# The influence of steric and polar effects on hydrogen bonding in 2-(N,N-diethylamino)-methyl-4-NO<sub>2</sub>-phenols

# A. Filarowski,<sup>(1,2)</sup> A. Koll,<sup>(1)</sup>\* and T. Głowiak<sup>(1)</sup>

#### Received January 18, 1996

Two crystal structures consisting of 2-(N,N-diethylamino)-methyl-4-NO<sub>2</sub>-phenol molecules were determined. In the triclinic crystals (with a = 9.527(2) Å, b = 11.268(3) Å, c = 11.408(3)Å,  $\alpha = 87.80(3)^\circ$ ,  $\beta = 69.62(3)^\circ$ ,  $\gamma = 81.82(3)^\circ$ , Z = 4, space group  $P\overline{1}$ ) asymmetric cyclic dimers were found, formed by two nonequivalent O<sup>-...</sup>H-N<sup>+</sup> hydrogen bonds of 2.614(3) and 2.660(3) Å lengths. In the complex of 2-(N,N-diethylamino)-methyl-4-NO<sub>2</sub>-phenol with 4-NO<sub>5</sub>-phenol (orthorhombic crystals with a = 20.732(4) Å, b = 16.618(2) Å, c = 10.452(2)Å, Z = 8, space group *Pbca*) an intermolecular O<sup>-...</sup>H-O (2.525(2) Å) hydrogen bond between 4-NO<sub>2</sub>-phenol and zwitterionic 2-(N,N-diethylamino)-methyl-4-NO<sub>2</sub>-phenol was found. In the latter molecule the intramolecular  $O^- \cdots H - N^+$  (2.760(2) Å) bridge is formed. The zwitterionic molecules form chains along the crystallographic b axis by NH<sup>+</sup>...O (3.105(2))Å) hydrogen bridges. The N – H<sup>+</sup> groups participate in bifurcated hydrogen bonds. The influence of the steric strain caused by N-alkyl chains and polar interactions of the NO<sub>2</sub> group on the character of the hydrogen bond and the structure of cyclic dimers is discussed. The IR and UV spectra determined show the full agreement in description of the hydrogen bonding schemes, simultaneously demonstrating a drastic rearrangement of these schemes upon going to CCl<sub>4</sub> solutions.

**KEY WORDS:** Hydrogen bond; crystal structure; FT-IR spectra; 2-(N,N-diethylamino)-methyl-4-NO<sub>2</sub>-phenol; cyclic dimers.

### Introduction

The ortho-methylamino phenols are widely used as a model system of an intramolecular hydrogen bond. The crystal structures of a large group of such compounds have been determined and analyzed.<sup>1</sup> The ortho-Mannich bases (the products of Mannich condensation of secondary amines, formaldehyde and derivatives of phenol of ortho position) form nonplanar chelate rings, the structure of which is controlled by the strength of the hydrogen bond and steric repulsion of atoms forming the ring (cf. Scheme 1). It was found that the nonplanarity of this ring characterized by the N-C-C-C torsion angle correlates with the  $\Delta pK_a$ (=  $pK_a(BH^+) - pK_a(AH)$  in  $A-H\cdots B$  bridge) as well as the O(H) $\cdots$ N distance and the C-O bond length. The intramolecular proton transfer, found even in non-



<sup>&</sup>lt;sup>(1)</sup> Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.

<sup>&</sup>lt;sup>(2)</sup> Architectural-Building Academy of Tyumen, Lunacharsky 3, 625-003 Tyumen, Russia.

<sup>\*</sup> To whom correspondence should be addressed.

polar solvents in a few compounds with the  $\Delta pK_a$  values higher than 3, causes very serious structural changes.

Specific questions concerning the structure of compounds containing the 4-NO<sub>2</sub> substituent in the phenolic ring may arise. The first one concerns the influence of the NO<sub>2</sub> group on the proton transfer equilibrium position in the solid state. In 2-(N,N-dimethylamino)-methyl-4-NO<sub>2</sub>-phenol (I) the zwitterionic structure in the solid state was observed,<sup>2</sup> despite the fact that the 2-(N,N-dimethylamino)-methyl-3,4,5-tri-Cl-phenol characterized by higher  $\Delta pK_a$  values, forms a molecular hydrogen bond in the solid state. It was suggested<sup>2</sup> that this peculiarity results from a large

Function minimized

Largest feature final diff. map( $e \times Å^{-3}$ )

polarization by the NO<sub>2</sub> group. The next determined structure of 4-NO<sub>2</sub>-substituted Mannich base was for 2-(N,N-diisobutylamino)-methyl-4-NO<sub>2</sub>-phenol (II).<sup>3</sup> In this case the screening of the hydrogen bridge by isobutyl groups reduces the polarization effect and intramolecular OH···N hydrogen bonds are formed. This shows that, besides the crystal packing forces, a combination of at least three molecular characteristics—  $\Delta pK_a$ , polarization, and steric interactions determine the form of the hydrogen bond in the solid state. It was shown also that in solution, the position of the proton-transfer equilibrium can be found to be different from that in the solid state.<sup>2</sup> In solution, the regular shift of this equilibrium was found to correlate with

C11H16N2O3C6H5NO3 Formula C11H16N2O3 Colour Yellow Yellow Molecular weight 224.26 363.37 ΡĪ Space group PbcaTemperature., °C 293(2) K 293(2) K Crystal system Triclinic Orthorhombic Cell constants a (A) 9.527(2)20.732(4)b (Å) 11.268(2) 16.618(2) 11.408(2) c (A) 10.452(4)  $\alpha$  (deg) 87.80(3) β (deg) 69.62(3)  $\gamma$  (deg) 81.82(3) Cell volume (Å<sup>3</sup>) 1136.2(4)3601.3(11) Formula units/unit cell 1 8  $D_{\rm col}(\rm mg \ \ m^{-3})$ 1.311 1.340  $\mu_{c,1}(cm^{-1})$ 0.960 8.63 Difractometer/scan Kuma KM4/ω-20 Radiation (A), graph monochromator ΜοΚα CuKα Max. crystal dimensions (mm) 0.35'0.35'0.40 0.20'0.20'0.25 Scan width (deg) Variable Variable No. of stand. ref. and int. 3 (100 ref.) 3 (100 ref.) Reflections measured 5416 3585 20 range for data calc. (deg) 4.6 to 56.0 deg. 8.5 to 162.4 deg. Range of h, k, I 0/12, -14/14, -13/15 -26/0, 0/21, 0/12 Reflections observed  $[F_0 > 4 \times \sigma (F_0)]$ 3156 2538 Corrections applied Lorentz and polarization effects Computer programs Shelxs 86,11 ShelxI 9312 Soure of structure factors used Programs Structure solution Direct method Treatment of hydrogen atoms Refined parameters: x, y, z,  $U_{1so}$ No. of parameters varied 417 320 weights<sup>a</sup> (a, b, f) 0.0663, 02294, 1/3 GOF 1.088 1.138  $R_1 = \Sigma(|F_0| - |F_c|)/\Sigma(|F_0|)$ 0.0406 0.0356  $wR_2 = \{\sum [wF_0^2 - F_0^2)^2\} / \sum [w(F_0^2)^2] \}^{1/2}$ 0.1086 0.1109

Table 1. Summary of data collection and processing parameters<sup>a</sup>

 ${}^{a}a_{w} = 1/[\sigma^{2}(F_{o}^{2}) + (a \times P)^{2} + b \times P]$  where  $P = [f \times \text{Max. of } (0 \text{ or } F_{o}^{2}) + (1 - f) \times F_{c}^{2}]$ .

0.203 and -0.242

 $\Sigma w(\Delta F^2)^2$ 

0.261 and -0.170

the increasing length of N-chains<sup>4</sup> in 2-(N,N-dialkylamino)-methyl-4-NO<sub>2</sub>-phenols. This is caused by the extension of the N-chain's shielding effect. An interesting question appeared to be the position of the proton transfer equilibrium in the solid state in the compound with two N-ethyl chains—in 2-(N,N-diethylamino)methyl-4-NO<sub>2</sub>-phenol (**III**), with intermediate steric effects between **I** and **II**. The structure of 2-(N,Ndiethylamino)-methyl-4-NO<sub>2</sub>-phenol is presented in this paper.

The second question concerns the conditions deciding whether intramolecular or intermolecular complexes are formed in the solid state. The working hypothesis was<sup>2.5</sup> that the molecular O-H···N systems form an intramolecular hydrogen bond and the ionic ones form intermolecular N-H+...O- hydrogen bridges arranged in cyclic dimers or chains.<sup>1</sup> Nevertheless, the evidence for the formation of the intramolecular hydrogen bonds of the ionic form was sought, because the assumption about the existence of such systems was a basis for interpretation of the hydrogen bonds polarity in low-polar solvents,6 as well as interpretation of UV spectra<sup>7</sup> in systems characterized by  $\Delta p K_a$  values below 3 units.<sup>5</sup> An increase of measured dipole moments with the solvent polarity<sup>8</sup> analogous to intermolecular complexes supports such an idea. It contradicts the alternative assumption about the cyclic dimers formation, which were detected for hydrogen bonds of  $\Delta p K_a$  larger than 3, where a drastic decrease of measured dipole moments with concentration increase was stated. The existence of the ionic form of the intramolecular hydrogen bond in the complex of 4-NO<sub>2</sub>-Mannich base with the 4-NO<sub>2</sub>-phenol (**IV**) was demonstrated in this paper. Complex formation seems to be the supporting condition for such a structure, where formation of a strong hydrogen bridge OH···O<sup>-</sup> type was discovered. It was known earlier,<sup>9</sup> that such complexes crystallize from the Mannich condensation reaction mixture in the case of 4-NO<sub>2</sub>-phenol derivatives.

The third interesting question concerns the structure of cyclic dimers formed by polar systems. Commonly the low polarity, with nearly zero dipole moment value is expected for such complexes.<sup>10</sup> In the 2-(N,Ndimethylamino)-methyl-4-NO<sub>2</sub>-phenol<sup>2</sup> such a structure with the symmetry center was found in the crystal, but in the case of a dimer of 2-(N,N-dimethylamino)methyl-3,4,5,6-tetra-Cl-phenol,<sup>3</sup> two equivalent molecules related by the C<sub>2</sub> symmetry axis form a cyclic dimer by two identical N<sup>+</sup>-H···O<sup>-</sup> hydrogen bonds of 2.637(4) Å length (cf. Fig. 1).



