Accepted Manuscript

Dithiocarbamate/Piperazine Bridged Pyrrolobenzodiazepines as DNA-minor Groove Binders: Synthesis, DNA-Binding Affinity and Cytotoxic Activity

Ahmed Kamal, Kokkonda Sreekanth, Nagula Shankaraiah, Manda Sathish, Shalini Nekkanti, Vunnam Srinivasulu

PII:	\$0045-2068(15)00003-6
DOI:	http://dx.doi.org/10.1016/j.bioorg.2015.01.002
Reference:	YBIOO 1782
To appear in:	Bioorganic Chemistry
Received Date:	10 November 2014

Please cite this article as: A. Kamal, K. Sreekanth, N. Shankaraiah, M. Sathish, S. Nekkanti, V. Srinivasulu, Dithiocarbamate/Piperazine Bridged Pyrrolobenzodiazepines as DNA-minor Groove Binders: Synthesis, DNA-Binding Affinity and Cytotoxic Activity, *Bioorganic Chemistry* (2015), doi: http://dx.doi.org/10.1016/j.bioorg. 2015.01.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Bioorganic Chemistry journal homepage: www.elsevier.com

Dithiocarbamate/Piperazine Bridged Pyrrolobenzodiazepines as DNA-minor Groove Binders: Synthesis, DNA-Binding Affinity and Cytotoxic Activity

Ahmed Kamal,^{*,a,b} Kokkonda Sreekanth,^a Nagula Shankaraiah,^b Manda Sathish,^a Shalini Nekkanti,^b Vunnam Srinivasulu^a

^aMedicinalChemistry &Pharmacology ,CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India ^bDepartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500 037, India

ARTICLE INFO

Article history: Received Revised Accepted Available online

Keywords: Pyrrolobenzodiazepine piperazine dithiocarbamates DNA-binding affinity cytotoxicity

ABSTRACT

dithiocarbamate/piperazine C8-linked bridged pyrrolo[2.1-Α new series of c][1,4]benzodiazepine conjugates (5a-c, 6a,b) have been synthesized and evaluated for their cytotoxic potential and DNA-binding ability. The representative conjugates 5a and 5b have been screened for their cytotoxicity against a panel of 60 human cancer cell lines. Compound 5a has shown promising cytotoxic activity on selected cancer cell lines that display melanoma, leukemia, CNS, ovarian, breast and renal cancer phenotypes. The consequence of further replacement of the 3-cyano-3,3-diphenylpropyl 1-piperazinecarbodithioate in 5b and 5c with 4methylpiperazine-1-carbodithioate yielded new conjugates 6a and 6b respectively. In addition, the compounds 5c and 6a,b have been evaluated for their in vitro cytotoxicity on some of the selected human cancer cell lines and these conjugates have exhibited significant cytotoxic activity. Further, the DNA-binding ability of these new conjugates has been evaluated by using thermal denaturation ($\Delta T_{\rm m}$) studies. The correlation between structure and DNA-binding ability has been investigated by molecular modeling studies which predicted that **6b** exhibits superior DNA-binding ability and these are in agreement with the experimental DNA-binding studies.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

The minor groove binders are one of the most interesting and widely studied classes of DNA ligands characterized by their sequence specificity. DNA sequence specificity or selectivity has become recognized as an important characteristic of many cytotoxic agents^{1,2} such as duocarmycins,³ distamycin, netropsin⁴ and pyrrolo[1,4]benzodiazepines.⁵ Several of such molecules are currently in clinical usage for the treatment of human malignancies. Pyrrolo[2,1-*c*][1,4]benzodiazepines (PBDs), represent a group of exceptionally potent naturally occurring antitumor antibiotics, derived from Streptomyces species; examples of which include, DC-81 (1, Fig. 1), anthramycin, tomaymycin and sibiromycin.^{6,7} Their interactions with DNA are unique since they bind within the minor groove of DNA forming a covalent aminal bond between the C11-position of the central Bring and N2-amino group of a guanine base.^{6,7} There is either an imine or carbinolamine methyl ether moiety at the N10-C11 position.⁸⁻¹¹ The latter is an electrophilic center responsible for alkylating DNA. In this context, we have been engaged during the last few years in the structural modifications and development of new synthetic strategies for the PBD based ring system.¹²

On the other hand, piperazine motifs are amongst the key scaffolds in today's drug discovery owing to their potential biological properties including anticancer activities.²² Moreover, the piperazine scaffold occurs frequently in complex natural

products.^{23,24} Previously, we have designed and synthesized C8linked *N*-methyl piperazine PBD monomers²⁵ and their dimers¹² that displayed significant DNA-binding ability and anticancer activity.²⁶⁻³⁰ These findings provided further impetus to explore the linking of certain non-covalent interacting groups such as dithiocarbamates to a PBD moiety, which has led to the design and synthesis of a variety of PBD hybrids. Considerable interest has been focused on dithiocarbamates which have been found to possess a broad spectrum of biological activities like fungicidal, antibacterial and anticancer activity.³¹ Recently, brassnin (**3**, **Fig. 1**), a dithiocarbamate isolated from cabbage, was reported as cancer immunosuppressant and its structural modification has lead to the design and synthesis of sulforamate (**4**, **Fig. 1**).³¹⁻³⁴

Figure 1. Representative structures of PBD hybrids (1, 5a-c, and 6a,b), dithiocarbamates (990207; 2, brassinin; 3 and sulforamate; 4).

Recently, bi-functional DNA-interacting agents comprising of two types of antitumor agents joined by a linker have attracted considerable attention as a new class of antitumor agents. In this strategy, the coupling of a DNA-groove binder with a DNA-intercalator or the coupling of two DNA-groove-binders provides a basis for modulating the sequence-selective binding behavior and/or tailoring the PBD-hybrid ligands for mixed-sequence recognition. Based on the potent antitumor activity exhibited by the sulphonate³⁵ and phosphonate substituted PBD²⁷ hybrids, it was considered of interest to design and synthesize new PBD conjugates by linking dithiocarbamates and piperazine moieties at the C8-position of the PBD with varying alkane spacers. The present paper is mostly focused on the DNA-binding affinity and anticancer activity of the newly synthesized PBD conjugates with an objective to improve the DNA sequence specificity.

Scheme 1. . (i) K₃PO₄, acetone, r.t., 2 h; (ii) CF₃COOH, CHCl₃, rt, 8 h.

2. Results and discussion

2.1. Chemistry

The synthetic routes for the preparation of the target conjugates **5a–c** and **6a**, **b** were described in **Scheme 2**. The precursors 3-cyano-3,3-diphenylpropyl 1-piperazinecarbodithioate $(9)^{32}$ and (2S)-*N*-[4-(bromoalkoxy)-5-methoxy-2-nitrobenzoy1]pyrrolidine-2-carboxaldehyde diethyl thioacetal (**10a–c**) have been prepared by literature methods. The treatment of 3-cyano-3,3-diphenyl propylbromide (**7**) with equimolar amount of *N*-boc piperazine in the presence of CS₂ lead to the formation of conjugate **8**, which was deprotected with TFA to give the intermediate 3-cyano-3,3-diphenylpropyl 1-piperazinecarbodithioate (**9**) as shown in **Scheme 1**.

