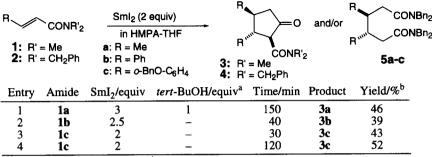


PII: S0040-4039(96)01951-X

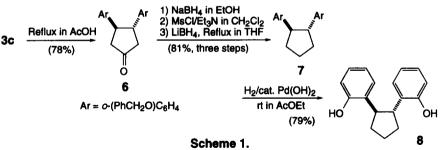

dl-Selective Reductive Coupling/Dieckmann Condensation Sequence of α,β-Unsaturated Amides with Samarium(II) Iodide/HMPA. Synthesis of a New Ligand, trans-1,2-Cyclopentanediyl-2,2'-biphenol

Shuji Kanemasa,* Hidetoshi Yamamoto, and Shigeru Kobayashi[†] Institute of Advanced Material Study, Kyushu University, Kasugakoen, Kasuga 816, Japan [†]Department of Molecular Science and Technology, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasugakoen, Kasuga 816, Japan

Abstract: By action of SmI₂-HMPA in THF, the *N*,*N*-dimethyl derivatives of $(E)-\alpha,\beta$ -unsaturated amides produce the 1,2-*trans*-2,3-*trans* stereoisomers of 2,3-disubstituted 5-oxo-1-cyclopentane-carboxamides via a highly *dl*-selective reductive coupling followed by Dieckmann condensation. Water-*d*₂ is an effective quenching agent. This reaction is successfully applied to the synthesis of *trans*-1,2-cyclopentanediyl-2,2'-biphenol, which is a new C₂-symmetric chiral ligand. Copyright © 1996 Elsevier Science Ltd

In our synthetic study of a new C₂-symmetric chiral ligand, *trans*-1,2-cyclopentanediyl-2,2'-biphenol, we synthesized its oxygen analog for simplification of synthesis, but the resulting *trans*-2,2-dimethyl-4,5-bis(o-hydroxyphenyl)dioxolane was so labile against Lewis acids that the acetal moiety underwent ring opening on treatment with titanium salts.¹ To avoid this undesired liability, we planned to replace the dioxolane ring by a cyclopentane ring. However, synthesis of the cyclopentane ligand from the easily available 1,2-bis(o-hydroxyphenyl)cyclopentene was unsuccessful.² The present communication describes its synthesis based on the reductive coupling of *N*,*N*-dimethyl derivatives of α , β -unsaturated amides with SmI₂.

When SmI₂ (2-3 equiv relative to 1)³ in HMPA/THF (1/10 v/v) was treated with α , β -unsaturated N,Ndimethylamides 1a-c under dry nitrogen at room temperature, in the presence or absence of *tert*-BuOH (1 equiv if employed), 1,2-*trans*-2,3-*trans* isomers of 2,3-disubstituted 5-oxo-1-cyclopentanecarboxyamides 3ac were produced as single isomers (entries 1-4). Use of excess SmI₂ is important for the completion of reactions. Although *tert*-BuOH was essential as internal proton quencher in the reaction of the crotonamide substrate 1a,^{4,5} its presence lowered the yield of coupling products 3 for aryl derivatives of α , β -unsaturated amides 1b,c. In contrast, use of N,N-dibenzylamides 2 only gave the *dl*-isomers of coupling products 5a-c.⁴



^aEquivalent to the substrate. ^bYield of isolated products.

The 5-oxo-1-cyclopentanecarboxyamide 3c, obtained by the *dl*-selective reductive coupling/Dieckmann condensation^{6,7} of (*E*)-3-(*o*-benzyloxyphenyl)-*N*,*N*-dimethylpropenamide (1c), was readily transformed to the target molecule 8 (Scheme 1). Thus, 3c was hydrolyzed by simple heating in wet AcOH under reflux to produce cyclopentanone 6 in 78% yield. Reduction of the carbonyl function of 6 with NaBH₄ in EtOH was followed by a sequence of *O*-mesylation (MeSO₂Cl/Et₃N) and reduction with LiBH₄ in THF to give 7 (81%)

in three steps). The benzylic protecting groups of 7 were removed by a catalytic hydrogenation over $Pd(OH)_2$ under an atmospheric pressure of hydrogen to give the final target molecule of 8 in 79% yield. Optical resolution of 8 is now under way.