Fig. 1. The crystal structure of (a)—centrosymmetric dimer of 2-(N,N-dimethylamino)-methyl-4-NO<sub>2</sub>-phenol (I),<sup>2</sup> (b)—intramoleculary hydrogen bonded the 2-(N,N-diisobutylamino)-methyl-4-NO<sub>2</sub>-phenol (II),<sup>3</sup> (c)—cyclic dimer of 2-(N,N-dimethylamino)-methyl-2,3,4,5-tetra-Cl-phenol.<sup>1,3</sup>

 Table 2. Final atomic coordinates and equivalent thermal parameters with esd's in parentheses for 2-(N,N-diethylamino)-methyl-4-NO<sub>2</sub>-phenol (III)

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _     | x/a    | y/b       |      | zle       |      | $U_{\rm eq}/U_{\rm iso}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-----------|------|-----------|------|--------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1   | 083(2) | 0.1285(1) | C    | ).8157(1) | 0.   | 0477(4)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1   | 761(3) | 0.1367(2) | C    | ).2555(2) | 0.   | 0940(7)                  |
| N11 $0.4070(2)$ $0.2620(2)$ $0.7252(2)$ $0.0382(4)$ N12 $0.2750(3)$ $0.1269(2)$ $0.3027(2)$ $0.0602(5)$ C11 $0.1442(2)$ $0.1312(2)$ $0.6972(2)$ $0.0387(4)$ C12 $0.2983(2)$ $0.1319(2)$ $0.1185(2)$ $0.0367(4)$ C13 $0.3392(2)$ $0.1293(2)$ $0.4910(2)$ $0.0415(4)$ C14 $0.2309(3)$ $0.1286(2)$ $0.4361(2)$ $0.0453(5)$ C15 $0.0804(3)$ $0.1320(2)$ $0.6357(2)$ $0.0542(6)$ C17 $0.4108(2)$ $0.1370(2)$ $0.6813(2)$ $0.0413(4)$ C18 $0.4727(3)$ $0.2647(2)$ $0.8266(2)$ $0.0504(5)$ C19 $0.3643(3)$ $0.2362(3)$ $0.9513(2)$ $0.0602(6)$ C110 $0.4784(3)$ $0.3420(2)$ $0.6200(2)$ $0.0544(6)$ C21 $0.1467(2)$ $0.3973(1)$ $0.8207(2)$ $0.0617(5)$ O21 $0.1467(2)$ $0.3973(1)$ $0.8207(2)$ $0.0617(5)$ O23 $-0.3703(2)$ $0.6149(2)$ $0.6341(2)$ $0.0711(5)$ N21 $-0.1163(2)$ $0.2379(1)$ $1.0074(2)$ $0.0337(3)$ N22 $-0.3761(2)$ $0.5762(2)$ $0.7373(2)$ $0.04644(2)$ C23 $-0.2474(2)$ $0.4788(2)$ $0.8719(2)$ $0.035(4)$ C24 $0.0276(2)$ $0.438(2)$ $0.0650(2)$ $0.0438(4)$ C25 $-0.1015(3)$ $0.5385(2)$ $0.6650(2)$ $0.0438(4)$ C26 $0.0276(2)$ $0.27587(2)$ $0.0387(4)$ C27 $-0.1231(2)$ | 0.1   | 105(2) | 0.1167(2) | C    | .2393(2)  | 0.0  | 0851(6)                  |
| N12 $0.2750(3)$ $0.1269(2)$ $0.3027(2)$ $0.0602(5)$ C11 $0.1442(2)$ $0.1312(2)$ $0.6972(2)$ $0.0387(4)$ C12 $0.2983(2)$ $0.1319(2)$ $0.1185(2)$ $0.0367(4)$ C13 $0.3392(2)$ $0.1293(2)$ $0.4910(2)$ $0.0415(4)$ C14 $0.2309(3)$ $0.1286(2)$ $0.4361(2)$ $0.0453(5)$ C15 $0.0804(3)$ $0.1321(2)$ $0.5086(2)$ $0.0562(6)$ C16 $0.0378(3)$ $0.1330(2)$ $0.6813(2)$ $0.0413(4)$ C18 $0.4727(3)$ $0.2647(2)$ $0.8266(2)$ $0.0504(5)$ C19 $0.3643(3)$ $0.2362(3)$ $0.9513(2)$ $0.0602(6)$ C110 $0.4784(3)$ $0.3420(2)$ $0.6200(2)$ $0.0548(6)$ C111 $0.6465(4)$ $0.3127(4)$ $0.5614(4)$ $0.0875(1)$ O21 $0.1467(2)$ $0.3973(1)$ $0.8207(2)$ $0.0547(4)$ O22 $-0.4983(2)$ $0.5721(2)$ $0.8227(2)$ $0.0617(5)$ O23 $-0.3703(2)$ $0.6149(2)$ $0.6341(2)$ $0.071(5)$ O23 $-0.3761(2)$ $0.572(2)$ $0.7737(2)$ $0.0387(3)$ N22 $-0.3761(2)$ $0.5762(2)$ $0.7737(2)$ $0.0387(4)$ C21 $0.0269(2)$ $0.4366(2)$ $0.7987(2)$ $0.0335(4)$ C23 $-0.2474(2)$ $0.4788(2)$ $0.8719(2)$ $0.0335(4)$ C24 $-0.2474(2)$ $0.5385(2)$ $0.6650(2)$ $0.043(5)$ C25 $-0.1015(3)$ $0.57387(2)$ $0.0788(4)$ $0.259(2)$ C26  | 0.2   | 070(2) | 0.2620(2) | 0    | .7252(2)  | 0.0  | 0382(4)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1   | 750(3) | 0.1269(2) | 0    | .3027(2)  | 0.0  | 0602(5)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1   | 442(2) | 0.1312(2) | 0    | .6972(2)  | 0.0  | 0387(4)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1   | 983(2) | 0.1319(2) | - 0  | .1185(2)  | 0,0  | 0367(4)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1   | 392(2) | 0.1293(2) | 0    | .4910(2)  | 0.0  | 0415(4)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1   | 309(3) | 0.1286(2) | - 0  | 4361(2)   | 0.0  | 0453(5)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1   | 804(3) | 0.1321(2) | - 0  | .5086(2)  | 0.0  | 0562(6)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1   | 378(3) | 0.1330(2) | - 0  | .6357(2)  | 0,0  | 0542(6)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1   | 108(2) | 0.1370(2) | 0    | .6813(2)  | -0.0 | 0413(4)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2   | 727(3) | 0.2647(2) | - 0  | .8266(2)  | -0,0 | 0504(5)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2   | 643(3) | 0.2362(3) | 0    | .9513(2)  | 0.0  | 0602(6)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3   | 784(3) | 0.3420(2) | 0    | .6200(2)  | 0.0  | 0548(6)                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3   | 465(4) | 0.3127(4) | 0    | .5614(4)  | -0.0 | 0875(11)                 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3   | 467(2) | 0.3973(1) | -0   | .8207(2)  | 0,0  | )547(4)                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5   | 983(2) | 0.5721(2) | 0    | .8227(2)  | 0.0  | )617(5)                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6   | 703(2) | 0.6149(2) | 0    | .6341(2)  | 0.0  | )711(5)                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2   | 163(2) | 0.2379(1) | 1    | .0074(2)  | 0.0  | )337(3)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5   | 761(2) | 0.5762(2) | -0   | .7373(2)  | 0.0  | )464(4)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4   | 269(2) | 0.4366(2) | -0   | .7987(2)  | 0.0  | )396(4)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ),4   | 181(2) | 0.4303(2) | ()   | .8928(2)  | 0.0  | )353(4)                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4   | 474(2) | 0.4788(2) | -0   | .8719(2)  | 0.0  | )355(4)                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).5   | 404(2) | 0.5317(2) | - 0. | 7587(2)   | 0.0  | )387(4)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).5.  | )15(3) | 0.5385(2) | 0    | .6650(2)  | 0.0  | )493(5)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ),49  | 276(2) | 0.4923(2) | 0.   | .6848(2)  | 0.0  | )513(5)                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )_3   | 231(2) | 0.3719(2) | 1.   | .0131(2)  | 0.0  | )383(4)                  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ), [' | 742(3) | 0.1779(2) | 1.   | 1120(2)   | 0.0  | )451(5)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).20  | 384(4) | 0.2076(4) | 1.   | 2394(2)   | 0.0  | )749(9)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).20  | 596(2) | 0.2053(2) | 0.   | 9999(2)   | 0,0  | 0438(5)                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).0'  | 571(3) | 0.0738(2) | 0.   | 9837(3)   | 0.0  | )541(6)                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).3(  | 0(3)   | 0.300(2)  | 0.   | 760(2)    | 0.0  | )57(7)                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).2   | 2(2)   | 0.212(2)  | 0.   | 935(2)    | 0.0  | )41(5)                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).13  | 3(3)   | 0.132(2)  | -0.  | 443(2)    | 0.0  | 50(6)                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).13  | 9(3)   | 0.131(2)  | 0.   | 471(3)    | 0.0  | 68(8)                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).11  | 2(3)   | 0.129(2)  | 0.   | 686(3)    | 0.0  | 68(8)                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).11  | 9(3)   | 0.112(2)  | 0.   | 626(2)    | 0.0  | 48(6)                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.09  | 8(2)   | 0.090(2)  | 0.   | 755(2)    | 0.0  | 47(6)                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).2(  | (3)    | 0.208(3)  | 0.   | 799(3)    | 0.0  | 73(8)                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).35  | 19(3)  | 0.351(3)  | 0.   | 832(3)    | 0.0  | 83(9)                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).2-  | 5(3)   | 0.243(3)  | 1.   | 015(3)    | 0.0  | 79(9)                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).14  | 4(5)   | 0.147(4)  | 0.   | 941(4)    | 0.1  | 4(2)                     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .29   | 8(4)   | 0.292(3)  | 0.   | 973(3)    | 0,0  | 87(9)                    |
| $\begin{array}{ccccccc} H(12) & 0.430(3) & 0.336(2) & 0.564(3) & 0.071(8) \\ H(13) & 0.697(5) & 0.322(4) & 0.628(4) & 0.125(14) \\ H(14) & 0.684(4) & 0.366(4) & 0.498(4) & 0.122(13) \\ H(15) & 0.678(4) & 0.228(4) & 0.533(3) & 0.100(11) \\ H(16) & -0.340(2) & 0.477(2) & 0.935(2) & 0.038(5) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).43  | 0(3)   | 0.423(3)  | 0.   | 655(2)    | 0.0  | 61(7)                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.33  | 0(3)   | 0.336(2)  | 0.   | 564(3)    | 0.0  | 71(8)                    |
| $\begin{array}{ccccc} H(14) & 0.684(4) & 0.366(4) & 0.498(4) & 0.122(13) \\ H(15) & 0.678(4) & 0.228(4) & 0.533(3) & 0.100(11) \\ H(16) & -0.340(2) & 0.477(2) & 0.935(2) & 0.038(5) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .32   | 7(5)   | 0.322(4)  | 0.   | 628(4)    | 0.1  | 25(14)                   |
| H(15) = 0.678(4) = 0.228(4) = 0.533(3) = 0.100(11)<br>H(16) = -0.340(2) = 0.477(2) = 0.935(2) = 0.038(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .36   | 4(4)   | 0.366(4)  | 0.   | 498(4)    | 0.1  | 22(13)                   |
| H(16) = -0.340(2) = 0.477(2) = 0.935(2) = 0.038(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .22   | 8(4)   | 0.228(4)  | 0.   | 533(3)    | 0.1  | 00(11)                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .47   | 0(2)   | 0.477(2)  | 0.   | 935(2)    | 0.0  | 38(5)                    |
| H(17) = 0.098(3) 0.580(2) 0.590(2) 0.061(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .58   | 8(3)   | 0.580(2)  | 0.   | 590(2)    | 0.0  | 61(7)                    |
| H(18) 0.123(3) 0.500(2) 0.625(3) 0.070(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .50   | 3(3)   | 0.500(2)  | 0.   | 625(3)    | 0.0  | 70(8)                    |
| H(19) = -0.039(3) = 0.387(2) = 1.035(2) = 0.047(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .38   | 9(3)   | 0.387(2)  | 1.0  | 035(2)    | 0.0  | 47(6)                    |
| H(20) = -0.216(3) = 0.400(2) = 1.086(2) = 0.048(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .40   | 6(3)   | 0.400(2)  | 1.0  | 086(2)    | 0.0  | 48(6)                    |
| H(21) = -0.055(2) = 0.094(2) = 1.094(2) = 0.046(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .09   | 5(2)   | 0.094(2)  | 1.0  | 094(2)    | 0.0  | 46(6)                    |

Table 2. Continued.

|       | xla       | y/b      | <i>z/c</i>    | $U_{ m eg}/U_{ m iso}$ |
|-------|-----------|----------|---------------|------------------------|
| H(22) | 0.015(3)  | 0.205(2) | -<br>1.106(2) | 0.055(7)               |
| H(23) | 0.210(4)  | 0.292(3) | 1.258(3)      | 0.095(11)              |
| H(24) | -0.282(4) | 0.174(3) | 1.240(3)      | 0.114(13)              |
| H(25) | -0.151(3) | 0.167(3) | 1.300(3)      | 0.087(9)               |
| H(26) | -0.273(3) | 0.249(2) | 0.929(2)      | 0.061(7)               |
| H(27) | -0.338(3) | 0.235(2) | 1.076(2)      | 0.058(7)               |
| H(28) | -0.244(3) | 0.031(3) | 1.056(3)      | 0.070(8)               |
| H(29) | -0.358(4) | 0.060(3) | 0.980(3)      | 0.086(9)               |
| H(30) | -0.175(4) | 0.041(3) | 0.908(3)      | 0.080(9)               |
|       |           |          |               |                        |

This demonstrates the possibility of the formation in solution of cyclic dimers with non-zero value of dipole moment. The structure of **III** gives an example of an even less symmetric cyclic dimer, where two different hydrogen bonds in a dimer were found.