Synthesis of the compounds **5a–c** and **6a**, **b** has been achieved by employing (2*S*)-*N*-[4-(bromoalkoxy)-5-methoxy-2nitrobenzoyl]pyrrolidine-2-carboxaldehyde diethylthioacetals (10a–c) as the starting material (Scheme 2). Reaction of (2*S*)-*N*-[4-(bromoalkoxy)-5-methoxy-2-nitrobenzoyl]pyrrolidine-2carboxaldehyde diethylthioacetals (10a–c) with 3-cyano-3,3diphenylpropyl 1-piperazinecarbodithioate (9) gave C8-linked 3cyano-3,3-diphenylpropyl 1-piperazinecarbodithioatenitrothioacetals (11a–c). The nitro group of these conjugates has been efficiently reduced by employing SnCl₂.2H₂O to afford the corresponding aminothioacetals 12a–c. Deprotection of the thioacetal group with HgCl₂-CaCO₃ yielded the desired 3-cyano-3,3-diphenylpropyl 1-piperazinecarbodithioate-pyrrolo[2,1c][1,4]benzodiazepine (PBD) conjugates (5a–c, Scheme 2).

Similarly, nitrothioacetal intermediates **13a,b** have been synthesized by reacting **10a–c** with *N*-methylpiperazine in the presence of CS_2 and anhydrous potassium phosphate. Further, the reduction of **13a,b** with $SnCl_2.2H_2O$ has provided aminothioacetals **14a, b**. Deprotective cyclization of these aminothioacetals by using HgCl_2-CaCO₃ resulted in the formation of the target imine conjugates **6a,b** as shown in **Scheme 2**.

2.2. DNA binding studies

The DNA-binding affinity of these PBD conjugates 5a-c and 6a,b has been investigated by thermal denaturation study of calf thymus (CT) DNA. Binding of molecules into the DNA double helix leads to increase in the helix melting temperature ($\Delta T_{\rm m}$), the temperature at which the double helix denatures into single stranded DNA. It has been carried out with DNA/ligand molar ratios of 5:1. The increase in the helix melting temperature of DNA (ΔT_m) for each conjugate has been examined at 0 h and 18 h of incubation at 37 °C and data is presented in Table 1. From this data, it was observed that all these conjugates have shown higher $\Delta T_{\rm m}$ with respect to naturally occurring DC-81 (1). Conjugates 5a-c and 6a were found to exhibit moderate DNA binding affinity, elevating the helix melting temperature of CT-DNA by 4.0, 2.1, 2.1 and 2.2 °C, respectively, after incubation at 37 °C for 18 h. N-Methyl piperazine-PBD conjugate with dithiocarbamate **6b** has been found to be efficient in stabilizing the double stranded CT-DNA ($\Delta T_{\rm m}$ = 10.9 °C). These results demonstrate that such PBD conjugates with piperazine and dithiocarbamate side chain have significant DNA binding affinity as compared to naturally occurring DC-81.

The SAR has been explained based on DNA-binding studies; alkyl spacer can enhance the hydrophobic interactions and might also achieve a superior isohelical fit within the minor groove of DNA. The conjugate **6b** has shown the best DNA-binding affinity probably due to the flexible five carbon chain linker, and absence of bulky end groups, which enables it to rotate and fit in the minor

Scheme 2. (i) K₂CO₃, dry DMF, 48 h; (ii) N-methyl piperazine, CS₂, K₃PO₄, acetone, rt. 2 h; (iii) SnCl₂.2H₂O, MeOH, reflux, 2 h; (iv) HgCl₂, CaCO₃, CH₃CN-H₂O, (4:1), 12 h, 55–58%.

CEPTED M/

groove without unfavorable close contacts. Hence, longer the alkyl spacer, higher the DNA-binding potential has been observed.

Table 1. Thermal denaturation data for PBD hybrids with piperazine and dithiocarbamate side chains using calf thymus (CT) DNA

Conjugate	Induced $\Delta T_{\rm m}$ (°C) ^b values after incubation at 37 °C for				
-	0 h	18 h			
5a	2.0	4.0			
5b	2.0	2.1			
5c	2.0	2.1			
6a	2.1	2.2			
6b	6.0	10.9			
DC-81 (1)	0.3	0.7			

^aFor a 1:5 molar ratio of [PBD]/[DNA], where CT-DNA concentration = 100 μ M and ligand concentration = 20 μ M in aqueous sodium phosphate buffer [10 mM sodium phosphate + 1 mM EDTA, pH $[7.00 \pm 0.01]$.

^bFor CT-DNA alone at pH 7.00 \pm 0.01, $T_m = 69.1$ °C \pm 0.01 (mean value from 10 separate determinations), all ΔT_m values are $\pm 0.1 - 0.2$ °C.

2.3. MTT assay

Amongst these PBD conjugates, compounds 5a and 5b have been selected by the National Cancer Institute (NCI) in a panel of disease-oriented human cancer cell line assay to investigate their cytotoxic potential. According to the screening data, conjugate 5a was found to be potentially cytotoxic against the nine cell panels with GI_{50} values of <0.99 μ M, as shown in Table 2. Relatively higher sensitivity to the conjugates described here was found for cell lines of melanoma (LOX IMVI, M14), leukemia (MOLT-4, RPMI-8226, SR), CNS (SF-268, U251), ovarian (IGROV1, OVCAR-3), breast (MCF-7) and renal cancer (786-0, ACHN, CAKI-1, UO-31).

Moreover, the PBD conjugates 5c and 6a,b have also been evaluated for their in vitro cytotoxicity in some selected human cancer cell lines like MCF7 (breast), A2780 (ovarian), Colo205 (colon), PC3 (prostate), SiHa (cervix), A-549, Hop62 (lung) and KB (leukemia), by employing the sulforhodamine B (SRB) assay. The results displayed in Table 3 show that 5c and 6a,b were also significantly cytotoxic, with GI₅₀ values (the molar concentration of the drug that inhibits 50% net cell growth inhibition) ranging 1.7 µM.

from 0.10 to

Figure 2. Docked pose of 6b in the minor groove of DNA 5'-GGGGCGAGAGAGGGG-3'.

