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Metallocalixarenes have recently received much interest as
molecular models of metal species bound on polyoxo
surfaces,[1] as well as metalloreceptors with controlled struc-
tures.[2, 3] The majority of the metallocalixarenes so far
developed are oxophilic group 4–6 transition-metal deriva-
tives; few examples have been reported for late-transition-
metal complexes of unmodified calixarenes.[3–6] However,
recent studies have revealed that late transition metals can
also form stable aryloxo and alkoxo complexes that have
intriguing reactivities.[7] This background prompted us to
investigate the synthesis and properties of late-transition-
metal derivatives of calixarenes, and we have recently found
that calix[4]arenes undergo site-selective and stepwise com-
plexation with two {M(cod)+} fragments (M=Rh, Ir; cod=

1,5-cyclooctadiene), where the first metal center is coordi-
nated to the arene ring and the second is coordinated to the
phenolic oxygen atoms at the narrow rim.[4] With the intention
to construct heterodinuclear late-transition-metal cores on

the calixarene scaffold, we have turned our attention to the
synthesis and reactivities of high-valent rhenium derivatives
of calixarenes. Herein we describe the synthesis and charac-
terization of mononuclear rhenium p-tBu-calix[4]arene com-
plexes and their use in the stepwise construction of a
phenoxo-bridged Re–Pd heterodinuclear core inside the
cavity of the calix[4]arene.

When a solution of p-tBu-calix[4]arene-(OH)4 (1) in THF
was treated with nBuLi (3 equiv) and then allowed to react
with [Ph4P][ReOCl4] (1.5 equiv),[8] an anionic complex tenta-
tively formulated as [Ph4P][ReCl(O){p-tBu-calix[4]arene-
(O)4}]·CH2Cl2·0.5Et2O (2·CH2Cl2·0.5Et2O) was obtained in
54% yield after repeated recrystallization (Scheme 1).[9]

Although the paramagnetism of the ReVI center (meff/mB=

1.3 in [D6]acetone solution) prevented spectroscopic full
characterization of 2, its analytical, EPR, and IR (ñ=
929 cm�1, n(Re¼O)) data are in agreement with the chloro–
oxo structure. Further characterization of the rhenium com-
plex has been achieved by oxidation to a ReVII species.

When complex 2 was treated with excess Ag2O in THF at
room temperature, the ReVII complex [Ph4P][ReO2{p-tBu-
calix[4]arene-(O)4}] (3a) was obtained in 89% yield
(Scheme 1). The formation of Re¼O bonds is confirmed by
the characteristic strong IR bands at 902 and 910 cm�1. The
1H NMR spectrum of 3a shows two aromatic and two tBu
signals at d= 7.06, 6.96 ppm and d= 1.29, 1.07 ppm, respec-
tively, as well as one set of CH2 signals at d= 4.51 and
3.29 ppm (d, J= 13.7 Hz). This spectral feature is in full
agreement with a formulation with an apparent C2v symmetry.
The structure of this anion was crystallographically deter-
mined via the PPN salt [PPN][ReO2{p-tBu-calix[4]arene-
(O)4}]·2Me2CO·0.5C6H6 (3b·2Me2CO·0.5C6H6) (Figure 1;
PPN = (Ph3P)2N).[10] The rhenium atom is coordinated by
the four phenolic oxygen atoms of the calix[4]arene ligand
and two cis oxo ligands, in a distorted octahedral geometry.
The Re(1)-O(5) and Re(1)-O(6) bond lengths at 1.717(5) and
1.714(5) E, respectively, are typical for ReVII¼O double
bonds.[11] Two of the facing aromatic rings of the calix[4]arene
ligand are very open, with a dihedral angle of 168.88, so that