## Experimental

1. Synthesis of Mannich base from a stoichiometric mixture of 4-NO<sub>2</sub>-phenol, formaldehyde and diethylamine in methanol was performed by a standard procedure.<sup>9</sup> After 6 hr of boiling the reaction mixture was cooled to give the yellow precipitate, which after recrystallization from water/methanol (50:50%) mixture (m.p. = 113.5°C) was studied by X-ray diffraction. It is further indicated as compound **IV**.

The filtrate, after all the routine steps of the Mannich synthesis<sup>9</sup> gave the yellow oil, which was crystallized from petroleum ether (m.p. =  $74^{\circ}$ C). It was indicated in this paper as compound III.

The IR spectra were recorded on NICOLET 205 FT-IR spectrophotometer with 2 cm<sup>-1</sup> resolution in KBr pellets and in CCl<sub>4</sub> solutions with concentration  $c \sim 0.005$  M/l.

The UV spectra were measured in n-hexane and ethanol solutions and in KBr pellets on CARY 1 VAR-IAN spectrophotometer with resolution 2 nm.

A summary of data collection is given in Table 1. Final atomic coordinates are given in Table 2 and Table 3. Anisotropic thermal parameters for non-H-atoms were applied.<sup>13</sup>

# **Results and discussion**

The molecular structures and atom labeling systems are given in Fig. 2. Tables 4 and 5 present selected

|        | U11<br>0.0477(8) | U22        | <i>U</i> 33 | U23         | U13         | U12         |
|--------|------------------|------------|-------------|-------------|-------------|-------------|
|        | 0,0477(8)        | 0.05/200   |             |             |             |             |
| O(11)  |                  | 0.0562(9)  | 0.0324(7)   | -0.0009(6)  | -0,0061(6)  | -0,0046(7)  |
| O(12)  | 0.105(2)         | 0.141(2)   | 0.0542(11)  | -0.0016(12) | -0.0484(12) | -0.0220(14) |
| O(13)  | 0.0823(14)       | 0.120(2)   | 0.0374(9)   | -0.0036(10) | -0.0092(9)  | 0.0088(12)  |
| N(11)  | 0.0328(8)        | 0.0506(10) | 0.0323(8)   | -0.0012(7)  | -0.0134(6)  | -0.0031(7)  |
| N(12)  | 0.081(2)         | 0.0640(13) | 0.0384(10)  | -0.0005(9)  | -0.0257(11) | -0.0069(11) |
| C(11)  | 0.0415(10)       | 0.0377(10) | 0.0346(9)   | -0.0018(8)  | -0.0093(8)  | -0.0071(8)  |
| C(12)  | 0.0388(10)       | 0.0355(9)  | 0.0349(9)   | 0.0001(7)   | -0.0115(8)  | -0.0041(8)  |
| C(13)  | 0.0436(11)       | 0.0406(10) | 0.0359(10)  | -0.0005(8)  | -0.0086(8)  | -0.0044(8)  |
| C(14)  | 0.0569(13)       | 0.0466(11) | 0.0348(10)  | -0.0007(8)  | -0.0179(9)  | -0.0090(9)  |
| C(15)  | 0.0568(14)       | 0.071(2)   | 0.0533(13)  | 0.0014(11)  | -0.0304(11) | -0.0194(12) |
| C(16)  | 0.0419(12)       | 0.073(2)   | 0.0478(12)  | -0.0005(11) | -0.0120(10) | -0.0181(11) |
| C(17)  | 0.0395(11)       | 0.0439(11) | 0.0393(10)  | 0.0015(9)   | -0.0145(8)  | 0.0002(8)   |
| C(18)  | 0.0435(12)       | 0.070(2)   | 0.0433(12)  | -0.0019(10) | -0.0226(9)  | -0.0073(11) |
| C(19)  | 0.067(2)         | 0.077(2)   | 0.0403(12)  | 0.0031(12)  | -0.0239(12) | -0.0091(14) |
| C(110) | 0.0651(15)       | 0.0580(15) | 0.0459(12)  | 0.0057(11)  | -0.0205(11) | -0.0217(12) |
| C(111) | 0.072(2)         | 0.102(3)   | 0.068(2)    | -0.005(2)   | 0.011(2)    | -0.035(2)   |
| O(21)  | 0.0337(8)        | 0.0569(9)  | 0.0724(11)  | -0.0110(8)  | -0.0193(7)  | 0.0030(6)   |
| O(22)  | 0.0382(8)        | 0.0720(11) | 0.0684(11)  | 0.0092(9)   | -0.0163(8)  | 0.0059(7)   |
| O(23)  | 0.0792(12)       | 0.0790(12) | 0.0623(11)  | 0.0257(9)   | -0.0385(9)  | -0.0052(9)  |
| N(21)  | 0.0316(8)        | 0.0369(8)  | 0.0307(8)   | 0.0010(6)   | -0.0103(6)  | 0.0002(6)   |
| N(22)  | 0.0488(10)       | 0.0403(9)  | 0.0518(10)  | 0.0062(8)   | -0.0222(8)  | -0.0009(7)  |
| C(21)  | 0.0332(10)       | 0.0356(10) | 0.0491(11)  | -0.0060(8)  | -0.0124(8)  | -0.0050(7)  |
| C(22)  | 0.0355(9)        | 0.0322(9)  | 0.0383(9)   | -0.0018(7)  | -0.0129(8)  | -0.0037(7)  |
| C(23)  | 0.0327(9)        | 0.0331(9)  | 0.0369(10)  | -0.0001(7)  | -0.0075(8)  | -0.0037(7)  |
| C(24)  | 0.0390(10)       | 0.0351(10) | 0.0413(10)  | 0.0032(8)   | -0.0144(8)  | -0.0021(8)  |
| C(25)  | 0.0501(12)       | 0.0529(12) | 0.0404(11)  | 0.0117(9)   | -0.0102(9)  | -0.0098(10) |
| C(26)  | 0.0379(11)       | 0.0582(13) | 0.0485(12)  | 0.0056(10)  | 0.0019(9)   | -0.0119(10) |
| C(27)  | 0.403(10)        | 0.0386(10) | 0.0388(10)  | -0.0038(8)  | -0.0183(9)  | -0.0021(8)  |
| C(28)  | 0.0443(12)       | 0.0538(13) | 0.0372(10)  | 0.0062(9)   | -0.0180(9)  | 0.0017(10)  |
| C(29)  | 0.085(2)         | 0.092(2)   | 0.0344(13)  | 0.0087(13)  | -0.0116(13) | 0.006(2)    |
| C(210) | 0.0371(10)       | 0.0431(11) | 0.0538(13)  | 0.0007(10)  | -0.0197(10) | -0.0036(8)  |
| C(211) | 0.0549(14)       | 0.0451(12) | 0.065(2)    | 0.0055(11)  | -0.0227(12) | -0.0118(10) |

**Table 2b.** Anisotropic displacement parameters ( $\dot{A}^2$ ) for 2-(N,N-diethylamino)-methyl-4-NO<sub>2</sub>-phenol (III)"

"The anisotropic displacement factor exponent takes the form:  $-2 \pi^2 [h^2 a^{*2} U 11 + \dots + 2 h k a^* h^* U 12]$ .

bond distances and valence angles. Selected torsional angles are presented in Table 6.

In the crystal structure 2-(N,N-diethylamino)methyl-4-NO<sub>2</sub>-phenol (**III**) forms cyclic dimers,  $R_2^3$  (12).<sup>14</sup> lacking the symmetry center found earlier in the case of 2-(N,N-dimethylamino)-methyl-4-NO<sub>2</sub>-phenol (**I**). The increase of the steric and shielding effects by extension of N-aliphatic chains from methyl to ethyl groups appears not to be sufficient to prevent an ionization, as was found in the case of diisobutyl derivative.<sup>3</sup> Two different bonds of O<sup>----</sup>H-N<sup>+</sup> type can be characterized by the 2.614(3) and 2.660(3) Å of O<sup>--</sup>(H)-N<sup>+</sup> distance, H-N<sup>+</sup> bonds length equal to 1.00(3) and 0.91(3) Å, the H---O<sup>-</sup> distances equal to 1.65(2) and 1.78(2) Å as well as the O-H---N<sup>+</sup> angles equal to 163(2) and 166(2) degrees. Nonlinearity of these N-H<sup>+---</sup>O<sup>-</sup> bonds can be caused by attraction between  $H^*$  and  $O^-$  atoms in neighbor hydrogen bonds, i.e.,  $H' \cdots O21$  (2.91 Å) and  $H \cdots O11$  (2.75 Å).

The packing scheme of two cyclic dimers in the crystal structure of **III** is shown in Fig. 3. The structure of **III** resembles the structure of the cyclic dimers in N,N-dimethyl derivative of tetra-Cl-phenol (cf. Fig. 1). The arrangement of atoms involved in the hydrogen bonding in **III** is, however, less symmetrical than in tetrachloro derivative, where two of  $N^+-H^{\dots}O^-$  hydrogen bonds are equivalent.