Table 2	. In	vitro	anticancer	data	for	selected	conjugates	5a	and
5b ^a									

	Resp	oonse		Resp	onse	
	parameter GI ₅₀ ^b			parameter GI ₅₀ ^b		
Panel cell	- (μΜ	I) for	Panel cell	- (μΜ) for	
lines	conj	ugate	lines	conjugate		
	5a	5b	-		5b	
Leukemia			Ovarian			
			cancer			
CCRF-CEM	_	0.53	IGROV1	0.47	0.42	
HL-60 (TB)	3.06	0.32	OVCAR-3	0.83	1.20	
K-562	1.22	3 29	OVCAR-4	2.19	1.82	
MOLT-4	0.63	0.35	OVCAR-5	1.14	2.47	
RPMI-8226	0.79	0.49	OVCAR-8	1.71	1 59	
SR	0.99	0.45	SK-OV-3	2 35	2.96	
Non-small cell	lung can	cer .	Renal	2.55	2.90	
iton shan cen	iung cun	cer	cancer			
A 549/ATCC	1 28	1.61	786-0	0.23	1.28	
FKVY	2.06	1.88	A / 08	1 10	1.20	
HOP_62	0.40	0.71	ACHN	0.81	1.19	
HOP 02	0.40	1.07	CAKL1	0.01	5.07	
NCI H226	1.52	1.07	SN12C	1.04	0.41	
NCI H22	0.81	1.20	TV 10	1.04	1 16	
NCI-H23	2.24	1.00	IK-10 UO 21	1.05	1.10	
NCI-H322M	1.02	1.40	00-31	0.55	0.50	
NCL U522	1.05	0.10			0.59	
Color comon	1.39	0.19	Duesant			
Colon cancer			breast			
COL O 205	1.02	5 66	Cuncer MCE7	0.54	0.42	
UCC 2008	1.02	2.41		0.54	2.05	
ПСС-2998 ИСТ 116	1.39	5.41	NCI/ADK-	5.// 1.22	5.05	
HCI-110	0.30	-	KES	1.23	1.55	
HCT-15	1.56	3.90	MDA-MB-	1.68	0.72	
H129	1.02	>100	231/ATCC	1.64	1.04	
KM12	2.52	3.78	HS-5/81	1.23	1.42	
SW-620	1.10	-	MDA-MB-	4.36	0.57	
			435	-	0.49	
			BT-549			
			T-4/D			
			MDA-MB-			
C 110			468			
CNS cancer			Prostate			
GE 2 (0	0.52	1.00	cancer	1.45	0.00	
SF-268	0.53	1.23	PC-3	1.45	0.69	
SF-295	1.11	-	DU-145	0.82	1.4/	
SF-539	1.46	1.69				
NB-19	3.89	1.67				
SNB-75	1.36	1.64				
0251	0.41	1.11				
Melanoma						
LOX IMVI	0.86	2.58				
MALME-	1.28	3.04				
3M	0.90	3.04				
M14	1.01	2.35				
SK-MEL-2	1.80	3.96				
SK-MEL-28	1.46	2.82				
SK-MEL-5	1.98	4.17				
UACC-257	1.20	3.55				
UACC-62						

^aData obtained from the NCI's in vitro disease-oriented human tumor cell screen [34-36]. bThe responses parameter: GI50 is interpolated values representing the molar concentrations at which percentage growth is +50.

Cell lines	5c		6a		6b		ADR	
	GI ₅₀	LC ₅₀	GI ₅₀	LC ₅₀	GI ₅₀	LC ₅₀	GI ₅₀	LC ₅₀
MCF7	2.56	3.66	0.15	2.4	0.13	2.2	<10E ⁻⁷	0.17
A2780	n.d	n.d	0.16	>100	0.14	28	0.002	<10E ⁻⁷
Colo 205	2.52	6.08	0.14	>100	0.12	>100	14.7	>100
PC-3	2.01	>100	0.15	>100	0.12	26	0.23	<10E ⁻⁷
SiHa	n.d	n.d	1.7	>100	0.15	>100	1.9	>100
A-549	3.69	>100	0.16	>100	0.14	>100	13	>100
Hop-62	2.46	>100	0.18	>100	0.10	>100	<10E ⁻⁷	<10E ⁻⁷
KB	n.d	n.d	0.16	>100	0.14	30	0.16	>100

Table 3. Cytotoxicity $(GI_{50} \mu M)$ and $(LC_{50} \mu M)^a$ of conjugates **5c**, **6a**,**b** and adriamycin (ADR) against eight human cancer cell lines

^aResponse parameter; n.d: Not determined.

2.4. Molecular Modelling

In order to further substantiate the biological activity of these conjugates, molecular modelling studies were performed. Seven different B-DNA duplexes with varying sequences have been constructed and investigated for the interaction with the ligands, among which five DNA duplexes containing triplet AGA (Pu-G-Pu), the preferred binding site for PBD, were found to be the most favored sequences for docking. Among these five sequences, docking results for the 15-mer sequence 5'-GGGGCGAGAGAGAGGGG-3' containing the central AGA has shown excellent correlation with DNA-binding studies and has been employed for further studies. Molecular docking simulations carried out using Glide³⁶ with default settings show that these molecules prefer the minor groove over the major groove and intercalation as well as the binding is based on non-bonded

interactions like hydrogen-bonding, Vander Waals contacts, hydrophobic and electrostatic effects in addition to the covalent linkage formed between the imine of PBD moiety and exocyclic C2-amino group of the guanine. One of the representative conjugates **6b** has shown the best score probably due to flexible five carbon chain linker, and absence of bulky end groups, which enables it to rotate and fit in the minor groove without unfavorable close contacts (**Fig. 2**). The best scored poses of DNA-ligand complexes from the docking studies have been used for molecular dynamic simulations. The results of molecular docking studies are highly consistent with the cytotoxicity as well as thermal denaturation data.

Figure 3. Snapshots of DNA-6b complex at 0 ns (A), 1 ns (B), 2 ns (C) and 4 ns (D) time scale.

Molecular dynamics (MD) simulations were performed to provide some insight into the dynamic nature of the complexes and assess the effect of temperature and solvent. The simulation time scale was 5 ns and 500 snapshots were taken, the final binding interaction energies were calculated as the average of all the 500 snapshots. It was clear from the RMSDs that the docked conformation of compound **6b** was stable till 5 ns MD simulation and the docked poses of all the remaining compounds were reasonably stable up to 3 ns MD simulation. The snapshots of this MD run confirmed the strong binding ability of the compound **6b** to DNA minor-groove as shown in **Figure 3**.

The energy of interaction (E_{int}) between the DNA and the PBD conjugates in a complex was calculated as a measure of stability of that complex as shown in **Table 4**. The complex formed by **6b** is energetically more stable than the complex formed by **6a** because of longer linker unit in **6b** and more stable than **5a**-c due to absence of bulky end group which enables better non-bonded interactions due to perfect isohelical fit in the minor groove. It was very clear from the high negative interaction energies that all the docked complexes are favorable and stable.

Table 4. Energy of interaction (E_{int}) calculated for DNA-PBD conjugate complexes by generalized Born method after 5 ns MD simulation.

mananom		
Complex	$E_{int \ (kcal \ mol}^{-1})$	
DNA-5a	-111.23	
DNA-5b	-101.86	
DNA-5c	-91.01	
DNA-6a	-105.30	
DNA-6b	-114.56	

3. Conclusion

In conclusion, we have designed and synthesized a new series of dithiocarbamate bridged piperazine-pyrrolobenzodiazepine conjugates. These molecules have exhibited moderate to significant DNA-binding ability. Introduction of Nmethylpiperazinedithiocarbamate with five-membered alkane spacer to the PBD increased the DNA-binding activity considerably in one of the PBD derivative **6b** ($\Delta T_{\rm m} = 10.9$ °C). Compound 5a has displayed cytotoxic potency against many cell lines and exhibits a wide spectrum of activity against 33 cell lines in nine cancer phenotypes with GI_{50} values of < 0.99 μ M. Further, detailed molecular modeling studies involving molecular docking, molecular dynamics and MM-PBSA calculations support the biological data. The promising results obtained for these new PBD-dithiocarbomate derivatives presented in this paper, make them possible candidates for the treatment of cancer, and encourage us to advance in the synthesis and evaluation of new PBD derivatives.

The detailed molecular mechanism for these PBD conjugates is being further investigated.

