

Journal of Fluorine Chemistry 78 (1996) 187-191

Syntheses and molecular structures of 2-[1'-N-(alkyl)imino-2',2',2'trifluoroethyl]phenols

Ralph-Matthias Schoth, Enno Lork, Gerd-Volker Röschenthaler *

Institute of Inorganic and Physical Chemistry, University of Bremen, Leobener Straße, D-28334 Bremen, Germany

Received 19 January 1996; accepted 18 February 1996

Abstract

N-(Alkyl) imino derivatives of trifluoroacetyl phenol of the general formula $1,2-C_6H_4[C(=NR)CF_3][OH]$ (R=H, **3a**; Me, **3b**; ⁿPr, **3c**; ⁱPr, **3d**; CH₂CH₂NH₂, **3e**; CH₂CH₂CH₂NH₂, **3f**; CH₂CH₂CH₂CH₂CH₂NH₂, **3g**; CH₂CH₂OH, **3h**; CH₂CH₂NMe₂, **3i**) were synthesized from 2-trifluoroacetyl phenol and the corresponding primary amines RNH₂. The molecular structures of **3b** [monoclinic, $P2_1/n$, a=6.641(3), b=18.044(8), c=7.716(3) Å, $\beta=99.95(4)^\circ$], **3d** [orthorhombic, $P2_12_12_1$, a=7.784(2), b=9.291(2), c=15.942(4) Å] and **3i** [monoclinic, $P2_1/n$, a=8.660(2), b=18.135(2), c=13.300(2) Å, $\beta=99.83(2)^\circ$] were determined. In the solid state, **3b**, **3d** and **3i** exist exclusively as *E* isomers with *inter*molecular hydrogen bridges, whereas according to the *I*H and *19*F NMR spectra in chloroform solution, compounds **3b**, **3c** and **3d** isomerize to give a mixture of 66% Z and 34% *E* isomers.

Keywords: Syntheses; Crystal structures; [N-(Alkyl)imino trifluoroethyl]phenols; NMR spectroscopy; Mass spectrometry

1. Introduction

For the synthesis of 2-trifluoroacetyl phenol (1), a copper(II) complex of the imino derivative, 2-(1'-imino-2',2',2'-trifluoromethyl)phenol [1] is required. Since the reactions of 2-trifluoroacetyl phenol and $\lambda^3 \sigma^3 P$ compounds turned out to yield mono, spiro and tricyclic phosphoranes [2–6], 2-[1'-N-(alkyl)imino-2',2',2'-trifluoromethyl]phenols attracted our attention [7]. In addition, E/Z isomerism and hydrogen-bridging properties were of considerable interest.

2. Results and discussion

Primary amines, RNH₂ 2 (a: R = H; b: R = Me; c: $R = {}^{n}Pr$; d: $R = {}^{i}Pr$; e: $R = CH_2CH_2NH_2$; f: $R = CH_2CH_2CH_2NH_2$; g: $R = CH_2(CH_2)_2CH_2NH_2$; h: $R = CH_2CH_2OH$; i: $R = CH_2CH_2NMe_2$) and 2-trifluoroacetyl phenol (1) in ethanol reacted to furnish the respective imines 3a-i (Scheme 1). The water formed was removed completely together with ethanol by distillation. The new compounds were colourless solids but turned yellow in chloroform in the case of 3b, c and d.

The reaction of ${}^{t}BuNH_{2}$ or $(CF_{3})_{2}CHNH_{2}$ and 1 did not yield the expected products under the conditions applied.

Surprisingly enough, the diamines 2e-g gave the mono-substituted compound only in their *E* configuration. In solution, an inversion to furnish the *Z* isomer was not observed. The condensation of a second molecule of ketone 1 did not take place (Scheme 1). Probably there would be a too close steric interaction of the two neighbouring phenol groups in an *E* isomeric arrangement. The decreased reactivity of the second H₂N moiety due to *inter*molecular interactions with phenolic HO groups could also prevent the disubstitution.

X-Ray investigations revealed that the imines **3b**, **3d** and **3i** prefer an *E* configuration (Figs. 1-3, Scheme 2). Compounds **3b** and **3d** showed long *inter*molecular hydrogen-

^{*} Corresponding author.

^{0022-1139/96/\$15.00 © 1996} Elsevier Science S.A. All rights reserved *PII* S 0022-1139 (96) 03441-0

Fig. 1. (a) Molecular structure of 3b and (b) two molecules with an intermolecular hydrogen bridge.

Fig. 2. (a) Molecular structure of 3d and (b) two molecules with an intermolecular hydrogen bridge.

bridge bonding, -O-H···N(R)=C-, of 198 pm. A much shorter distance, 185.3 pm, was found for the interaction - $O-H\cdots N(Me_2)CH_2-$ in compound 3i. In all three compounds the aromatic ring plane is forced to be almost perpendicular with respect to the imine system. The dihedral angle C(1)-C(2)-C(7)-C(8) was found to be 114.8(0.1)° for **3b**, $97.2(0.3)^{\circ}$ for **3d** and $93.0(0.5)^{\circ}$ for **3i**. The C=N bond distances were averaged to be 126.1 pm with a maximum deviation of 0.8 pm (Table 1).