Scheme 1. Synthesis of rhenium complexes 2 and 3a.
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the calix[4]arene ligand adopts an elliptical cone conforma-
tion where the O(2) and O(4) atoms of the splayed phenoxo
residues are mutually cis and occupy the trans positions of the
oxo ligands. It should be noted that complexes 1 and 2 are the
first calixarene–rhenium complexes in which the metal atom
is directly bound to the body of calixarene, although several
calixarene derivatives having a rhenium complex moiety as a
pendant group have been synthesized.[12]

Taking advantage of the anionic nature of the dioxorhe-
nium species, complexation of a second transition-metal
fragment with 3a was examined. When an EtOH solution of
3a was treated with the solvated allyl–palladium complex
[Pd(h3-C3H5)(Me2CO)x](OTf) (OTf=OSO2CF3),

[13] the
Re–Pd complex [ReO2{p-tBu-calix[4]arene-(O)4}Pd(h3-
C3H5)] (4) was obtained in 75% yield (Scheme 2). The

1H NMR signals for the allyl protons of 4 appear at d= 4.01
(tt, J= 11.7, 6.6 Hz, 1H), 2.20 (d, J= 6.6 Hz, 2H), and
1.20 ppm (d, J= 11.7 Hz, 2H), and exhibit an extraordinary
high-field shift compared with those of [{Pd(h3-C3H5)Cl}2]
(Dd= 1.5–1.9 ppm). This observation strongly suggests that
the {Pd(h3-C3H5)

+} fragment is encapsulated in the calixarene
pocket and surrounded by the aromatic rings. The signals for
the calix[4]arene CH2 protons are observed as a pair of
doublets at room temperature (d= 4.61, 3.53 ppm, J=
14.4 Hz), indicating the dynamic behavior of the allyl group.
These signals coalesce at �40 8C and split into four doublets at
�80 8C (d= 3.48, 3.58, 4.32, 4.44 ppm, J= 14.8 Hz), which is in
full agreement with the expected Cs symmetry of 4.

The molecular structure of 4 was established by X-ray
crystallography.[10] An ORTEP drawing is shown in Figure 2,
which clearly confirms that the {Pd(h3-C3H5)

+} fragment is
situated in the cavity and coordinated by the two phenoxy

oxygen atoms situated trans to the Re¼O groups. The
heterobimetallic {RePdO2} core is planar, and the long
Re(1)···Pd(1) interatomic separation at 3.4383(8) E excludes
any metal–metal bonding interaction. The dihedral angle of
the two bridging phenoxo groups at 170.78 is comparable to
that of 3b, and the conformation of the calix[4]arene moiety is
deformed only slightly by the coordination of the {Pd(h3-
C3H5)

+} fragment. Although a few alkali-metal salts of anionic
calixarene complexes such as [Ta(OPh)2{p-tBu-calix[4]arene-
(O)4}Na(thf)2] have been reported to adopt a similar coordi-
nation structure,[14] complex 4 provides the first example
where a heterodinuclear core composed of two different
transition metals has been constructed inside the cavity of a
calixarene ligand. Interestingly, complex 4 was the only
bimetallic product detected in the reaction of 3a with
[Pd(h3-C3H5)(Me2CO)x]

+, and coordination of the terminal
Re¼O groups in 3a to the palladium center has not been
observed.

In conclusion, we have synthesized mononuclear ReVI and
ReVII complexes of 1 and found that the ReVII dioxo complex 3
can be used to construct a Re–Pd heterodinuclear core inside
the cavity of the calixarene. Although several homopolyme-
tallic complexes of calixarenes have been described in
literature,[15] a methodology to synthesize heteropolynuclear
transition-metal cores on the calixarene scaffold still remains
to be developed. The present study opens a potential
synthetic route for such a class of complexes.
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Figure 1. ORTEP diagram for the anionic part in 3b·2Me2CO·0.5C6H6.
Thermal ellipsoids were set at 50%.

Scheme 2. Synthesis of heterobimetallic complex 4.

Figure 2. ORTEP diagram for complex 4. Thermal ellipsoids were set
at 50%.
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