4. Experimental

4.1. General

The majority of the solvents were purified by distillation under nitrogen from the indicated drying agent and used fresh: dichloromethane (calcium hydride), tetrahydrofuran (sodium benzophenone ketyl), acetone (potassium permanganate), and acetonitrile (phosphorous pentoxide). Reaction progress was monitored by thin-layer chromatography (TLC) using GF254 silica gel with fluorescent indicator on glass plates. Visualization was achieved with UV light and iodine vapor unless otherwise stated. Chromatography was performed using Acme silica gel (100-200 mesh). 1H and 13C NMR spectra were recorded on INOVA (400 MHz) or Gemini Varian-VXR-unity (200 MHz) or Bruker UXNMR/XWIN-NMR (300 MHz) spectrometer using tetramethyl silane (TMS) as an internal standard. Chemical shifts are reported in parts per million (ppm) downfield from tetramethyl silane. Spin multiplicities are described as s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Coupling constants are reported in Hertz (Hz). Low resolution mass spectra were recorded on a VG-7070H Micromass mass spectrometer at 200 oC, 70 eV with trap current of 200 lA, and 4 kV acceleration voltage. FABMS spectra were recorded on LSIMS-VG-AUTOSPEC-Micromass. Melting points were recorded on Electrothermal 9100 and are uncorrected. All computational studies were done with a Red Hat Enterprise Linux version 5.0 using Maestro software version 9.5 (Schrödinger, LLC, New York, NY, 2013).

4.2. Chemistry

tert-Butyl

4-(((3-cyano-3,3-

diphenylpropyl)thio)carbonothioyl)piperazine-1-carboxylate (8). To a stirred solution of *N*-boc piperazine (186 mg, 1 mmol) and anhydrous potassium phosphate (425 mg, 2 mmol) in acetone (20 mL) was added carbon disulfide 10 drops (~ 2.5 mmol) dropwise. After stirring for 30 min, 3-cyano-3,3-diphenylpropyl bromide (7; 300 mg, 1 mmol) was added. The stirring was further continued about 2 h, the resulted solid was filtered off and the filtrate was concentrated. The residue was dissolved in ethyl acetate (20 mL), and washed with water. The organic layer was dried over anhydrous Na₂SO₄, evaporated the solvent and the residue was purified by column chromatography using 50% ethyl acetate/hexane to afford compound 8 (384 mg, yield 80%). Cream colour solid; mp: 144-146 °C; ¹H NMR (300 MHz, CDCl₃): δ ppm: 7.45 (d, J = 7.55 Hz, 4H), 7.36 (t, J = 7.55 Hz, 4H), 7.29 (d, J = 6.79 Hz, 2H), 4.22 (bs, 2H), 3.94 (bs, 2H), 3.53 (t, 4H), 3.32-3.41 (m, 2H), 2.74-2.83 (m, 2H), 1.46 (s, 9H); MS (ESI): m/z 504 [M+Na]⁺.

3-Cyano-3,3-diphenylpropyl piperazine-1-carbodithioate (9). A solution of 8 (481 mg, 1 mmol) in dichloromethame (15 mL) was added trifluoroacetic acid (1.14 gm, 10 mmol) at 0 °C and the mixture was stirred at room temperature for 8 h. The solvent was evaporated and the solution was carefully adjusted to pH 8 with saturated NaHCO3 solution and then extracted with chloroform (2 x 15 mL). The combined organic phase was washed with brine (15 mL), dried over anhydrous Na₂SO₄ and evaporated under vacuum to afford the compound 9 (285 mg, 75%). Thick liquid. ¹H NMR (300 MHz, CDCl₃): δ ppm: 7.46 (d, *J* = 8.0 Hz, 4H), 7.38 (dd, *J* = 5.50 Hz, 1.9 Hz, 4H), 7.30 (t, 2H), 4.29 (bs, 2H), 3.87 (bs, 2H), 3.39 (m, 2H), 2.93 (bs, 4H), 2.83 (m, 2H), 1.72 (bs, 1H); MS (ESI): *m/z* 382.4 [M +H]⁺.

4-(3-(4-(2-

(S)-3-Cyano-3,3-diphenylpropyl (bis(ethylthio)methyl)pyrrolidine-1-carbonyl)-2-methoxy-5nitrophenoxy)propyl)piperazine-1-carbodithioate (11a). To a solution of 10a (521 mg, 1 mmol) in dry DMF (10 mL) was added anhydrous K₂CO₃ (552 mg, 4 mmol) and compound 9 (381 mg, 1 mmol). The reaction mixture was stirred at room temperature for 48 h. The K₂CO₃ was removed by suction filtration and the solvent was evaporated under vacuum. The crude product thus obtained was purified by column chromatography using 60% ethyl acetate-hexane to afford title compound 11a (657 mg, 80%). Light yellow solid; mp: 124-126 °C; ¹H NMR (300 MHz, CDCl₃): δppm: 7.71 (s, 1H), 7.29–7.57 (m, 10H), 6.83 (s, 1H), 4.88 (d, J = 3.39 Hz, 1H), 4.65–4.76 (m, 1H), 4.31 (t, J = 6.79 Hz, 2H), 4.18 (t, J = 6.04 Hz, 2H), 3.94 (s, 3H), 3.33–3.43 (m, 2H), 3.17–3.32 (m, 2H), 2.65–2.88 (m, 4H), 2.48-2.63 (m, 8H), 2.21-2.37 (m, 2H), 2.02-2.18 (m, 2H), 1.61–1.86 (m, 4H), 1.16–1.47 (m, 6H); MS (ESI): m/z 822 [M]⁺.

(S)-3-Cyano-3,3-diphenylpropyl 4-(4-(2-(bis(ethylthio)methyl)pyrrolidine-1-carbonyl)-2-methoxy-5nitrophenoxy)butyl)piperazine-1-carbodithioate (11b). The compound 11b was prepared following the method described for the compound 11a, employing 10b (535 mg, 1 mmol) and 9 (381 mg, 1 mmol), and the crude product was purified by column chromatography (60% ethyl acetate-hexane) to afford the compound 11b (668 mg, 80%). Light yellow solid; mp: 132-134 °C; ¹H NMR (300 MHz, CDCl₃): δppm: 7.67 (s, 1H), 7.25–7.50 (m, 10H), 6.83 (s, 1H), 4.88 (d, J = 3.77 Hz, 1H), 4.61–4.76 (m, 1H), 4.31 (t, J = 6.79 Hz, 2H), 4.13 (t, J = 6.79 Hz, 2H), 3.95 (s, 3H), 3.33-3.43 (m, 2H), 3.17-3.32 (m, 2H), 2.67-2.87 (m, 4H), 2.41-2.60 (m, 8H), 2.21-2.37 (m, 2H), 2.04-2.19 (m, 2H), 1.88-2.03 (m, 2H), 1.53-1.86 (m, 4H), 1.21-1.40 (m, 6H); MS (ESI): m/z 836 [M]⁺.

