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Abstract: Without the formation of inseparable regioisomers,
various substituted phenol derivatives 2 and benzene derivatives 4
were prepared through RCM–tautomerization and RCM–dehydra-
tion protocols. A new synthetic route to precursors 1 and 3 enabled
efficient access to these aromatic compounds.
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Ruthenium-catalyzed ring-closing olefin metathesis
(RCM) has emerged as a valuable tool for the preparation
of substituted aromatic compounds in recent years.1,2 We
have also been interested in the development of synthetic
methods for carbocyclic aromatic compounds using
RCM.2g,j In our first report, we showed that derivatives of
phenol (2), which are one of the most important classes of
aromatic compounds, can be prepared from the corre-
sponding 1,4,7-trien-3-ones 1 using the RCM–tautomer-
ization protocol in which the ketonic tautomers of the
phenols are advantageously generated (Equation 1).2j In
this connection, we recently extended the method to the
RCM–dehydration protocol to obtain derivatives of ben-
zene (4) by use of the corresponding 1,4,7-trien-3-ols 3 as
the starting material (Equation 2).2g The most important
benefit offered by these methods is that aromatic com-
pounds having various structures can be produced without
the formation of inseparable regioisomers.

Equation 1

Equation 2

For the synthesis of precursors 1 and 3, we employed the
upper retrosynthetic route in Scheme 1. In this route,
1,4,7-trien-3-ols 3, which are the precursors not only of
benzene derivatives 4 but also of 1, were constructed by
the coupling reaction between a,b-unsaturated aldehydes
and 5. Bromodienes 5 were obtained via the palladium-
catalyzed cis-selective bromoallylation3 of alkynes with
allyl bromides 6. Although this route provided a variety of
precursors 1 and 3, there was an important limitation. In
the palladium-catalyzed bromoallylation step, available
alkynes were limited to terminal or symmetrical internal
alkynes. The use of unsymmetrical internal alkynes most-
ly resulted in a mixture of inseparable regioisomers of 5.

Scheme 1

Herein, we report our continuing study of the synthesis of
phenol derivatives 2 and benzene derivatives 4 using
RCM, in which precursors 1 and 3 were prepared via the
lower retrosynthetic route in Scheme 1. The new route,
which extends the scope of resulting aromatic com-
pounds, includes the coupling reaction between 2,5-hexa-
dienals 7 and vinyl halides for the preparation of 3, and the
oxidation of 2,5-hexadienols 8 into 7.

The route to 1 and 3 performed in this study is exemplified
by the synthesis of 1e and 3e in Scheme 2. Starting mate-
rial 8e was prepared by stereoselective carbometalation of
propargyl alcohol followed by allylation4 developed by
Fallis and co-workers. After the oxidation of 8e with
Dess–Martin periodinane, the Nozaki–Hiyama–Kishi
reaction5 of resulting 7e with 2-iodoallyl acetate gave
1,4,7-trien-3-ol 3e. Treatment of 3e with MnO2 gave cor-
responding 1,4,7-trien-3-one 1e. A series of 1 and 3 were
likewise prepared in this way6,7 and were subjected to the
RCM reaction.

Table 1 shows the results of the synthesis of benzene
derivatives 4.8 In all cases, the RCM–dehydration of 3
proceeded well and corresponding benzene derivatives 4
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were obtained in excellent yields. The rate of the RCM
reaction was highly dependent on the number of substitu-
ents and their steric hindrance at the reacting double
bonds. For the formation of a disubstituted double bond in
the RCM reactions that gave benzene derivatives 4a,b, the

conditions using Grubbs’ first-generation catalyst 99 at
room temperature sufficed for the full conversion (entries
1 and 2). In contrast, the reaction of 3c,d that have a
methyl group at R1 or R8 position required more active
Grubbs’ second-generation catalyst 1010 and higher tem-
perature (40 °C), even though a disubstituted double bond
was formed as a result (entries 3 and 4). The formation of
a trisubstituted double bond in the RCM also required the
latter conditions (entries 5 and 6). A further increase in
temperature (80–100 °C) was required for the reactions of
3g,h in which tetrasubstituted double bonds were formed
(entries 7 and 8).

Next, the RCM–tautomerization protocol for the synthesis
of phenol derivatives 2 from 1 was examined, and the re-
sults are summarized in Table 2.11 In agreement with the
known propensity of the electron-deficient dienic system
to be poorly reactive in RCM reactions,12 the reactivities
of 1,4,7-trien-3-ones 1 were lower than those of 1,4,7-
trien-3-ols 3. However, the reactions of 3 proceeded
smoothly to give 2 in excellent yields by increasing
temperature in the range of 20 °C to 40 °C based on the
temperature of the reactions of the corresponding 3
(Table 1 vs. Table 2).

Scheme 2 Reagents and conditions: (a) MeMgCl (3.2 equiv), THF–
toluene, reflux, 18 h; (b) allyl iodide (3.6 equiv), reflux, 24 h, 79%;
(c) Dess–Martin periodinane (2.0 equiv), CH2Cl2, r.t., 1 h, 96%; (d) 2-
iodoallyl acetate (2.5 equiv), CrCl2 (3.5 equiv), NiCl2 (0.35 mol%),
DMF, r.t., overnight, 63%; (e) MnO2 (30 equiv), CH2Cl2, r.t., 24 h,
70%.
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Table 1 Synthesis of Benzene Derivatives 4 by Ruthenium-Catalyzed RCM–Dehydrationa

Entry Sub-
strate

R1 R2 R3 R4 R5 R6 R7 R8 Product Cat. Temp Yield 
(%)b

1c 3a H H H Ph Me H H H 4a 9 r.t. >99

2d 3b H H Me H C2H4OTIPS H H H 4b 9 r.t. 98

3c 3c Me H H i-Pr 4-FC6H4 H H H 4c 10 40 °C 98

4c,e 3d H H H Me Ph Me H Me 4d 10 40 °C 97

5d 3e H CH2OAc H Me Ph H H H 4e 10 40 °C 87

6d 3f H Xf H Me Ph H H H 4f 10 40 °C 94

7d,g 3g H Me H H C2H4OTIPS H Me H 4g 10 80 °C 97

8d,g 3h H CH2OAc H Ph Me H Me H 4h 10 100 °C 90

a RCM was carried out with 3 and ruthenium catalyst (9 or 10, 7.5 mol%) in CH2Cl2 for 2 h.
b Isolated yield.
c For the dehydration, the reaction mixture after RCM was treated with PTSA (10 mol%) and stirred for 1 h at r.t.
d For the dehydration, the reaction mixture after RCM was treated with silica gel (SiO2, excess) and stirred for 1 h at r.t.
e When the amount of catalyst 10 was decreased to 5.0 mol% or 2.5 mol%, the isolated yield of 4d was decreased to 94% and 80%, respectively.
f X =

g Reaction was carried out in toluene.
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In summary, we have established an efficient synthetic
route to carbocyclic aromatic compounds using RCM.
Starting with readily available 2,5-hexadienols 8, a vari-
ety of benzene derivatives 4 and phenol derivatives 2 were
successfully synthesized. Most of the benzene derivatives
and phenol derivatives prepared here cannot be easily ob-
tained by our previous synthetic route. Further develop-
ments will be reported in due course.
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