5937; (g) Liu, Y.; Ma, S. M. Chem. Sci. 2011, 2, 811-814; (h) Phan, D. H. T.; Kou, K. G. M.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 16354–16355; (i) Chen, S. J.; Ren, J.; Wang, Z. W. Tetrahedron **2009**, 65, 9146–9151; (j) Sherrill, W. M.; Rubin, M. J. Am. Chem. Soc. 2008, 130, 13804-13809; (k) Alnasleh, B.K.; Sherrill, W.M.; Rubin, M. Org. Lett. 2008, 10, 3231-3234; (1) Lee, G.A.; Chen, K. C. Org. Lett. 2008, 10, 1843–1845; (m) Zhu, Z. B.; Shi, M. Chem.-Eur. J. 2008, 14, 10219-10222; (n) Chuprakov, S.; D. Malyshev, A.; Trofimov, A.; Gevorgyan, V.J. Am. Chem. Soc. 2007, 129, 14868-14869; (o) Diev, V. V.; Stetsenko, O. N.; Tung, T. Q.; Kopf, J.; Kostikov, R. R.; Molchanov, A. P. J. Org. Chem. 2008, 73, 2396-2399; (p) Chuprakov, S.; Gevorgyan, V. Org. Lett. 2007, 9, 4463–4466; (q) Diev, V. V.; Kostikov, R. R.; Gleiter, R.; Molchanov, A. J. Org. Chem. 2006, 71, 4066-4077; (r) Yin, J. D.; Chisholm, J. D. Chem. Commun. 2006, 632–634; (s) Pallerla, M. K.; Fox, J. M. Org. Lett. 2005, 7, 3593-3595; (t) Liao, L. A.; Yan, N.; Fox, J. M. Org. Lett. 2004, 6, 4937-4939; (u) Zohar, E.; Marek, I. Org. Lett. 2004, 6, 341–343; (v) Orugunty, R. S.; Ghiviriga, I.; Abboud, K. A.; Battiste, M. A.; Wright, D. L. J. Org. Chem. 2004, 69, 570-572; (w) Zohar, E.; Ram, M.; Marek, I. Synlett 2004, 1288-1290.
- 2. Zhang, M.; Gong, Y. F.; Wang, W. Z. Eur. J. Org. Chem. 2013, 7372-7381.
- (a) Ochiai, M.; Kitagawa, Y.; Toyonari, M.; Uemura, K.; Oshima, K.; Shiro, M. J. 3. *Org. Chem.* **1997**, 62, 8001–8008; (b) Ochiai, M.; Kitogawa, Y.; Toyonari, M.; Uemurat, K. Tetrahedron Lett. 1994, 35, 9407–9408; (c) Ochiai, M.; Oshima, K.; Masaki, Y.; Kunishima, M.; Tanic, S. Tetrahedron Lett. 1993, 34, 4829-4830.
- 4. (a) Chang, Y. H.; Pinnick, H. W. J. Org. Chem. 1978, 43, 373-374; (b) Corey, E. J.; Weatherhead-Kloster, R. A. Org. Lett. **2006**, *8*, 171–174. 5. (a) Baldwin, J. E.; Adlington, R. M.; Bebbington, D. Tetrahedron **1994**, *50*,
- 12015-12028; (b) Lai, M. T.; Oh, E.; Shih, Y.; Liu, H. W. J. Org. Chem. 1992, 57, 2471-2476.
- Trost, B. M.; Cossy, J.; Burkes, J. J. Am. Chem. Soc. 1983, 105, 1052-1054. 6
- 7 Kazuta, Y.; Matsuda, A.; Shuto, S. J. Org. Chem. 2002, 67, 1669-1677.
- 8. Aïssa, C. J. Org. Chem. 2006, 71, 360-363.
- Bhaskar Reddy, D.; Ramana Reddy, P. V.; Padmavathi, V. Phosphorus, Sulfur, 9. Silicon 1994, 90, 1–10.
- (a) Bhaskar Reddy, D.; Reddy, P. S.; Reddy, B. V.; Reddy, P. A. Synthsis 1987, 1, 10. (a) Diastai redy, E. Redy, K. R.; Padmavathi, V.; Reddy, D. B. Collect. Czech. Chem. Commun. **1998**, 63, 835–841; (c) Papageorgiou, C. D.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2003, 42, 828-831.
- 11. (a) Balaji, T.; Bhaskar Reddy, D. Bull. Chem. Soc. Jpn. 1979, 52, 3434-3437; (b) Tanaka, K.; Suzuki, H. J. Chem. Soc. Perkin. Trans. **1992**, 2071–2074. **12**. Bray, C. D.; Faveri, G. D. J. Org. Chem. **2010**, 75, 4652–4655.
- (a) Meninno, S.; Parrella, A.; Brancatelli, G.; Geremia, S.; Gaeta, C.; Talotta, C.; 13. Neri, P.; Lattanzi, A. Org. Lett. 2015, 17, 5100-5103; (b) Feng, J. B.; Gong, J. L.; Wu, X. F. RSC Adv. 2014, 4, 29273-29275; (c) Secci, F.; Frongia, A.; Piras, P. P. Tetrahedron Lett. 2014, 55, 603-605.