(S)-3-Cyano-3,3-diphenylpropyl 4-(5-(4-(2-(bis(ethylthio)methyl)pyrrolidine-1-carbonyl)-2-methoxy-5nitrophenoxy)pentyl)piperazine-1-carbodithioate (11c). The compound 11c was prepared following the method described for the compound 11a, employing 10c (549 mg, 1 mmol) and 9 (381 mg, 1 mmol), and the crude product was purified by column chromatography (60% ethyl acetate-hexane) to afford the compound 11c (680 mg, 80%). Light yellow solid; mp: 128-130 °C; ¹H NMR (200 MHz, CDCl₃): δppm: 7.66 (s, 1H), 7.23–7.50 (m, 10H), 6.82 (s, 1H), 4.88 (d, J = 3.77 Hz, 1H), 4.67–4.77 (m, 1H), 4.31 (t, J = 6.79 Hz, 2H), 4.09 (t, J = 5.85 Hz, 2H), 3.94 (s, 3H), 3.33-3.44 (m, 2H), 3.17-3.32 (m, 2H), 2.65-2.90 (m, 4H), 2.48-2.62 (m, 8H), 2.38-2.47 (m, 2H), 2.22-2.37 (m, 2H), 2.00-2.19 (m, 2H), 1.86-1.98 (m, 2H), 1.48-1.77 (m, 4H), 1.22-1.41 (m, 6H); MS (ESI): m/z 850 [M]⁺.

(S)-3-Cyano-3,3-diphenylpropyl 4-(3-(5-amino-4-(2-(bis(ethylthio)methyl)pyrrolidine-1-carbonyl)-2-

methoxyphenoxy)propyl)piperazine-1-carbodithioate (12a). The stirred mixture of **11a** (822 mg, 1 mmol) and SnCl₂.2H₂O (1.125 g, 5 mmol) in methanol (20 mL) was refluxed for 5 h or until the TLC indicated that reaction was completed. The methanol was evaporated by vacuum and the aqueous layer was then carefully adjusted to pH 8 with 10% NaHCO3 solution and then extracted with ethyl acetate and chloroform (2 x 30 ml and 2 x 30 mL). The combined organic phase was dried over Na₂SO₄ and evaporated under vacuum to afford the crude amino diethyl thioacetal 12a (617 mg, 78%) as yellow oil, which was used directly for the next step.

(S)-3-Cyano-3,3-diphenylpropyl 4-(4-(5-amino-4-(2-(bis(ethylthio)methyl)pyrrolidine-1-carbonyl)-2-

methoxyphenoxy)butyl)piperazine-1-carbodithioate (12b). The compound 12b was prepared following the method described for the compound 12a, employing the 11b (836 mg, 1 mmol) and $SnCl_2.2H_2O$ (1.125 g, 5 mmol) to afford the amino diethyl thioacetal 12b as a yellow oil (628 mg, 78%), which was used directly for the next step without further purification.

(S)-3-Cyano-3,3-diphenylpropyl 4-(5-(5-amino-4-(2-(bis(ethylthio)methyl)pyrrolidine-1-carbonyl)-2-

methoxyphenoxy)pentyl)piperazine-1-carbodithioate (12c). The compound 12c was prepared following the method described for the compound 12a, employing the 11c (850 mg, 1 mmol) and $SnCl_2.2H_2O$ (1.125 g, 5 mmol) to afford the amino diethyl thioacetal 12c as a yellow oil (639 mg, 78%), which was used directly for the next step without further purification.

(S)-3-Cyano-3,3-diphenylpropyl 4-(3-((7-methoxy-5-oxo-2,3,5,11a-tetrahydro-1H-benzo[e]pyrrolo[1,2-a][1,4]diazepin-8-vl)oxy)propyl)piperazine-1-carbodithioate (5a). A solution of 12a (792 mg, 1 mmol), HgCl₂ (613 mg, 2.26 mmol) and CaCO₃ (246 mg, 2.46 mmol) in acetonitrile:water (4:1) was stirred slowly at room temperature until TLC indicates complete loss of starting material. The reaction mixture was diluted with ethyl acetate (30 mL) filtered through a celite pad. The clear organic supernatant was extracted with saturated 5% NaHCO3 (20 ml), brine (20 ml) and the combined organic phase is dried (Na₂SO₄). The organic layer was evaporated in vacuum and purified by column chromatography (95% CH₂Cl₂-MeOH) to give compound 5a (366 mg, 55% yield) as cream yellow solid. This material was repeatedly evaporated from CHCl₃ in vacuum to generate the imine form. mp: 114–116 °C; $[\alpha]_D^{25} = +0.26$ (c = 0.9 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ ppm: 7.64 (d, J = 3.82 Hz, 1H), 7.28-7.55 (m, 10H), 6.80 (s, 1H), 6.36 (s, 1H), 3.96-4.23 (m, 4H), 3.95 (s, 3H), 3.44-3.86 (m, 4H), 3.25-3.43 (m, 2H), 2.73–2.91 (m, 2H), 2.20–2.62 (m, 7H), 1.38–2.15 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ ppm: 197.1, 164.8, 162.9, 152.1, 149.7, 143.7, 140.7, 139.7, 128.9, 127.4, 119.2, 118.5, 117.8, 112.8, 79.4, 59.3, 56.9, 56.6, 54.7, 53.6, 51.1, 44.1, 38.7, 29.3, 28.9, 28.1, 24.1; HRMS (ESI): m/z calcd for C₃₇H₄₁N₅O₃S₂ 668.2691, found 668.2699 [M+H]⁺.

(S)-3-Cyano-3,3-diphenylpropyl 4-(4-((7-methoxy-5-oxo-2,3,5,11a-tetrahydro-1H-benzo[e]pyrrolo[1,2-a][1,4]diazepin-8-yl)oxy)butyl)piperazine-1-carbodithioate (5b). The compound 5b was prepared following the method described for the preparation of the compound 5a, employing 12b (806 mg, 1 mmol) and HgCl₂ (613 mg, 2.26 mmol) and CaCO₃ (246 mg, 2.46 mmol) to afford the compound **5b** as a pale yellow solid (388 mg, 57%). mp: 100–102 °C; $[\alpha]_D^{25} = +5.4$ (c = 1 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ ppm: 7.67 (d, J = 4.71 Hz, 1H), 7.29-7.57 (m, 10H), 6.81 (s, 1H), 6.34 (s, 1H), 3.97-4.44 (m, 4H), 3.94 (s, 3H), 3.45-3.80 (m, 4H), 3.30-3.46 (m, 2H), 2.74-2.91 (m, 2H), 2.23-2.65 (m, 8H), 1.35-2.20 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 196.9, 164.6, 163.1, 152.4, 149.6, 143.5, 141.1, 139.6, 129.2, 127.4, 119.1, 118.5, 117.6, 112.8, 79.2, 59.1, 57.1, 56.6, 54.6, 53.6, 51.4, 44.2, 38.7, 29.4, 28.9, 28.1, 24.8, 24.2; HRMS (ESI): *m/z* calcd for C₃₈H₄₃N₅O₃S₂ 682.2847, found 682.2853 [M+H]⁺.