The ionic or molecular form of the  $4-NO_2$ -phenol in the solid state can be verified by the UV-Vis spectra, measured in KBr pellets. In **III** the maximum of the first long-wave absorption band is above 400 nm, which clearly indicates the ionic form of the hydrogen bond resembling the absorption of **III** in ethanol with the excess of KOH (with maximum at 410 nm) and

**Table 3.** Final atomic coordinates and equivalent thermal parameters with esd's in parentheses for complex of 2-(N,N-diethylamino)-methyl-4-NO<sub>2</sub>-phenol with 4-NO<sub>2</sub>-phenol (**IV**)

|       | xla         | y/b         | zle          | $U_{\rm eq}/U_{\rm iso}$ |
|-------|-------------|-------------|--------------|--------------------------|
| 011   | 0.50304(4)  | 0.18213(5)  | 0.09263(11)  | 0.0448(3)                |
| 012   | 0.44660(6)  | -0.17479(6) | 0.3241(2)    | 0.0680(4)                |
| 013   | 0.35678(6)  | -0.14206(7) | 0.1444(2)    | 0.0814(5)                |
| O21   | 0.42843(5)  | 0.28699(6)  | -0.00054(11) | 0.0481(3)                |
| ()22  | 0.23287(8)  | 0.49312(9)  | 0.3087(2)    | 0.0896(5)                |
| 023   | 0.25566(8)  | 0.40318(11) | 0.4515(2)    | 0.0871(5)                |
| NH    | 0.59854(5)  | 0.14706(7)  | 0.26800(12)  | 0.0385(3)                |
| N12   | 0.41113(6)  | -0.12493(8) | 0.18194(14)  | 0.0521(3)                |
| N21   | 0,26067(6)  | 0.43127(9)  | 0.3433(2)    | 0.0605(4)                |
| CH    | 0.47990(6)  | 0.11113(7)  | 0.11619(14)  | 0.0366(3)                |
| C12   | 0.52121(6)  | 0.05048(7)  | 0.16758(13)  | 0.0358(3)                |
| C13   | 0,49866(6)  | -0.02619(7) | 0.18947(15)  | 0.0396(3)                |
| C14   | 0.43453(6)  | -0.04461(8) | 0.16302(15)  | 0.0405(3)                |
| C15   | 0.39217(6)  | 0.01399(8)  | 0.1179(2)    | 0.0432(3)                |
| C16   | 0.41416(6)  | 0.09054(8)  | 0.0963(2)    | 0.0418(3)                |
| C17   | 0,59069(6)  | 0.07186(8)  | 0.1894(2)    | 0.0400(3)                |
| C18   | 0,66846(7)  | 0.16785(10) | 0.2849(2)    | 0.0546(4)                |
| C19   | 0.69929(13) | 0.1968(2)   | 0.1650(3)    | 0.0897(8)                |
| C110  | 0,56153(8)  | 0.14580(10) | 0.3920(2)    | 0.0510(4)                |
| CIII  | 0,57920(14) | 0.0781(2)   | 0.4797(2)    | 0.0770(6)                |
| C21   | 0,38778(6)  | 0.31878(7)  | 0.0840(2)    | 0.0391(3)                |
| C22   | 0.38552(7)  | 0.29450(8)  | 0.2121(2)    | 0.0430(3)                |
| C23   | 0.34249(7)  | 0.32974(9)  | 0.2953(2)    | 0.0453(3)                |
| C24   | 0.30245(6)  | 0.39098(8)  | 0.2516(2)    | 0.0447(3)                |
| C25   | 0.30313(7)  | 0.41556(9)  | 0.1266(2)    | 0.0497(4)                |
| C26   | 0.34525(7)  | 0.37925(9)  | 0.0416(2)    | 0.0473(4)                |
| H(1)  | 0.5278(8)   | -0.0665(10) | 0.220(2)     | 0.050(4)                 |
| H(2)  | 0.3468(8)   | 0.0027(9)   | 0.101(2)     | 0.042(4)                 |
| H(3)  | 0,3864(8)   | 0.1308(11)  | 0.072(2)     | 0.054(5)                 |
| H(4)  | 0.6125(8)   | 0.0316(11)  | 0.230(2)     | 0.053(5)                 |
| H(5)  | 0,6133(9)   | 0.0841(11)  | 0.109(2)     | 0.054(5)                 |
| H(6)  | 0.5769(10)  | 0.1863(12)  | 0.215(2)     | 0.070(6)                 |
| H(7)  | 0.6716(10)  | 0.2115(13)  | 0.355(2)     | 0.073(6)                 |
| H(8)  | 0.6889(11)  | 0.119(2)    | 0.323(2)     | 0.083(7)                 |
| H(9)  | 0.746(2)    | 0.211(2)    | 0.186(3)     | 0.118(9)                 |
| H(10) | 0.702(2)    | 0.153(2)    | 0.091(4)     | 0.17(2)                  |
| H(11) | ().6746(14) | 0.244(2)    | 0.125(3)     | 0.124(11)                |
| H(12) | 0.5150(10)  | 0.1411(11)  | 0.370(2)     | 0.069(5)                 |
| H(13) | 0.5701(9)   | 0.2000(12)  | 0.434(2)     | 0.058(5)                 |
| H(14) | 0.5519(14)  | 0.084(2)    | 0.564(3)     | 0.128(11)                |
| H(15) | 0.623(2)    | 0.085(2)    | 0.501(3)     | 0.112(10)                |
| H(16) | 0.571(2)    | 0.020(2)    | 0.436(3)     | 0.133(11)                |
| H(17) | 0.4571(13)  | 0.250(2)    | 0.038(3)     | 0.119(9)                 |
| H(18) | 0.4179(8)   | 0.2549(10)  | 0.237(2)     | 0.051(4)                 |
| H(19) | 0.3425(8)   | 0.3164(10)  | 0.389(2)     | 0.049(4)                 |
| H(20) | 0.2730(10)  | 0.4574(13)  | 0.093(2)     | 0.070(5)                 |
| H(21) | 0.3467(8)   | 0.3939(11)  | -0.041(2)    | 0.051(5)                 |

of I in the solid state. Double absorption of IV in the solid state indicates existence of both  $4-NO_2$ -phenolate and  $4-NO_2$ -phenol chromophores. The short-wave band resembles the absorption in n-hexane solution with maximum at 290 nm.







**Fig. 2.** Molecular structure and atoms labelling system of 2-(N,N-diethylamino)-methyl-4-NO<sub>2</sub>-phenol (**III**) and the complex of 2-(N,N-diethylamino)-methyl-4-NO<sub>2</sub>-phenol (**W**).

Existence of both these forms in IV is evident from the crystal structure (see Fig. 2b). The Mannich base part of the complex exists in the zwitterionic form, while  $4-NO_2$ -phenol is molecular.

The arrangement of the hydrogen bonds is visualized in the Scheme 2.

The basic motif is a dimer between these subunits formed by a strong  $O-H\cdots O^-(2.525(2)\text{ Å})$  and nearly linear hydrogen bond (the  $O-H\cdots O^-$  angle is equal to 174(1)°). In zwitterionic unit the intramolecular, ionic  $N-H^+\cdots O^-$  hydrogen bond (S(6)—according the nomenclature of Etter<sup>14</sup>) is formed. The  $N^+-H\cdots O^-$  distance is equal to 2.760(2) Å while the  $N^+-H\cdots O^-$  angle is equal to 135(1)°. The N-C-C-C torsion angle, equal to 52.7(2)° is the highest of those observed in other ortho-Mannich



bases. Also a very long  $O^+ \cdots H(N^+)$  distance 2.00(3) Å is observed.

Some weakening of this hydrogen bond results probably from an engagement of the O<sup>+</sup> acceptor in the another higher mentioned strong O-H···O<sup>+</sup> bridge. The N-H<sup>+</sup> group on the other side forms bifurcated hydrogen bond, participating also in the N-H<sup>+</sup> O hydrogen bond (3.105 (2) A length, with N-H<sup>+</sup>···O angle equal to  $128(1)^{\circ}$ ) to the one of the oxygen atoms of NO<sub>2</sub> group of another Mannich base.

This hydrogen bonding arranges the dimers of the complex IV in chains  $(C(8) \ according)^{14}$  nearly along the crystallographic *b* axis.

The IR spectra determined are in full accordance with the structural characteristics of the hydrogen bonding schemes in the solid state of both compounds

**Table 3b.** Anisotropic displacement parameters  $(A^2)$  for complex of 2-(N,N-diethylamino)-methyl-4-NO2-<br/>phenol with 4-NO2-phenol  $(IV)^a$ 

|        | <i>U</i> 11 | U22        | U33        | U23        | U13        | <i>U</i> 12 |
|--------|-------------|------------|------------|------------|------------|-------------|
| 0(11)  | 0.0427(5)   | 0.0348(4)  | 0.0570(7)  | 0.0053(4)  | -0.0052(4) | -0.0017(3)  |
| O(12)  | 0.0804(8)   | 0.0390(5)  | 0.0845(10) | 0.0113(6)  | -0.0144(7) | -0.0064(5)  |
| O(13)  | 0.0661(8)   | 0.0541(7)  | 0.1238(13) | 0.0089(7)  | -0.0195(8) | -0.0235(6)  |
| O(21)  | 0.0479(5)   | 0.0500(5)  | 0.0464(7)  | 0.0060(5)  | 0.0034(5)  | 0.0088(4)   |
| O(22)  | 0.0875(10)  | 0.0798(9)  | 0.1015(13) | -0.0215(8) | 0.0068(8)  | 0.0354(8)   |
| O(23)  | 0.0845(10)  | 0.1076(12) | 0.0693(11) | -0.0057(9) | 0.0242(8)  | 0.0141(8)   |
| N(11)  | 0.0363(5)   | 0.0353(5)  | 0.0440(7)  | -0.0046(5) | -0.0028(5) | 0.0039(4)   |
| N(12)  | 0.0588(7)   | 0.0398(6)  | 0.0578(9)  | -0.0004(6) | -0.0005(6) | -0.0089(5)  |
| N(21)  | 0.0430(6)   | 0.0641(8)  | 0.0743(12) | -0.0180(8) | 0.0028(6)  | 0.0018(6)   |
| C(11)  | 0.0374(6)   | 0.0342(6)  | 0.0382(8)  | 0.0002(5)  | -0.0014(5) | 0.0014(4)   |
| C(12)  | 0.0338(5)   | 0.0364(6)  | 0.0372(8)  | -0.0030(5) | -0.0005(5) | 0.0030(4)   |
| C(13)  | 0.0429(6)   | 0.0353(6)  | 0.0407(8)  | -0.0016(5) | -0.0011(5) | 0.0045(5)   |
| C(14)  | 0.0451(6)   | 0.0340(6)  | 0.0423(9)  | -0.0006(5) | 0.0017(5)  | -0.0033(5)  |
| C(15)  | 0.0364(6)   | 0.0449(7)  | 0.0483(10) | -0.0003(6) | -0.0025(5) | -0.0018(5)  |
| C(16)  | 0.0356(6)   | 0.0414(6)  | 0.0483(10) | 0.0026(6)  | -0.0045(5) | 0.0032(5)   |
| C(17)  | 0.0340(6)   | 0.0397(6)  | 0.0464(9)  | -0.0086(6) | -0.0015(5) | 0.0044(5)   |
| C(18)  | 0.0385(7)   | 0.0485(7)  | 0.0768(13) | -0.0094(8) | -0.0078(7) | -0.0021(6)  |
| C(19)  | 0.0694(13)  | 0.095(2)   | 0.105(2)   | -0.016(2)  | 0.0241(13) | 0.0351(13)  |
| C(110) | 0.0536(8)   | 0.0559(8)  | 0.0437(10) | -0.0108(7) | 0.0027(7)  | 0.0047(6)   |
| C(111) | 0.090(2)    | 0.0862(15) | 0.0552(14) | 0.0116(11) | 0.0025(12) | 0.0042(12)  |
| C(21)  | 0.0360(6)   | 0.0364(6)  | 0.0449(9)  | 0.0016(5)  | -0.0027(5) | -0.0022(4)  |
| C(22)  | 0.0427(6)   | 0.0409(6)  | 0.0454(10) | 0.0030(6)  | -0.0048(6) | 0.0014(5)   |
| C(23)  | 0.0458(7)   | 0.0488(7)  | 0.0412(10) | -0.0014(6) | -0.0027(6) | -0.0052(5)  |
| C(24)  | 0.0348(6)   | 0.0458(7)  | 0.0535(10) | -0.0080(6) | -0.0012(6) | -0.0028(5)  |
| C(25)  | 0.0421(7)   | 0.0458(7)  | 0.0611(11) | -0.0002(7) | -0.0076(7) | 0.0061(5)   |
| C(26)  | 0.0478(7)   | 0.0474(7)  | 0.0469(10) | 0.0073(7)  | -0.0046(6) | 0.0052(6)   |

