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Abstract: Single- and double-chain 13-1inked galactose amphiphiles derived from scrine were synthesized. Both types 
of compounds have potential as material for the formulation of liposomal drug carrier and targeting systems and as 
HIV inhibitors. 

The achievement of a drug carrier and delivery system, such as liposomes, for specific targeting to cells 

and organs has become a major objective in biomedical research. 1,2 Specific cell targeting requires liposomes 

exhibiting extended in vivo blood circulation times and bearing, at their surface, ligands which are specifically 

recognized by receptors present on the cell.l,2 Recently, long-circulating liposomes have been obtained by the 

use of highly fluorinated phospholipids. 3 Moreover hepatocytes and macrophages possess membrane lectins 

which are specific galactose receptors. 2A In order to enlarge the potential of the fluorinated liposomes as drug 

targeting devices to these cells, we designed and synthesized new galactosyl-labelled fluorinated amphiphiles 

based on serine. 5 Our interest in such serine-galactosyl compounds stemmed also from the ability of 

structurally closely related galactosphingolipid analogs to inhibit HIV uptake and infection of CD4-negative 

cells, as recently reported. 6 

We report here the synthesis of various substituted fluorocarbon/hydrocarbon single- and double-chain 

galactose amphiphiles (Scheme 1). Their hydrophobic chains are connected via amide bonds to serine which is 

13-1inked, via its remaining hydroxyl group, to the galactose polar head. 
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Scheme 1 : Molecular structure of the single- and double-chain serine-galactosyl amphiphiles la,b and lla-c. 

539 



540 

The synthesis of the single-chain amphiphiles Ia-b was performed in three steps starting from Fmoc- 

DL-serine (Scheme 2). The condensation of Fmoc-DL-serine with tetradecyl- or 11-(F-hexyl)-undecyl-amine 7 

in the presence of DCC, HOBt and NEt(iPr)2 (in order to avoid Fmoc-deprotection)8 afforded la  (50% yield) 

and its fluorinated analog lb (70% yield), respectively. Glycosylation of these latter compounds with 2,3,4,6- 

tetra-O-acetyl-~-D-galactopyranosyl trichloroacetimidate catalyzed by trimethylsilyltrifluoromethanesulfonate, 

TMSOTf (Schmidt method) 9, gave the [~-galactosides 2a and 2b in 35 and 55% yields, respectively. After 

Fmoc and acetyl deprotection in a MeOH/NEt3/H20 (2/1/1) mixture t0, the galactosides la and Ib it were 

respectively obtained in 100 and 45% yields. 
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Scheme 2 : Synthetic route to the hydrocarbon and fluorocarbon single-chain serine-galactosyl amphiphiles Ia and Ib. 

The synthetic route to the mixed hydrocarbon/fluorocarbon and fluorocarbon/fluorocarbon double-chain 

amphiphiles I Ia ,b  and IIc starting from Boc-O-benzyl-L(or DL)-serine is presented in Scheme 3. 

Condensation of Boc-O-benzyl-L(or DL)-serine with tetradecyl-, hexadecyl- or 11-(F-butyl)undecyl-amine 7 in 

the presence of DCC and HOBt, then Boc-deprotection and acylation of 3a-e with the appropriate 

perfluoroalkylated acid chloride 7 and further hydrogenolysis of the benzyl group 12 afforded the 

diamidoalcohols 4a-c in almost 60 % overall yields. Glycosylation of 4a with 2,3,4,6-tetra-O-acetyl-a-D- 

galactopyranosyl bromide in the usual conditions of the Koenigs-Knorr reaction 13 gave mainly the 1,2 

orthoester 5a together with the expected galactoside 6a. 5a was almost quantitatively converted into 6a by 

refluxing 5a in nitromethane with a catalytic amount of HgBr214 (64% overall yield for the glycosylation). In 

view of the issue of the Koenigs-Knorr reaction, the glycosylation of 4b,c was performed using the Schmidt 

reaction 9 which gave 6b,c in 30 to 60% yields. Deacetylation of the galactosides 6a-c in a MeOtl/NEt3/H20 

(2/1/1) mixture 10 afforded IIa-c 11 in 50 to 90% yield. 

Further investigations are underway to explore the potential of these new glycolipids (i) in the 

formulation of liposomes for drug targeting and (ii) in HIV uptake inhibition. 
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Scheme 3 : Synthetic route to the mixed fluorocarbon/hydrocarbon and fluorocarbon/fluorocarbon double-chain serine-galactosyl 

amphiphiles l la ,b and l lc.  
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