(S)-3-Cyano-3,3-diphenylpropyl 4-(5-((7-methoxy-5-oxo-2,3,5,11*a*-tetrahydro-1H-benzo[*e*]pyrrolo[1,2-*a*][1,4]diazepin-8-yl)oxy)pentyl)piperazine-1-carbodithioate (5c). The compound 5c was prepared following the method described for the preparation of the compound 5a, employing 12c (820 mg, 1 mmol), to afford the compound 5c as a pale yellow solid (382 mg, 55%). mp: 110–112 °C; $[\alpha]_D^{25} = +0.44$ (*c* = 0.7 in CHCl₃);

¹H NMR (400 MHz, CDCl₃) δppm: 7.67 (d, J = 4.71 Hz, 1H), 7.29–7.54 (m, 10H), 6.79 (s, 1H), 3.96–4.18 (m, 4H), 3.95 (s, 3H), 3.49–3.88 (m, 4H), 3.25–3.45 (m, 2H), 2.73–2.91 (m, 2H), 2.22–2.63 (m, 8H), 1.38–2.17 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δppm: 196.1, 164.9, 163.3, 152.3, 148.9, 143.7, 140.1, 129.4, 128.1, 126.2, 117.4, 116.1, 109.9, 107.8, 69.9, 56.8, 56.1, 54.2, 53.1, 52.4, 49.9, 39.7, 38.4, 29.7, 28.6, 24.7, 23.7; HRMS (ESI): m/z calcd for C₃₉H₄₅N₅O₃S₂ 696.3003, found 696.3011 [M+H]⁺.

(S)-4-(4-(2-(Bis(ethylthio)methyl)pyrrolidine-1-carbonyl)-2-methoxy-5-nitrophenoxy)butyl 4-methylpiperazine-1carbodithioate (13a). To a solution of 1-methylpiperazine (100 mg, 1 mmol) in dry acetone (10 mL) was added carbon disulfide 10 drops (~2.5 mmol) and anhydrous K₃PO₄ (425 mg, 2 mmol). The mixture was stirred <10 °C for 1 h. Then 10b (535 mg, 1 mmol) was added. The reaction mixture was stirred at room temperature for 12 h. TLC using ethylacetate as a solvent system monitored the reaction. The potassium phosphate was removed by suction filtration and the solvent was removed under vacuum. The crude product was purified by column chromatography using 40% ethyl acetate-hexane to afford pure compound 13a (504 mg, 80%). Light yellow solid; mp: 80-82 °C; ¹H NMR (200 MHz, CDCl₃) δ ppm: 7.64 (s, 1H), 6.77 (s, 1H), 4.83 (d, J = 4.15 Hz, 1H), 4.61–4.76 (m, 1H), 4.14 (t, J = 5.81, 6.12 Hz, 2H), 3.95 (s, 3H), 3.39 (t, J = 6.64, 5.83 Hz, 2H), 3.17-3.30 (m, 2H), 2.51-2.90 (m, J = 4.98 Hz, 14H), 2.33 (s, 3H), 1.87-2.12 (m, 6H), 1.23-1.42 (q, 6H); MS (ESI): m/z 631 [M]⁺.

(S)-5-(4-(2-(Bis(ethylthio)methyl)pyrrolidine-1-carbonyl)-4-methylpiperazine-1-2-methoxy-5-nitrophenoxy)pentyl carbodithioate (13b). To a solution of 1-methylpiperazine (100 mg, 1 mmol) in dry acetone (10 mL) was added carbon disulfide 10 drops (~2.5 mmol) and anhydrous K₃PO₄ (425 mg, 2 mmol). The mixture was stirred <10 °C for 1 h. Then 10c (549 mg, 1 mmol). The reaction mixture was stirred at room temperature for 12 h. TLC using ethylacetate as a solvent system monitored the reaction. The potassium phosphate was removed by suction filtration and the solvent was removed under vacuum. The crude product was purified by column chromatography using 40% ethyl acetate-hexane to afford pure compound of 13b (528 mg, 82%). Light yellow solid; mp: 86–88 °C; ¹H NMR (200 MHz, CDCl₃) δ ppm: 7.67 (s, 1H), 6.83 (s, 1H), 4.88 (d, 1H), 4.65-4.78 (m, 1H), 4.11 (t, J = 7.03 Hz, 2H), 3.96 (s, 3H), 3.36 (t, J = 7.03 Hz, 2H), 3.21-3.30 (m, 2H), 2.75-2.88 (m, 4H), 2.52 (t, J = 5.47 Hz, 4H),2.35 (s, 3H), 2.17–2.30 (m, 2H), 2.12 (t, J = 7.81 Hz, 2H), 2.00–2.07 (m, 2H), 1.94 (t, J = 7.81 Hz, 2H), 1.75–1.88 (m, 2H), 1.67 (t, J = 3.90 Hz, 2H), 1.57–1.65 (m, 2H), 1.16–1.44 (m, 6H); MS (ESI): *m/z* 645 [M]⁺.

(S)-4-(5-Amino-4-(2-(bis(ethylthio)methyl)pyrrolidine-1carbonyl)-2-methoxyphenoxy)butyl 4-methylpiperazine-1carbodithioate (14a). The compound 13a (631 mg, 1 mmol) dissolved in methanol (20 mL) and added $SnCl_2.2H_2O$ (1.125 g, 5 mmol) was refluxed for 5 h. The methanol was evaporated by vacuum and the aqueous layer was then carefully adjusted to pH 8 with 10% NaHCO₃ solution and then extracted with ethyl acetate and chloroform (2 x 30 ml and 2 x 30 mL). The combined organic phase was dried over Na_2SO_4 and evaporated under vacuum to afford the crude amino diethyl thioacetal 14a (468 mg, 78%) as yellow oil, which was used directly in the next step without further purification.

(S)-5-(5-Amino-4-(2-(bis(ethylthio)methyl)pyrrolidine-1carbonyl)-2-methoxyphenoxy)pentyl 4-methylpiperazine-1carbodithioate (14b). The compound 14b was prepared

4.

following the method described for the compound **14a**, employing the compound **13b** (645 mg, 1 mmol) to afford the amino diethyl thioacetal **14b** as a yellow oil (479 mg, 78%), which was used directly in the next step.

(S)-4-((7-Methoxy-5-oxo-2,3,5,11a-tetrahydro-1Hbenzo[e]pyrrolo[1,2-a][1,4]diazepin-8-yl)oxy)butyl 4methylpiperazine-1-carbodithioate (6a). A solution of 14a (601 mg, 1 mmol), HgCl₂ (613 mg, 2.26 mmol) and CaCO₃ (246 mg, 2.46 mmol) in acetonitrile:water (4:1) was stirred slowly at room temperature for overnight. The reaction mixture was diluted with ethyl acetate (30 mL) filtered through a celite pad. The clear organic supernatant was extracted with saturated 5% NaHCO3 (20 mL), brine (20 mL) and the combined organic phase was dried over (Na₂SO₄). The organic layer was evaporated under vacuum and purified by column chromatography using 4% MeOH-CHCl₃ to give compound **6a** (276 mg, 58%) as light yellow solid. This material was repeatedly evaporated from CHCl₃ in vacuum to generate the imine form. mp: 94–96 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.61 ppm (d, J = 4.68 Hz, 1H), 7.45 (s, 1H), 6.73(s, 1H), 3.80-4.07 (m, 4H), 3.79 (s, 3H), 3.61–3.74 (m, 2H), 3.3 (t, J = 7.03 Hz, 4H), 2.44 (t, J = 5.46 Hz, 2H), 2.27 (s, 3H), 1.77-2.05 (m, 4H), 1.51-1.54 (m, 1H), 1.36 (d, J = 5.46 Hz, 1H), 1.06–1.25 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) *Sppm*: 196.9, 164.5, 163.5, 152.3, 148.9, 140.2, 117.1, 108.1, 107.2, 79.5, 57.1, 54.7, 52.8, 51.7, 47.2, 36.8, 31.1, 28.1, 26.7, 24.6; HRMS (ESI): m/z calcd for C₂₃H₃₂N₄O₃S₂ 477.1952, found 477.1961 [M+H]⁺.

