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Abstract: A simple procedure for the conversion of the phenyidimethylsilyl group to the aleolaoi in the presence of an 
alkene has been established. 

Fleming has shown that the bis(phenyldimethylsilyl)cuprate reagent 1 is a versatile tool for introduction of 

the phenyldimethylsilyl group into a series of organic structures. The phenyldimethylsilyl group can then be 

converted to the alcohol with retention of absolute configuration. 2 A serious difficulty with the reagents that 

have been used for this transformation is incompatibility with the carbon-carbon double bond.2, 3 A recent 

report by Fleming 4 on the conversion of the 2-methylbut-2-enyl(diphenyl)silyl group to the alcohol in the 

presence of a 1,2-disubstituted carbon-carbon double bond and work by Tamao 5 prompts us to disclose our 

recent results. Based on the work of Rabideau 6, we envisioned reduction of the phenyldimethylsilyl group of 1 

to the 1,4-cyclohexadiene 2. Conversion to silyl fluoride 3 followed by oxidation should then provide alcohol 4 

with retention of configuration. 
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In our model study, bis(phenyldimethylsilyl)cuprate 6 was added to R-(-)-carvone (5)1 a to give 

diastereomeric silyl ketones 7 and 8 (syn/anti 5:1), which could be separated by TLC mesh column 

chromatography. 7 Syn silyl ketone 7 was reduced with lithium/ammonia in TI-IF:EtOH at -78oc with 

concomitant formation of the alcohol and the 1,4-cyclohexadiene. Without purification, this intermediate 

351 



352 

0 
(PhMe2Si)2Cu(CN)Li 2 

THF, -23°C 

85% 
5 

IL 

O 

~ i  "~ .4. 
"'SiMe2 Ph 

7 

O 

~ " ' S i M e 2  Ph 

8 

syrdanti 5:1 

alcohol was exposed to tetrabutylammonium fluoride (TBAF) in THF at 25oc, followed by oxidation with 
aqueous hydrogen peroxide in the presence of potassium bicarbonate 8, to give exclusively the known 1,3-diol 

99 in 60% overall yield. 
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6 0 % overall 

Alternatively, syn ketone 7 was reduced with L-Selectride in THF at 0°C to give diastereomeric silyl 

alcohols 10 and 11 (syn/anti 4:1) in 80% yield. Application of the same reductive protocol to syn 3-hydroxy- 
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silane 1010 afforded the previously unknown meso 1,3-diol 1211 in 66% overall yield. 
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10 3. 30% H202, KHCO 3, MeOH, 25°C 12 

6 6 % overall 

In summary, the phenyldimethylsilyl group can be transformed to the hydroxyl in a procedure which is 

compatible with an alkene. This substantially extends the usefulness of the phenyldimethylsilyl group as an 

alcohol surrogate. 
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