<sup>*a*</sup> The anisotropic displacement factor exponent takes the form:  $-2\pi^2 [h^2 a^{*2} U_{11} + \cdots + 2h k a^* h^* U_{12}]$ .

| Table 4. | Selected bond lengths (A) and valence angles (*) with |
|----------|-------------------------------------------------------|
| esd's in | parentheses for 2-(N,N-diethylamino)-methyl-4-NO2-    |
|          | phenol (III)                                          |

| Length                                                                                                                                                                                                                                                                                                  | s (Å)                                                                                                                                                                                                                                                                                                                                                                                                      | Angles (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Length<br>O11 - C11<br>O12 - N12<br>O13 - N12<br>N11 - C110<br>N11 - C17<br>N12 - C14<br>C11 - C16<br>C11 - C12<br>C12 - C13<br>C12 - C13<br>C12 - C17<br>C13 - C14<br>C14 - C15<br>C15 - C16<br>C18 - C19<br>C110 - C111<br>O21 - C21<br>O22 - N22<br>N21 - C21<br>N21 - C28<br>N21 - C27<br>N22 - C24 | $\frac{s(\hat{A})}{1.274(2)}$ $\frac{1.274(2)}{1.229(3)}$ $\frac{1.232(3)}{1.496(3)}$ $\frac{1.498(3)}{1.505(3)}$ $\frac{1.498(3)}{1.418(3)}$ $\frac{1.430(3)}{1.418(3)}$ $\frac{1.430(3)}{1.369(3)}$ $\frac{1.489(3)}{1.381(3)}$ $\frac{1.379(3)}{1.362(3)}$ $\frac{1.493(3)}{1.497(4)}$ $\frac{1.268(2)}{1.2237(2)}$ $\frac{1.225(2)}{1.495(3)}$ $\frac{1.496(2)}{1.505(2)}$ $\frac{1.417(3)}{1.417(3)}$ | Angles (°)<br>C110-N11-C18<br>C110-N11-C17<br>C18-N11-C17<br>O12-N12-O13<br>O12-N12-C14<br>O13-N12-C14<br>O11-C11-C16<br>O11-C11-C12<br>C16-C11-C12<br>C13-C12-C17<br>C11-C12-C17<br>C12-C13-C14<br>C15-C14-C13<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-C13<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15-C14-N12<br>C15- | 110.9(2)<br>112.5(2)<br>113.1(2)<br>122.3(2)<br>118.8(2)<br>118.9(2)<br>123.2(2)<br>120.5(2)<br>120.5(2)<br>120.9(2)<br>121.9(2)<br>121.9(2)<br>120.2(2)<br>120.6(2)<br>119.6(2)<br>120.0(2)<br>121.8(2)<br>111.8(2)<br>111.8(2)<br>112.0(2)<br>114.6(3)<br>113.3(2)<br>110.7(2)                                |
| C21-C24<br>C21-C22<br>C22-C23<br>C22-C27<br>C23-C24<br>C24-C25<br>C25-C26<br>C28-C29<br>C210-C211                                                                                                                                                                                                       | 1.417(3)<br>1.419(3)<br>1.433(3)<br>1.370(3)<br>1.488(3)<br>1.385(3)<br>1.391(3)<br>1.356(3)<br>1.497(3)<br>1.496(3)                                                                                                                                                                                                                                                                                       | $\begin{array}{c} C_{28} - N_{21} - C_{27} \\ C_{28} - N_{21} - C_{27} \\ O_{23} - N_{22} - O_{22} \\ O_{23} - N_{22} - C_{24} \\ O_{21} - C_{21} - C_{26} \\ O_{21} - C_{21} - C_{22} \\ C_{26} - C_{21} - C_{22} \\ C_{23} - C_{22} - C_{27} \\ C_{23} - C_{24} - C_{25} \\ C_{23} - C_{24} - C_{25} \\ C_{23} - C_{24} - N_{22} \\ C_{25} - C_{26} - C_{21} \\ C_{22} - C_{27} - N_{21} \\ N_{21} - C_{28} - C_{29} \\ N_{21} - C_{210} - C_{211} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 110.7(2) \\ 111.6(2) \\ 121.4(2) \\ 129.6(2) \\ 119.6(2) \\ 123.0(2) \\ 123.0(2) \\ 120.2(2) \\ 116.7(2) \\ 120.3(2) \\ 120.3(2) \\ 121.5(2) \\ 120.6(2) \\ 120.6(2) \\ 120.6(2) \\ 120.6(2) \\ 119.5(2) \\ 119.5(2) \\ 119.5(2) \\ 122.3(2) \\ 112.6(2) \\ 114.4(2) \\ 114.0(2) \end{array}$ |

**m 1 1** 0 1 .. ..

Table 5. Bond lengths (Å) and angles (°) with esd's in parentheses in complex (IV) of 2-(N.N-diethylamino)-methyl-4-NO<sub>2</sub>-phenol with 4-NO<sub>2</sub>-phenol

| Lengths   | (Å)      | Angles (      | °)         |
|-----------|----------|---------------|------------|
| 011-C11   | 1.297(2) | C18-N11-C17   | 111.11(10) |
| 012-N12   | 1.235(2) | C18-N11-C110  | 113.19(13) |
| O13-N12   | 1.227(2) | C17-N11-C110  | 113.77(11) |
| O21-C21   | 1.331(2) | 013-N12-012   | 122.18(13) |
| O22-N21   | 1.232(2) | O13-N12-C14   | 118.85(13) |
| O23-N21   | 1.228(2) | O12-N12-C14   | 118.97(12) |
| N11-C18   | 1.501(2) | O23-N21-O22   | 123.2(2)   |
| NH=C17    | 1.504(2) | O23-N21-C24   | 118.8(2)   |
| N11-C110  | 1.506(2) | O22-N21-C24   | 118.0(2)   |
| N12-C14   | 1.434(2) | O11-C11-C16   | 123.10(11) |
| N2I-C24   | 1.455(2) | 011-C11-C12   | 119.45(11) |
| C11-C16   | 1.421(2) | C16-C11-C12   | 117.43(11) |
| C11-C12   | 1.427(2) | C13-C12-C11   | 120.82(11) |
| C12-C13   | 1.376(2) | C13-C12-C17   | 121.31(11) |
| C12-C17   | 1.501(2) | C11-C12-C17   | 117.77(11) |
| C13-C14   | 1.392(2) | C12-C13-C14   | 119.66(12) |
| C14-C15   | 1.394(2) | C13-C14-C15   | 121.03(12) |
| C15-C16   | 1.370(2) | C13-C14-N12   | 120.02(12) |
| C18-C19   | 1.487(3) | C15-C14~N12   | 118.95(12) |
| C110-C111 | 1.496(3) | C16-C15-C14   | 119.67(12) |
| C21-C22   | 1.399(2) | C15-C16-C11   | 121.25(12) |
| C21 - C26 | 1.408(2) | C12-C17-N11   | 112.56(10) |
| C22-C23   | 1.376(2) | C19-C18-N11   | 113.0(2)   |
| C23-C24   | 1.391(2) | C111-C110-N11 | 114.4(2)   |
| C24-C25   | 1.369(2) | O21-C21-C22   | 122.85(12) |
| C25-C26   | 1.384(2) | O21-C21-C26   | 118.08(14) |
|           |          | C22-C21-C26   | 119.07(13) |
|           |          | C23-C22-C21   | 120.23(13) |
|           |          | C22-C23-C24   | 119.4(2)   |
|           |          | C25-C24-C23   | 121.73(14) |
|           |          | C25-C24-N21   | 119.83(14) |
|           |          | C23-C24-N21   | 118.4(2)   |
|           |          | C24-C25-C26   | 119.27(14) |
|           |          | C25-C26-C21   | 120.3(2)   |
|           |          |               |            |

nificantly decreases absorption in this region. Assuming a high limit of the isotopic spectroscopic ratio for the weakest  $N^+ - H \cdots Y^-$  type hydrogen bonds equal to 1.355<sup>15</sup> one can expect the intensity increase at about 2270 cm<sup>-1</sup>. Some increase of the intensity in deuterated sample is really observed in this region (Fig. 4).

The lower frequency absorption seen in all the range between 2700 and 1700 cm<sup>-1</sup> can be attributed to the  $O-H\cdots O^-$  hydrogen bond of 2.525 Å length. The character of the absorption-two picks at about 2450 cm<sup>-1</sup> and 1850 cm<sup>-1</sup>—seems to be explained by the Fermi resonance.<sup>16,17</sup>.

Deuteration leads to appearance of a single peak at ~  $1850 \,\mathrm{cm}^{-1}$  in full accordance also with reference<sup>15</sup>

simultaneously showing a drastic rearrangement of these schemes on going to CCl<sub>4</sub> solutions.

In the solid state of the complex IV a broad absorption in a range of 3100–1700 cm<sup>-1</sup> is observed, which should contain the absorption of N<sup>+</sup>-H···O<sup>-</sup> and O-H. O hydrogen bonds. The relatively intensive pick at 3080 cm<sup>-1</sup> seems to correspond of N-H<sup>+</sup>···O hydrogen bond absorption. Deuteration sig-