(S)-5-((7-Methoxy-5-oxo-2,3,5,11*a*-tetrahydro-1*H*-benzo[*e*]pyrrolo[1,2-*a*][1,4]diazepin-8-yl)oxy)pentyl

methylpiperazine-1-carbodithioate (6b). A solution of 14b (615 mg, 1 mmol), HgCl₂ (613 mg, 2.26 mmol) and CaCO₃ (246 mg, 2.46 mmol) in acetonitrile:water (4:1) was stirred slowly at room temperature for overnight. The reaction mixture was diluted with ethyl acetate (30 mL) filtered through a celite pad. The clear organic supernatant was extracted with saturated 5% NaHCO₃ (20 mL), brine (20 mL) and the combined organic phase was dried (Na₂SO₄). The organic layer was evaporated under vacuum and purified by column chromatography using 4% MeOH-CHCl₃ to give compound 6b (284 mg, 58%) as light yellow solid. This material was repeatedly evaporated from CHCl₃ in vacuum to generate the imine form. mp: 90-92 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.62 (d, J = 3.90 Hz, 1H), 7.22 (s, 1H), 6.75 (s, 1H), 3.92-4.11 (m, 4H), 3.90 (s, 3H), 3.41-3.85 (m, 3H), 3.28 (t, *J* = 7.03 Hz, 2H), 2.45 (m, 8H), 2.29 (s, 3H), 1.41–2.18 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δppm: 197.1, 164.7, 163.6, 152.4, 149.0, 140.4, 117.2, 108.3, 107.1, 79.0, 56.9, 54.6, 52.7, 50.9, 50.2, 46.9, 36.6, 31.4, 30.08, 29.7, 26.6, 23.9; HRMS (ESI): m/z calcd for C₂₄H₃₄N₄O₃S₂ 491.2111, found 491.2119 [M+H]⁺.

4.3. DNA binding studies

Compounds were subjected to thermal denaturation studies with duplex-form CT-DNA using reported method. Working solutions in aqueous buffer (10 mM NaH₂PO₄/Na₂HPO₄, 1 mM Na₂EDTA, pH 7.00 + 0.01) containing CT-DNA (100 μ M in phosphate) and the PBD (20 μ M) were prepared by addition of concentrated PBD solutions in DMSO to obtain a fixed [PBD]/[DNA] molar ratio of 1:5. The DNA–PBD solutions were incubated at 37 °C for 0 and 18 h prior to analysis. Samples were monitored at 260 nm using a Beckman–Coulter DU 800 spectrophotometer fitted with high performance temperature controller, and heating was applied at 1 °C min ¹ in the range of 40–90 °C. DNA helix→coil transition temperatures *I* were obtained from the maxima in the *d*(A260)/*d*T derivative plots. Results are given as means \pm standard deviation from three determinations and are corrected for the effects of DMSO cosolvent using a linear correction term. Drug-induced alterations in DNA melting behaviour are given by $\Delta T_m = T_m$ (DNA + PBD)

 $T_{\rm m}$ (DNA alone), where the $T_{\rm m}$ value for the PBD-free CT-DNA is 69.2 ± 0.01 °C. The fixed [PBD]/[DNA] ratio used did not result in binding saturation of the host DNA duplex for any compound examined.

4.4. MTT assay

In-routine compounds **5c**, **6a** and **6b** have been evaluated for their in vitro cytotoxicity in selected human cancer cell lines of MCF7 (breast), A2780 (ovarian), Colo205 (colon), PC3 (prostate), SiHa (cervix), A-549, Hop62 (lung) and KB (Leukemia) origin. A protocol of 48 h continuous drug exposure has been used and a sulforhodamine B (SRB) protein assay has been used to estimate cell viability or growth.^{38,39}

The cell lines were grown in RPMI 1640 medium containing 10% fetal bovine serum and 2 mM L-glutamine and were inoculated into 96-well microtiter plates in 90 μ L at plating densities depending on the doubling time of individual cell lines. The microtiter plates were incubated at 37 °C, 5% CO₂, 95% air, and 100% relative humidity for 24 h prior to addition of experimental drugs. Aliquots of 10 μ L of the drug dilutions were added to the appropriate microtiter wells already containing 90 μ L of cells, resulting in the required final drug concentrations. Plates were incubated further for 48 h and assay was terminated by the addition of 50 IL of cold trichloro acetic acid (TCA) (final concentration, 10% TCA) and incubated for 60 min at 4 °C.

The plates were washed five times with tap water and airdried. Sulforhodamine B (SRB) solution (50 μ L) at 0.4% (w/v) in 1% acetic acid was added to each of the wells, and plates were incubated for 20 min at room temperature. The residual dye was removed by washing five times with 1% acetic acid. The plates were air-dried. Bound stain was subsequently eluted with 10 mM trizma base, and the absorbance was read on an ELISA plate reader at a wavelength of 540 nm with 690 nm reference wavelength. Percent growth was calculated on a plate–byplate basis for test wells relative to control wells.

Percentage growth was expressed as the (ratio of average absorbance of the test well to the average absorbance of the control wells) x = 100.

4.5. Molecular modelling Studies

The hybrids were built and prepared using Ligprep 2.7 and geometrically minimized with Macromodel 10.1 followed by conformational analysis in Maestro 9.5. Truncated Newton Conjugate Gradient (TNCG) minimization method was used with 500 iterations and convergence threshold of 0.05 kJ/mol. All the DNA duplexes were prepared using protein preparation wizard. The Glide XP 6.5 algorithm was employed for docking. The lowest energy pose for each compound was further subjected to molecular dynamics simulations using Desmond 3.5 with OPLS-AA force field in explicit solvent with the TIP3P water model. Before MD simulations, the system was pre-equilibrated using Constant-Volume (NVT) MD simulation for the first 100 ps during which temperature of the system was raised from 0 to 300 K and for further simulation the temperature was maintained at 300 K. Subsequently, the system was equilibrated in NPT which is composed of minimization and short MD simulation (12 and 24 ps) to relax the model system. After that, long equilibration MD simulation was performed for first 2 ns and long production

MD simulation for 5 ns. Data were collected every 10 ps during the MD runs. The complexes present in trajectory file after production phase of MD simulations, were clustered according to the RMSD of backbone. The interaction energies in these clusters were calculated using the using MM/ GBSA present in Prime 3.3.