According to mechanistic considerations, the reductive coupling requires one equivalent of SmI₂. We therefore investigated the reactions of N,N-dibenzylamide **2b** with an equimolar amount of SmI₂ and found that the proper choice of quenching agent was critical.⁷ Poor quenchers such as dilute acid, water or bulky alcohols resulted in the recovery of **2b**, while D₂O and less bulky alcohols gave better combined yields of **4b** and **5b**. However, yield of **4b** was relatively low even under the best quenching conditions (entry 3). It should be emphasized that the cyclized product **4b** is formed from N,N-dibenzylamide **2b** only in the reaction employing one equivalent of SmI₂.

Table 2. Effect of Quenching Agent in Reaction of 2b with SmI₂ (1 equiv)^a

2b	Smi ₂ (1 equiv)	Quer	Quenching agent			and/or 5b			
	in HMPA-THF			4b					
Entry	Quencher	Time/h ^b	4b	5b	Entry	Quencher	Time/h ^b	4b	5b
1	0.1 M HCl aq	1+3	0	15	5	i-PrOH	1+3	0	5
2	H ₂ O	1+3	0	10	6	tert-BuOH	1+3	0	6
3	$D_{2}O$	1+10 ^c	32	62 ^d	7	NH₄Cl (solid)	1+3	14	31
4	MeOH	1+3	10	39					

^a**2b** (0.3 mmol), SmI₂ (0.3 mmol), HMPA (0.3 ml) in THF (3 ml) at room temperature. Recovered **2b**: 73, 72, 0, 35, 74, 67, and 44% for entries 1-7, respectively. ^bTimes for reaction + quenching. ^cIn min. ^dD-Content at H-2 and H-5 of **5b**: 21%.

References and Note

- 1 Yamamoto, H.; Kobayashi, S.; Kanemasa, S. Tetrahedron Asymm. 1996, 7, 149-155.
- 2 Yamamoto, H.; Kobayashi, S.; Kanemasa, S. Unpublished results
- 3 Samarium(II) iodide is economically prepared by treatment of samarium metal with CH₂I₂ (Namy, J. L.; Girard, P.; Kagan, H. B.; Caro, P. E. Nouv. J. Chim., **1981**, 5, 479-484.
- 4 Inanaga, J.; Sakai, S.; Hanada, Y.; Yamaguchi, M.; Yokoyama, Y. Chemistry Lett. 1991, 2117-2118. Inanaga, J.; Hanada, Y.; Tabuchi, T.; Otsubo, K.; Yamaguchi, M.; Hanamoto, T. Tetrahedron Lett. 1991, 32, 6557-6558. See also: Taniguchi, Y.; Nakahashi, M.; Kuno, T.; Tsuno, M.; Makioka, Y.; Takaki, K.; Fujiwara, Y. Tetrahedron Lett. 1994, 35, 4111-4114; Fleming, I.; Ghosh, S. K. J. Chem. Soc., Chem. Commun. 1992, 1775-1777.
- 5 Recent reviews: (a) Molander, G. A. "Comprehensive Organic Synthesis," Trost, B. M.; Fleming, I. ed., Pergamonn Press, Oxford (1991), vol. 1, p. 251. (b) Inanaga, J. J. Synth. Org. Chem. Jpn. 1989, 47, 200-211.
- 6 Reductive coupling/Dieckmann condensation sequence by other reactions is known: Takaki, K.; Beppu, F.; Tanaka, S.; Tsubaki, Y.; Jintoku, T.; Fukiwara, Y. J. Chem. Soc., Chem. Commun., 1990, 516-517.
- 7 Sibi, M. P.; Deshpande, P. K.; Ji, J. Tetrahedron Lett. 1995, 36, 8965-8968. See also Hasegawa, E.; Curran, D. P. J. Org. Chem. 1993, 58, 5008-5010.

(Received in Japan 11 July 1996; accepted 30 September 1996)