# 2-(N,N-diethylamino)-methyl-4-NO2-phenols

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Torsion angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-(N.N-dimethylamino)-methyl-<br>4-NO <sub>2</sub> -phenol (III) | Torsion angles                      | 2-(N,N-dimethylamino)methyl)-<br>4-NO <sub>2</sub> -phenol with 4-NO <sub>2</sub> -<br>phenol (IV) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------|
| $\begin{split} C16-C11-C12-C13 & -27(3) & C16-C11-C12-C13 & 3.8(2) \\ C16-C11-C12-C17 & -3.7(3) & C11-C11-C12-C17 & -1.3(2) \\ C16-C11-C12-C17 & 1.76.7(2) & C16-C11-C12-C17 & -1.79.74(13) \\ C11-C12-C13-C14 & -1.70.3) & C11-C12-C13-C14 & -1.70.3) \\ C17-C12-C13-C14-C15 & 0.8(3) & C12-C13-C14-C15 & -1.8(2) \\ C12-C13-C14-C15 & 0.8(3) & C12-C13-C14-C15 & -1.8(2) \\ C12-C13-C14-C15 & 0.8(3) & O13-N12-C14-C13 & -171.7(2) \\ O13-N12-C14-C15 & 0.8(3) & O13-N12-C14-C13 & -171.7(2) \\ O13-N12-C14-C15 & 0.8(3) & O13-N12-C14-C15 & 8.2(2) \\ O13-N12-C14-C15 & 0.8(3) & O13-N12-C14-C15 & 1.5(2) \\ O13-N12-C14-C15 & 0.8(3) & O13-N12-C14-C15 & 1.5(2) \\ O13-N12-C14-C15 & 0.179.6(2) & N12-C14-C15 & -172.6(2) \\ O13-C12-C17-N11 & 0.05(2) & C13-C12-C17-N11 & 1.5(2) \\ O11-C1-C16-C15 & -177.9(2) & O11-C11-C16-C15 & -14.0(2) \\ C13-C12-C17-N11 & 0.05(2) & C13-C12-C17-N11 & -130.82144 \\ C14-C15-C16-C11 & 0.5(2) \\ C11-C12-C17-N11 & 0.05(2) & C13-C12-C17-N11 & -130.82144 \\ C11-C12-C17-N11 & 0.05(2) & C13-C12-C17-N11 & -130.82144 \\ C11-C12-C17-N11 & 0.05(2) & C13-C12-C17-N11 & -130.82144 \\ C11-C12-C12-C12 & -74.5(2) & C18-N11-C17-C12 & 52.4(2) \\ C10-N11-C18-C19 & 155.5(2) & C17-N11-C18-C19 & 70.6(2) \\ C17-N11-C18-C19 & 175.6(1) & C10-C11 & -60.1(2) \\ C16-C21-C22-C23 & -74.8(3) & C21-C22-C23 & -9.4(2) \\ C22-C23-C24-C25 & -1.3(3) & C22-C23-C24-C25 & -0.4(2) \\ C22-C23-C24-C25 & -1.3(3) & C22-C23-C24-C25 & -0.4(2) \\ C22-C23-C24-C25 & -1.7(3) & C22-C23-C24-C25 & -0.4(2) \\ C23-C22-C24-C25 & -1.7(3) & C22-C23-C24-C25 & -0.4(2) \\ C23-C22-C24-C25 & -1.7(3) & C22-C23-C24-C25 & $                                        | 011-011-012-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177.0(2)                                                         | 011-C11-C12-C13                     | -177.74(13)                                                                                        |
| $\begin{split} 0 1-C 1-C 2-C 7 & -3.7(3) & 0 1-C 1-C 2-C 7 & -1.3(2) \\ C 6-C 1-C 2-C 7 & 1767(2) & C 6-C 1-C 2-C 7 & -1.7(3) \\ C 1-C 2-C 3-C 4 & 1.5(3) & C 1-C 2-C 3-C 4 & -1.0(2) \\ C 1-C 2-C 3-C 4-C 5 & 0.8(3) & C 2-C 3-C 4-C 5 & -1.8(2) \\ C 2-C 3-C 4-C 5 & 0.8(3) & C 2-C 3-C 4-C 5 & -1.8(2) \\ C 2-C 3-C 4-C 5 & -1.75,8(2) & O 2-N 2-C 4-C 3 & -1.77,7(2) \\ O 2-N 2-C 4-C 5 & -1.75,8(2) & O 2-N 2-C 4-C 3 & 7.4(2) \\ O 2-N 2-C 4-C 5 & -1.75,8(2) & O 2-N 2-C 4-C 5 & 8.2(2) \\ O 3-N 2-C 4-C 5 & -1.58,9(2) & O 3-N 2-C 4-C 5 & -1.76,8(3) \\ O 2-N 2-C 4-C 5 & -1.56,10 & -1.8,4(4) \\ C 3-C 4-C 5-C 6 & -1.73,9(2) & O 3-N 2-C 4-C 5 & -1.72,6(2) \\ O 3-C 4-C 5-C 6 & 1.79,6(2) & N 2-C 4-C 5 & -1.73,8(1)5) \\ O 1-C 1-C 6-C 5 & -1.77,9(2) & O 1-C 1-C 6-C 5 & -1.77,84(4) \\ C 2-C 1-C 6-C 5 & -1.77,9(2) & O 1-C 1-C 6-C 5 & -1.0(2) \\ C 2-C 1-C 6-C 5 & -1.77,9(2) & O 1-C 1-C 6-C 5 & -1.0(2) \\ C 2-C 1-C 6-C 5 & -1.79,9(2) & C 13-C 2-C 7-N 1 & -1.30,82(14) \\ C 1-C 1-C 1-C 6-C 5 & -1.0(2) & C 13-C 2-C 7-N 1 & -1.30,82(14) \\ C 1-C 1-C 1-C 1-C 2 & -74,8(2) & C 1-C 1-C 1-C 2 & -1.78,48(13) \\ C 1-O-N 1-C 1-C 2 & -1.74,8(2) & C 1-O-N 1-C 7-C 2 & -1.74,45(13) \\ C 1-O-N 1-C 1-C 2 & -1.74,8(2) & C 1-O-N 1-C 1-C 2 & -1.74,45(13) \\ C 1-O-N 1-C 1-C 2 & -1.74,8(2) & C 1-O-N 1-C 8-C 9 & -0.6(2) \\ C 1-O-N 1-C 1-C 2 & -1.74,8(2) & C 1-O-N 1-C 8-C 9 & -0.6(2) \\ C 1-O-N 1-C 1-C 2 & -1.74,8(2) & C 1-O-N 1-C 8-C 9 & -0.6(2) \\ C 1-O-N 1-C 1-C 1 & -70,0(3) & C 1-O-N 1-C 8-C 9 & -0.6(2) \\ C 1-O-N 1-C 1-O-C 1 & -70,0(3) & C 1-O-N 1-C 8-C 9 & -0.6(2) \\ C 2-C 2-C 2-C 2 & -1.3(3) & C 2-C 2-C 2-C 2 & -1.74,5(2) \\ C 2-C 2-C 2-C 2 & -1.3(3) & C 2-C 2-C 2-C 2 & -1.6(3) \\ C 2-C 2-C 2-C 2 & -1.3(3) & C 2-C 2-C 2-C 2 & -1.6(3) \\ C 2-C 2-C 2-C 2-C 2 & -1.3(3) & C 2-C 2-C 2-C 2 & -1.75,56(1 2) \\ C 2-C 2-C 2-C 2 & -1.73(3) & C 2-C 2-C 2-C 2 & -1.73(3) \\ C 2-C 2-C 2-C 2-C 2 & -1.73(3) & C 2-C 2-C 2-C 2 & -1.8(2) \\ C 2-C 2-C 2-C 2-C 2 & -1.73(3) & C 2-C 2-C 2-C 2 & -1.8(2) \\ C 2-C 2-C 2-C 2-C 2 & -1.73(2) & C 2-C 2-C 2-C 2-C 2-C 2-C 2-C 2 & -1.8(2) \\ C 2-C 2-C 2-C 2-C 2-C 2 & -1.73(2) & C$                                           | C16-C11-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.7(3)                                                          | C16-C11-C12-C13                     | 3.8(2)                                                                                             |
| $\begin{split} C(6-C11-C12-C17 & 176.7(2) & C(6-C11-C12-C17 & -179.74(13) \\ C(11-C12-C13-C14 & 1.5(3) & C(11-C12-C13-C14 & -177.32(14) \\ C(12-C13-C14-C15 & 0.8(13) & C(12-C13-C14-N12 & 178.14(13) \\ C(12-C13-C14-N12 & 179.5(2) & C(12-C13-C14-N12 & 178.14(13) \\ O(12-N12-C14-C15 & 4.8(3) & O(13-N12-C14-C13 & -171.7(2) \\ O(13-N12-C14-C15 & -175.8(2) & O(12-N12-C14-C13 & 7.4(2) \\ O(13-N12-C14-C13 & 5.5(3) & O(2-N12-C14-C15 & 8.2(2) \\ O(13-N12-C14-C15 & -173.9(2) & O(13-N12-C14-C15 & 8.2(2) \\ O(13-N12-C14-C15 & -179.6(2) & N12-C14-C15 & 1.75.8(1) \\ O(13-N12-C14-C15-C16 & -1.8(4) & O(13-C14-C15-C16 & 1.5(2) \\ O(13-C12-C15-C16 & -1.8(4) & C13-C14-C15-C16 & 1.5(2) \\ O(11-C11-C16-C15 & -1.77.9(2) & O(1-C11-C16-C15 & 1.75.4(14) \\ O(12-C11-C16-C15 & -1.77.9(2) & O(1-C11-C16-C15 & 1.75.4(14) \\ O(11-C11-C16-C15 & -1.77.9(2) & O(1-C11-C16-C15 & 1.75.4(14) \\ O(11-C11-C16-C15 & -1.77.9(2) & O(1-C11-C16-C15 & -1.78.38(15) \\ O(11-C12-C17-N11 & 0.06.5(2) & C(13-C12-C17-N11 & -130.82(14) \\ O(11-C12-C12 & 158.8(2) & C(10-N11-C17-C12 & 52.4(2) \\ O(10-N11-C18-C19 & 0.79.0(3) & C(13-N11-C18-C19 & 0.60.2) \\ O(17-N11-C18-C19 & 0.79.0(3) & C(13-N11-C18-C19 & 0.60.2) \\ O(17-N11-C18-C19 & 0.79.0(3) & C(13-N11-C18-C19 & 0.60.2) \\ O(17-N11-C10-C111 & 57.0(3) & C(13-N11-C10-C111 & 69.1(2) \\ O(12-C12-C23 & 0.14.3(3) & C(23-C23-C24 & -1.60.2) \\ O(21-C21-C22-C23 & -1.30.3) & C(21-C22-C23 & 0.40.4) \\ O(21-C21-C22-C23 & -1.30.3) & C(23-C23-C24 & -1.60.2) \\ O(22-C22-C23-C24 & -1.79.2) & O(23-N21-C24-C25 & -1.78.4) \\ O(22-C22-C23-C24 & -1.79.2) & O(23-N21-C24-C25 & -1.78.4) \\ O(23-N22-C24-C25 & 0.70.3) & C(22-C23-C24-C23 & -1.70.2) \\ O(23-N21-C24-C25 & -1.77.02) & C(22-C23-C24-C23 & -1.70.2) \\ O(23-N21-C24-C25 & -1.77.02) & C(22-C23-C24-C23 & -1.7$                                           | 011-C11-C12-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.7(3)                                                          | 011-C11-C12-C17                     | -1.3(2)                                                                                            |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C16-C11-C12-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 176.7(2)                                                         | C16-C11-C12-C17                     | -179.74(13)                                                                                        |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C11-C12-C13-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5(3)                                                           | C11-C12-C13-C14                     | -1.0(2)                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C17-C12-C13-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -177.8(2)                                                        | C17-C12-C13-C14                     | -177.32(14)                                                                                        |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C12-C13-C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8(3)                                                           | C12-C13-C14-C15                     | -1.8(2)                                                                                            |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C12-C13-C14-N12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179.5(2)                                                         | C12-C13-C14-N12                     | 178.14(13)                                                                                         |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O12-N12-C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.8(3)                                                           | O13-N12-C14-C13                     | -171.7(2)                                                                                          |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O13-N12-C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -175.8(2)                                                        | O12-N12-C14-C13                     | 7.4(2)                                                                                             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O12-N12-C14-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -173.9(2)                                                        | O13-N12-C14-C15                     | 8.2(2)                                                                                             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O13-N12-C14-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.5(3)                                                           | O12-N12-C14-C15                     | -172.6(2)                                                                                          |
| $\begin{split} N12-C14-C15-C16 & C1 & -178,38(15) \\ C14-C15-C16-C11 & 0.4(4) \\ C14-C15-C16-C11 & 1.5(2) \\ O11-C11-C16-C15 & -177,9(2) \\ O11-C11-C16-C15 & 177,54(14) \\ C12-C11-C16-C15 & 1.7(3) \\ C12-C11-C16-C15 & 1.7(3) \\ C12-C17-N11 & 100,5(2) \\ C13-C12-C17-N11 & -18,8(2) \\ C11-C12-C17-N11 & -78,8(2) \\ C110-N11-C17-C12 & -74,5(2) \\ C18-N11-C17-C12 & -74,5(2) \\ C18-N11-C17-C12 & 158,8(2) \\ C110-N11-C18-C19 & 153,5(2) \\ C17-N11-C18-C19 & -79,0(3) \\ C18-N11-C18-C19 & -79,0(3) \\ C18-N11-C10-C111 & 57,9(3) \\ C18-N11-C10-C111 & -59,9(2) \\ C18-N11-C10-C111 & -70,0(3) \\ C26-C21-C22-C23 & 176,3(2) \\ C21-C22-C23 & -1,3(3) \\ C26-C21-C22-C23 & -1,3(3) \\ C26-C21-C22-C23 & -1,3(3) \\ C26-C21-C22-C23 & -1,3(3) \\ C26-C21-C22-C23 & -0.4(2) \\ C21-C22-C23 & -1,3(3) \\ C22-C33-C24+N21 & -175,65(12) \\ C27-C22-C23-C24 & 1.6(3) \\ C22-C23-C24 & -179,3(2) \\ C22-C23-C24 & -179,3(2) \\ C22-C23-C24 & -179,3(2) \\ C22-C23-C24+N21 & -175,65(12) \\ C22-C23-C24 & -179,3(2) \\ C22-C23-C24+N21 & -175,65(12) \\ C22-C23-C24-C25 & -1,2(3) \\ C22-C23-C24+N21 & -175,65(12) \\ C22-C23-C24-C25 & -172,6(2) \\ C22-C23-C24-C23 & -1,2(3) \\ C22-C23-C24-C25 & -1,2(3) \\ C22-C23-C24-C25 & -1,2(2) \\ C23-C24-C25 & -1,2(2) \\ C24-C25-C26 & -1,2(2) \\ C24-C25-C26-C21 & -1,2(2) \\ C24-C25-C26-C21 & -1,2(2) \\ C24-C25-C26-C21 & -1,2(2) \\ C2$ | C13-C14-C15-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.8(4)                                                          | C13-C14-C15-C16                     | 1.5(2)                                                                                             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N12-C14-C15-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179.6(2)                                                         | N12-C14-C15-C16                     | - 178.38(15)                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C14-C15-C16-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4(4)                                                           | C14-C15-C16-C11                     | 1.5(2)                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 011-C11-C16-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -177.9(2)                                                        | 011-C11-C16-C15                     | 177,54(14)                                                                                         |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C12-C11-C16-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7(3)                                                           | C12-C11-C16-C15                     | -4.0(2)                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CI3-CI2-CI7-N11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.5(2)                                                         | CI3-CI2-CI7-N11                     | -130.82(14)                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C11-C12-C17-N11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -78.8(2)                                                         | C11-C12-C17-N11                     | 52.7(2)                                                                                            |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C110-N11-C17-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -74.5(2)                                                         | C18-N11-C17-C12                     | -178.45(13)                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C18-N11-C17-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 158.8(2)                                                         | C110-N11-C17-C12                    | 52.4(2)                                                                                            |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C110-N11-C18-C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 153.5(2)                                                         | CI7-N11-C18-C19                     | 70.6(2)                                                                                            |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C17-N11-C18-C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 79.0(3)                                                        | C110-N11-C18-C19                    | - 159.9(2)                                                                                         |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C18-N11-C110-C111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57.9(3)                                                          | C18-N11-C110-C111                   | -69.1(2)                                                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C17-N11-C110-C111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 70.0(3)                                                        | C17-N11-C110-C111                   | 59.0(2)                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 021-C21-C22-C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 176.3(2)                                                         | O21-C21-C22-C23                     | 179.86(13)                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C26-C21-C22-C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.3(3)                                                          | C26-C21-C22-C23                     | -0.4(2)                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 021-C21-C22-C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.8(3)                                                          | C21-C22-C23-C24                     | -1.6(2)                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C26-C21-C22-C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179.7(2)                                                         | C22-C23-C24-C25                     | 2.2(2)                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C21-C22-C23-C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6(3)                                                           | C22-C23-C24-N21                     | -175.65(12)                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C27-C22-C23-C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1/9.3(2)                                                        | O23-N21-C24-C25                     | 172.5(2)                                                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C22=C23=C24=C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.2(3)                                                          | O22 - N21 - C24 - C25               | -8.8(2)                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C22-C23-C24-N22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177.1(2)                                                         | $O_{23} - N_{21} - C_{24} - C_{23}$ | -9.7(2)                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O23-N22-C24-C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1/4.6(2)                                                        | O22 = N21 = C24 = C23               | 169.04(14)                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 022 = N22 = C24 = C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.5(3)                                                           | $C_{23} - C_{24} - C_{25} - C_{26}$ | -0.8(2)                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 023 - N22 - C24 - C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7(3)                                                           | $N_{21} = C_{24} = C_{25} = C_{26}$ | 177.02(13)                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 022 - N22 - C24 - C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1/8.2(2)                                                        | $C_{24} - C_{25} - C_{26} - C_{21}$ | = 1.2(2)                                                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 123 - 124 - 125 - 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4(3)                                                           | 021 - 021 - 026 - 025               | = 1/8.44(13)                                                                                       |
| $\begin{array}{ccccc} C24 - C25 - C26 - C21 & 0.0(4) \\ 021 - C21 - C26 - C25 & -177.0(2) \\ C22 - C21 - C26 - C25 & 0.5(3) \\ C23 - C22 - C27 - N21 & 96.0(2) \\ C21 - C22 - C27 - N21 & -84.9(2) \\ C210 - N21 - C27 - C22 & 70.2(2) \\ C28 - N21 - C27 - C22 & 162.6(2) \\ C210 - N21 - C28 - C29 & -60.7(3) \\ C27 - N21 - C28 - C29 & 65.1(3) \\ C28 - N21 - C210 - C211 & -58.3(3) \\ C28 - N21 - C210 - C211 & 175.4(2) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N22 = C24 = C25 = C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -177.9(2)                                                        | $C_{22} = C_{21} = C_{26} = C_{25}$ | 1.6(2)                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{24} = C_{25} = C_{26} = C_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0(4)                                                           |                                     |                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 021 - 021 - 026 - 025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -177.0(2)                                                        |                                     |                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{22} = C_{21} = C_{20} = C_{20} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5(5)                                                           |                                     |                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{22} = C_{22} = C_{27} = N_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 84.9(2)                                                        |                                     |                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{21} = C_{22} = C_{27} = C_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -70.7(2)                                                         |                                     |                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{28} = N_{21} = C_{27} = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 162.6(2)                                                         |                                     |                                                                                                    |
| $\begin{array}{cccc} C27 - N21 - C28 - C29 & 65.1(3) \\ C28 - N21 - C210 - C211 & -58.3(3) \\ C27 - N21 - C210 - C211 & 175.4(2) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $C_{210} = N_{21} = C_{22} = C_{20} = $ | -60.7(3)                                                         |                                     |                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{27} - N_{21} - C_{28} - C_{29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65 1(3)                                                          |                                     |                                                                                                    |
| (27 - N) = (21) (-21) (-1754)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $C^{28} = N^{21} = C^{210} = C^{211}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -58.3(3)                                                         |                                     |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_{27} - N_{21} - C_{210} - C_{211}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 175.4(2)                                                         |                                     |                                                                                                    |