Acknowledgments

The authors K.S, M.S, V.S and S.N are thankful to the National Cancer Institute (NCI), USA for providing the data on the sixty cell panel of human cancer cell lines. The authors are also grateful to CSIR, New Delhi, for the award of Research Fellowships

References

- M. A Warpehoski, L. H. Hurley, Chem. Res. Toxicol. 1 (1988) 315.
- J. J. Wang, G. C. Hill, L. H. Hurley, J. Med. Chem. 35 (1992) 2995.
- V. L. Reynolds, L. J. Molineux, D. Kaplan, D. H. Swenson, L. H. Hurley, Biochemistry 24 (1985) 6228.
- M. P. Barrett, C. G. Gemmell, C. J. Suckling, Pharmacol Ther. 139 (2013) 12.
- L. H. Hurley, T. Reck, D. E. Thurston, D. R. Langley, K. G. Holden, R. P. Hertzberg, et al. Chem. Res. Toxicol. 1 (1988) 258.
- M. D. Barkley, S. Cheatham, D. E. Thurston, L. H. Hurley, Biochemistry 25 (1986) 3021.
- R. L. Petrusek, E. L. Uhlenhopp, N. Duteau, L. H. Hurley, J. Biol. Chem. 257 (1982) 6207.
- 8. D. E. Thurston, D. S. Bose, Chem. Rev. 94 (1994) 433.
- M. L. Kopka, D. S. Goodsell, I. Baikalov, K. Grzeskowaik, D. Cascio, R. E. Dickerson, Biochemistry 33 (1994) 13593.
- A. Kamal, Y. Damayanthi, B. S. N. Reddy, B. Lakminarayana, B S. P. Reddy, Chem. Commun. 7 (1997) 1015.
- 11. A. Kamal, B. S. N. Reddy, B. S. P. Reddy, Bioorg. Med. Chem. Lett. 7 (1997) 1825.
- A. Kamal, S. Prabhakar, N. Shankaraiah, N. Markandeya, V. Srinivasulu, M. Sathish, Tetrahedron Lett. 54 (2013) 4435.
- A. Kamal, G. Ramakrishna, M. J. Ramaiah, A. Viswanath, A. V. S. Rao, C. Bagul, D. Mukhopadyay, S.N.C.V.L. Pushpavalli, M. P. Bhadra, Med. Chem. Commun. 4 (2013) 697.
- A. Kamal, M. K. Reddy, V. S. Reddy, G. B Kumar, Medicinal Chemistry 9 (2013) 177.
- A. Kamal, G. Ramakrishna, V. L. Nayak, P. Raju, A. V. S. Rao, A. Viswanath, M.V.P.S. Vishnuvardhan, S. Ramakrishna, G. Srinivas, Bioorg. Med. Chem. 20 (2012) 789.
- A. Kamal, S. Prabhakar, M. J. Ramaiah, P. V. Reddy, Ch. R. Reddy, A. Mallareddy, N. Shankaraiah, T. L. N. Reddy, S. N. C. V. L. Pushpavalli, M. P. Bhadra, Eur. J. Med. Chem. 46 (2011) 3820.
- N. Shankaraiah, N. Markandeya, V. Srinivasulu, K. Sreekanth, Ch. S. Reddy, L. S. Santos, A. Kamal, J. Org. Chem. 76 (2011) 7017.
- N. Markandeya, N. Shankaraiah, Ch. S. Reddy, L. S. Santos, A. Kamal, Tetrahedron: Asymmetry 21 (2010) 2625.
- A. Kamal, N. Shankaraiah, Ch. R Reddy, S. Prabhakar, N. Markandeya, H. K. Srivastava, G. N. Sastry, Tetrahedron 66 (2010) 5498.
- A. Kamal, K. Sreekanth, P. P. Kumar, N. Shankaraiah, G. Balakishan, M. J. Ramaiah, S.N.C.V.L. Pushpavalli, P. Ray, M. P. Bhadra, Eur. J. Med. Chem. 45 (2010) 2173.
- A. Kamal, N. Markandeya, N. Shankaraiah, Ch. R. Reddy, S. Prabhaker, Ch. S. Reddy, N. M. Eberlin, L. S. Santos, Chem. Eur. J. 15 (2009) 7214.
- A. Kamal, M. K. Reddy, M. J. Ramaiah, Y. V. V. Srikanth, Rajender. V. S. Reddy, G. B. Kumar, I. Bag, A. Juvekar, S. Sen, M. S. Zingde, M. P. Bhadra. ChemMedChem. 6 (2011) 1665.
- A. Kamal, M. K. Reddy, M. J. Ramaiah, Rajender.; J. S. Reddy, Y. V. V. Srikanth, D. Dastagiri, E.V. Bharathi, S. N. C. V. L. Pushpavalli, P. Sarma, M. P. Bhadra. Bioorg. Med. Chem. 19 (2011) 2565.

- A. Kamal, Rajender, M. K. Reddy, G. Balakishan, T. B. Shaik, M. Chourasia, G. N. Sastry, Bioorg. Med. Chem. 17 (2009) 1557.
- A. Kamal, P. S. Reddy, D. R. Reddy, E. Laxman, Bioorg. Med. Chem. 14 (2006) 385.
- L. Reddy, B. Odhav, K. D. Bhoola, Pharmacology & Therapeutics 99 (2003) 1.
- 27. J. W. Blunt, B. R. Copp, M. H. Munro, P. T. Northcote, M. R. Prinsep, Nat. Prod. Rep. 28 (2011) 196.
- A. Kamal, N. Laxman, G. Ramesh, O. Srinivas, P. Ramulu, Bioorg. Med. Chem. Lett. 12 (2002) 1917.
- A. Kamal, R. Ramu, V. Tekumalla, G. B. Khanna, M. S. Barkume, A. S. Juvekar, S. M. Zingde, Bioorg. Med. Chem. 16 (2008) 7218.
- A. Kamal, P. P. Kumar, B. N. Seshadri, O. Srinivas, M. S. Kumar, S. Sen, N. Kurian, A. S. Juvekar, S. M. Zingde, Bioorg. Med. Chem. 16 (2008) 3895.
- A. Kamal, M. N. Khan, K. S. Reddy, S. K. Ahmed, M. S. Kumar, A. S. Juvekar, S. Sen, S. M. Zingde, Bioorg. Med. Chem. Lett. 17 (2007) 5345.
- A. Kamal, A. H. Babu, A. V. Ramana, K. V. Ramana, E. V.Bharathi, M. S. Kumar, Bioorg. Med. Chem. Lett. 15 (2005) 2621.
- A. Kamal, P. S. Reddy, D. R. Reddy, E. Laxman, Bioorg. Med. Chem. 14 (2006) 385.
- P. Gaspari, T. Banerjee, W. P. Malachowski, A. J. Muller, G. C. Prendergast, J. Du-Hadaway, S. Bennett, A. M. Donovan, J. Med. Chem. 49 (2006) 684.
- X. Hou, Z. Ge, T. Wang, W. Guo, J. Cui, T. Cheng, C. Lai, R. Li, Bioorg. Med. Chem. Lett. 16 (2006) 4214.
- X. Hou, Z. Ge, T. Wang, W. Guo, J. Wu, J. Cui, C. Lai, R. Li, Arch. Pharm. Chem. Life Sci. 11 (2011) 320.
- C. Gerhäuser, M. You, J. Liu, R. M. Moriarty, M. Hawthorne, R. G. Mehta, R. C. Moon, J. M. Pezzuto, Cancer Res. 57 (1997) 272.
- 38. A. Kamal, P. Ramulu, O. Srinivas, G. Ramesh, Bioorg. Med. Chem. Lett. 13 (2003) 3517.
- R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. Klicic, D. T. Mainz, P. S. Shenkin, J. Med. Chem. 47 (2004) 1739.

Graphical Abstract

Acctionic MeO

Research Highlights

- C8-linked dithiocarbamate/piperazine-PBD conjugates (5a-c, 6a,b) were synthesized.
- > The conjugates **5a** and **5b** have been
- Acceleration