 Table 6. Selcted torsion angles (°) for for 2-(N,N-diethylamino)-methyl-4-NO2-phenol with 4-NO2-phenol (IV) and 2-(N,N-diethylamino)-methyl-4-NO2-phenol (III) with esd's in parentheses



Fig. 3. The arrangement of cyclic dimers of III in the crystal structure.

where the Fermi resonance was not observed for  $\nu$ (OD) absorption.<sup>16</sup> Some weakening of the O-H···O<sup>-</sup> hydrogen bond in our case can be mentioned in comparison to hydrogen bonding in N.N.N'.N'.tetra amyl-1,2-diammonium-ethane di[hydrogen-(bis pentachlo-rophenolate)]<sup>18</sup> One can attribute this effect to the competition of the N<sup>+</sup>-H···O<sup>-</sup> and O-H···O<sup>-</sup> hydrogen bonds to the same oxygen atom acceptor. On the other hand an increase of the absorption below 1700 cm<sup>-1</sup> can not be completely precluded. The absorption of the O-H···O<sup>-</sup> hydrogen bond in this region can be

suggested from some absorption increase within 1000– $400 \text{ cm}^{-1}$  range upon cooling to liquid nitrogen temperatures.

Interesting changes in the IR spectra of IV are observed when changing to nonpolar solvent solutions (Fig. 5). The band with the maximum at about 2630 cm<sup>-1</sup> suggests formation of the intramolecular  $O-H\cdots N$  hydrogen bond in solution like in Mannich base  $\mathbf{L}^{2,19}$  The most spectacular, however, is the appearance of the absorption of free 4-NO<sub>2</sub>-phenol at ~3595 cm<sup>-1</sup>. The intermolecular complexes are bro-



Fig. 4. IR spectra of IV in KBr pellets; full line—nondeuterated sample, dashed line—OH deuterated sample.



### 2-(N,N-diethylamino)-methyl-4-NO<sub>2</sub>-phenols

ken in the solutions. This is caused by the change of the character of intramolecular hydrogen bonding.

Neutral oxygen atom in such intramolecular hydrogen bond appears to be much less attractive proton acceptor for 4-NO<sub>2</sub>-phenol molecule in solution, than the negatively charged oxygen atom in the solid state. Nevertheless one can assign the absorption band at 3428 cm<sup>-1</sup> to the associated 4-NO<sub>2</sub>-phenol molecules. Separate studies of 4-NO<sub>2</sub>-phenol spectra as a function of concentration in CCl<sub>4</sub> solutions show that self-association leads to the absorption peak at 3452 cm<sup>-1</sup> (for comparison 3327.5 cm<sup>-1</sup> in the solid state). This suggests that the absorption observed in Fig. 5 is connected with complexation of 4-NO<sub>2</sub>-phenol with Mannich base. The position of this band in comparison with the O-H···O<sup>-</sup> absorption in the solid state demonstrates how drastically is lowered the O-H···O hydrogen bond strength in solution.

The IR spectrum of III in KBr (Fig. 6) resembles the ionic N<sup>+</sup>-H···O<sup>-</sup> spectrum of I in the solid state. The broad absorption resulting from two hydrogen bonds (cf. Table 8.) can be characterized by the position of the band's center of gravity located at 2360 cm<sup>-1</sup> (2280 cm<sup>-1</sup> in I).

Figure 7 shows the spectrum of Mannich base III in solution. The absorption at 2627 cm<sup>-1</sup> suggests formation of intramolecular  $O-H\cdots N$  hydrogen bond. The assignment is supported by the spectrum of the OD deuterated form. The spectroscopic isotopic ratio (SIR) calculated for the most pronounced peaks of nondeuterated and deuterated samples is 1.30. Analogous features of the IR absorption in the solid state

and in nonpolar solvents of I were shown earlier.<sup>2</sup> Calculated SIR in I was 1.32 in accordance with the longer O  $\cdots$ H-N<sup>+</sup> distance (cf. Table 8).

The structural characteristics of four different compounds of 2-(N,N-dialkylamino)-methyl-4-NO<sub>2</sub>-phenol are presented in Table 7. The details of hydrogen bond structures for all these compounds are given in Table 8.

Comparison of the structure parameters for different 4-NO<sub>2</sub>-phenol Mannich bases allows one to distinguish the molecular and ionic structures of 4-NO<sub>2</sub>phenol subunit. In **I**, **III**, and **IV**, the C - O(H) distances are short 1.274–1.297 Å. In molecular 4-NO<sub>2</sub>-phenol units, the C=O 1.341 Å and 1.332 Å lengths were found in **II** and **IV**, respectively, which are characteristic of strongly interacting phenols.

In the ionic subunits the p-quinonoid structures participate in the ground state structure description. The C-C bonds with C11 atom participation are within 1.420-1.430 Å limits. The C-C bonds parallel to the long axis of 4-NO<sub>2</sub>-phenolate are substantially shortened (from 1.376 Å to 1.356 Å). The C-C bonds with the C4 atom participation are usually less sensitive for such effects.

The C-C bond between the methylene group and the C12 atom is the longest in the molecular form (1.513(3) Å, when in the ionic forms it is within the range 1.489(3)-1.501(2) Å). The C-N bonds between the methylene C atom and the amine group are longer in the ionic forms (within 1.505(2)-1.511(2) Å limits) than in the molecular one (1.488(3) Å). The distances



Fig. 6. IR spectrum of III in KBr pellets.





| Atoms       | <b>(I)</b> <sup>2</sup> | $(\mathbf{H})^{h}$ | (1       | II)      | (1         | V)         |
|-------------|-------------------------|--------------------|----------|----------|------------|------------|
| 011-011     | 1.283(3)                | 1.343(3)           | 1.274(2) | 1.268(2) | 1.297(2)   | 1.331(2)   |
| C11 - C12   | 1.433(3)                | 1.415(4)           | 1.430(3) | 1.433(3) | 1.427(2)   | 1.399(3)   |
| C12-C13     | 1.373(3)                | 1.382(3)           | 1.369(3) | 1.370(3) | 1.376(2)   | 1.376(2)   |
| C13-C14     | 1.390(3)                | 1.389(4)           | 1.381(3) | 1.385(3) | 1.392(2)   | 1.391(2)   |
| C14-C15     | 1.395(3)                | 1.381(4)           | 1.379(3) | 1.391(3) | 1.394(2)   | 1.369(2)   |
| C15-C16     | 1.365(3)                | 1.383(4)           | 1.362(3) | 1.356(3) | 1.370(2)   | 1.384(2)   |
| C16-C11     | 1.428(3)                | 1.388(4)           | 1.418(3) | 1.419(3) | 1.421(2)   | 1.408(2)   |
| C14-N12     | 1.425(3)                | 1.461(3)           | 1.430(3) | 1.417(3) | 1.434(2)   | 1.455(2)   |
| N12-O12     | 1.229(3)                | 1.229(3)           | 1.229(3) | 1.237(2) | 1.235(2)   | 1.232(2)   |
| N12-013     | 1.234(3)                | 1.224(4)           | 1.232(3) | 1.225(2) | 1.227(2)   | 1.228(2)   |
| C12-C17     | 1.491(3)                | 1.513(3)           | 1.489(3) | 1.488(3) | 1.501(2)   | _          |
| C17-N11     | 1.511(2)                | 1.488(3)           | 1.505(3) | 1.505(2) | 1.504(2)   | —          |
| C12-C11-C16 | 116.6(2)                | 120.3(2)           | 116.3(2) | 116.7(2) | 117.43(11) | 119.07(13) |
| 012-N12-013 | 121.4(2)                | 123.1(3)           | 122.3(2) | 121.4(2) | 122.18(13) | 123.2(2)   |

 Table 7. Comparison of selected bond lengths (Å) in four structures consisting the 4-NO<sub>2</sub>-2-(N,N-dialkylmethyl) phenol subunit<sup>a</sup>

<sup>a</sup> Atoms numbering like in Fig. 2.

<sup>h</sup> T. Glowiak, A. Koll, results not published, cf.<sup>1</sup>

between the nitrogen atoms of nitro groups and C14 atom are within the range 1.417(3)-1.434(2) Å in 4-NO<sub>2</sub>-phenolate subunits, while in 4-NO<sub>2</sub>-phenol moieties 1.461(3) Å and 1.452(2) Å values were found.

All the phenyl rings C12-C11-C16 angles are strongly reduced from 120° in the ionic forms (by 2.5-3.7°) while in the molecular forms these angles are 120.3(2)° and 119.1(2)° (in **H** and **IV**, respectively). The O-N-O angles in NO<sub>2</sub> groups are 123.1(3)° in molecular forms and 121.8  $\pm$  0.7° in the 4-NO<sub>2</sub>phenolates in **I**, **III**, and **IV**.

Table 8 presents the parameters for the hydrogen bonds in four ortho-Mannich bases formed by derivatives of 4-NO<sub>2</sub>-phenol, which differ only in the length of the N-aliphatic chains. Tables 7 and 8 demonstrate, that the length of the N-chains strongly influences the scheme of hydrogen bonds. For shorter chains (N,Ndimethyl and N,N-diethyl) derivatives the cyclic dimers are formed. In molecule I it is a fully centrosymmetric unit, while in III, the cyclic dimer appears to be asymmetric; two different hydrogen bonds are formed. In addition, some of the parameters describing the phenyl rings are significantly (more than 3  $\sigma$ ) different. This effect probably results also from different crystal packing conditions.

### Conclusion

The ortho-methylamino phenols can form molecular  $O-H\cdots N$  or zwitterionic  $O^-\cdots H-N^+$  hydrogen bonds. In compounds with  $-NO_2$  substituent the zwitterionic forms are more easily formed than in compounds with fewer polar substituents. This results from strong polarization influence of  $-NO_2$  group.

| Table 8. | Hydrogen | bond le | ength (A) | and a | ingles (° | ) with | esd's in | parentheses |
|----------|----------|---------|-----------|-------|-----------|--------|----------|-------------|
|----------|----------|---------|-----------|-------|-----------|--------|----------|-------------|

| Compound | D - H…A                                                                                           | D – H                         | D…A                              | Н…А                                  | <d-h…a< th=""><th>Ref.</th></d-h…a<> | Ref.         |
|----------|---------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|--------------------------------------|--------------------------------------|--------------|
| I        | $O \cdots H - N^*$                                                                                | 0.97(2)                       | 2.667(2)                         | 1.71(2)                              | 169(2)                               | 2            |
| II       | $O \cdots H - N$                                                                                  | 1.03(9)                       | 2.62(9)                          | 1.65(9)                              | 156(7)                               | 3            |
| Ш        | $\begin{array}{ccc} O & \cdots H - N^+ \\ O & \cdots H - N^+ \end{array}$                         | (0.99(2))                     | 2.614(3)                         | 1.65(2)                              | 163(2)                               | This         |
| IV       | $ \begin{array}{c} 0 & \cdots H = 0 \\ 0 & \cdots H = N^{\star} \\ 0 & \cdots H = N \end{array} $ | 0.94(3)<br>0.97(2)<br>0.97(2) | 2.525(2)<br>2.760(2)<br>3.105(2) | $\frac{1.59(3)}{2.00(3)}$<br>2.42(3) | 174(1)<br>135(1)<br>128(1)           | This<br>work |

### 2-(N,N-diethylamino)-methyl-4-NO<sub>2</sub>-phenols

In this paper the strong influence of steric effects on the character of the hydrogen bond in crystal structures consisting of the 2-(N,N-dialkylamino)-methyl-4-NO<sub>2</sub>-phenol moiety was demonstrated. The systems with short (methyl and ethyl) N-chains form zwitterionic cyclic dimers while the isobutyl groups<sup>1,3</sup> are sufficiently bulky to prevent the polarization effects of neighboring molecular dipole moments.

In the two structures presented here, the participation of 2-(N,N-diethylaminomethyl)-4-NO<sub>2</sub>-phenol is different from the point of view of the character of hydrogen bonds formed. In the structure of pure Mannich base **III**, a cyclic dimer between two zwitterionic molecules ( $R_2^2$  (12)) was found, resembling the structure of 2-(N,N-dimethylamino)-methyl-2,3,4,5-tetra-Cl-phenol. This feature demonstrates that the different forms of cyclic dimers can exist and the polarity of such units found in the solution is not unusual.

In the case of the complex of Mannich base with 4-NO2-phenol IV the ionic structure of the intramolecular hydrogen bond S(6) was found. This hydrogen bond appears to be rather weak with  $O \cdots N^*$  distance of 2.760(2) Å in comparison to intramolecular systems studied thus far. The O ... H distance is long (2.00(3) A). This hydrogen bond is also strongly bent; the  $N^+-H^{-1}O$  angle is equal to  $136(1)^\circ$ . This  $N-H^+$ donor participates in bifurcated hydrogen bond. The second hydrogen bridge N-H<sup>+</sup>···O (3.105(3) Å) is formed to one of the oxygen atoms of 4-NO<sub>2</sub> group, another molecule of Mannich base. Those N-H+...O hydrogen bonds form chains (C(8)) along the crystallographic b axis. Very strong hydrogen of the O H-Otype (O O distance is equal to 2.525(2) A) was found between the phenol and phenolate units. This bond is almost linear (the O  $\cdots$  H – O angle equals to 174(1)°). The existence of this hydrogen bond probably weakens the intramolecular interaction in the  $O^- \cdots H - N^+$  bond. The spectroscopic (UV and IR) characteristics of the

hydrogen bond are in accordance with the structures discussed above. The strong influence of solvent on the form of the hydrogen bonds in studied systems was demonstrated.

**Supplementary material.** Crystallographic data (excluding structure factors) for the structure(s) reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1003/5252 and CCDC-1003/5291. Copies of available material can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

### References

- 1. Koll, A.; Wolschann, P. Monatsh Chem. 1996, 127, 475.
- 2. Koll, A.; Głowiak, T. J. Cryst. Spectr. Research. 1985, 15, 411.
- Slowikowska, J.: Beagley, B.G.: Pritchard, R.: Woźniak, K. J. Mol. Struct. 1994, 317, 99.
- 4. Rospenk, M. J. Mol. Struct. 1990, 221, 109.
- 5. Rospenk, M.; Koll, A. Polish J. Chem. 1993, 67, 1851.
- 6. Koll, A. Bull. Soc. Chem. Belg. 1983, 92, 415.
- Schreiber, V.M.; Koll, A.; Sobczyk, L. Bull. Acad. Polon. Sci. Ser. Sci. Chim. 1978, 26, 651.
- Pawelka, Z.; Rospenk, M.; Sobczyk, L. Bull. Acad. Polon. Sci. Ser. Sci. Chim. 1987, 96, 415.
- 9. Reichert, B. *Die Mannich-reaction*; Springer-Verlag OHG; Berlin Göttingen Heidelberg, **1959**.
- Koll, A.; Rospenk, M.; Stefaniak, L.; Wójcik, J. J. Phys. Org. Chem. 1994, 7, 171.
- 11. Sheldrick, G.M. Acta Crystallogr. Sect. A. 1990, 46, 467.
- 12. SHELIXL 93. Crystal Structure Refinement: Department of Inorganic Chemistry: Univ. of Göttingen, Germany.
- International Tables for X-Ray Crystallography, vol. 4: Kynoch Press; Birmingham, U.K., 1974.
- 14. Efter, M.C. Acc. Chem. Res. 1990, 23, 120.
- Rospenk, M.; Zeegers-Huyskens, Th. J. Phys. Chem. 1987, 91, 3974.
- Rospenk, M.; Zeegers-Huyskens, Th. Spectrochim. Acta. Sect. A. 1986, 42, 499.
- Grech, E.; Malarski, Z.; Sobczyk, L. Spectrochim. Acta. Sect. A. 1992, 48, 519.
- Grech, E.; Lis, T.; Majewska, K.; Małarski, Z. Polish J. Chem. 1993, 67, 1317.
- 19. Filarowski, A.; Koll, A. Vibr. Spectrosc. 1996, 12, 432.