Fig. 3. (a) Molecular structure of 3i and (b) two molecules with an intermolecular hydrogen bridge.

Table 1 The main geometrical parameters of 3b, 3d and 3i

	3b	3d	3i
	(R - Me)	$(R = {}^{i}Pr)$	$(R = CH_2CH_2NMe_2)$
Bond lengths (Å)			
C(1)-O(1)	135.3(2)	135.5(5)	135.9(4)
C(1) - C(2)	139.9(2)	140.0(6)	140.0(4)
C(2)-C(7)	149.3(2)	151.6(6)	149.7(4)
C(7) - C(8)	152.3(2)	149.6(7)	152.1(4)
C(7) - N(1)	126.9(2)	125.9(6)	125.6(4)
N(1)-C(9)	145.7(2)	146.7(6)	146.2(3)
C(8)-F(1)	133.2(2)	133.9(6)	133.7(4)
C(8) - F(2)	132.5(2)	129.9(6)	131.9(4)
C(8)-F(3)	133.8(2)	133.6(7)	133.4(3)
Bond angles (°)			
C(2)-C(7)-N(1)	128.6(1)	127.3(4)	128.6(2)
C(2)-C(7)-C(8)	115.2(1)	115.6(4)	115.1(2)
C(8)-C(7)-N(1)	116.1(1)	117.0(4)	116.3(2)
C(1)-C(2)-C(3)	119.8(3)	121.0(4)	119.8(1)
C(1)-C(2)-C(7)	118.3(1)	115.9(4)	118.9(2)
C(7)-N(1)-C(9)	118.7(1)	121.8(4)	119.5(2)
Torsion angles (°)			
C(1)-C(2)-C(7)-	114.8(1)	93.0(5)	97.2(3)
C(8)			

Fresh solutions of 3b, 3c and 3d at ambient temperature showed one signal in the ¹⁹F NMR spectrum attributed to the E isomer (Table 2). After a few minutes the solution turned vellow and a second signal appeared at lower field probably due to a conversion into the Z isomer (Scheme 2). After 20 min a constant ratio Z/E = 66:34 was obtained. In the Z isomers, intramolecular hydrogen bridges should be present as in the starting compound 1, which was also yellow and showed a J_{ECCCCH} coupling of 2.2 Hz with a considerable 'through-space' contribution [4]. For this rearrangement, the aromatic ring should be in the same plane (dihedral angle $\sim 0^{\circ}$) as the imine system, so that the 'through-space' coupling contributions for J_{FCCCCH} could be larger. The same argument may apply for the increase in the value of J_{FCCNCH} . The conversion of the *E* isomers of 3e-i was not observed, probably because of steric reasons or strong intermolecular hydrogen bridges $-O-H\cdots N(R_2)CH_2-(R=H, Me)$ or -O- $H \cdots O(H) CH_2 - (\mathbf{3h}).$

3. Experimental details

The appropriate precautions in handling moisture and oxygen-sensitive compounds were observed throughout this

Table 2 ¹H and ¹⁹F NMR data for compounds **3a-i** (*J*-values are given in Hz)

work. Elemental analysis: Mikroanalytische Laboratorium Beller, Göttingen. MS: MAT 8222 spectrometer (EI, electron energy 70 eV). NMR: AC 80, operating at 80.13 MHz (H, internal standard TMS) and 75.39 MHz (19 F, internal standard CCl₃F). Compound 1 was synthesized using a literature procedure [1].

3.1. General method (see Table 3)

Compound 1 was dissolved in 20 ml of ethanol and the appropriate amount of ammonia or amine added. After removing all volatiles in vacuo, the imines were recrystallized from n-hexane.

Compound		¹ H chemic	al shifts ^a (ppm)		¹⁹ F chemical shifts ^a (ppm)
		СН ₃ (³ J _{НН})	CH ₂	C₀H₄	CF_{3} ("J _{HNCCF} ; ⁵ J _{HCCCCF})
$3a (R=H)^{b}$		_	_	6.7–7.6	-73.4
3b $(R = Me)^{c}$	(Z)	3.6	-	6.6-7.6	(2.3, n=4; 1.5) -63.1 (40, n=5; 2.6)
	(E)	3.2	-	6.6–7.6	(4.0, n = 5, 2.0) -75.7 (19, n = 5, 0.8)
$3c (R = {}^{n}Pr)^{c}$	(Z)	1.1^{a}	1.8, 3.9 ^d	6.6–7.6	(1.5, n = 5, -6.5) - 63.0 (3.0 $n = 5$ -)
	(<i>E</i>)	(7.2) 1.1 ^d (7.2)	1.8, 3.9 ^d	6.6–7.6	(3.3, n - 5, -75.1)
$3d (R = {}^{i}Pr) {}^{c, e}$	(Z)	(7.2) 1.1 (5.2)	-	6.5–7.5	(10, n = 3, 0.0) -63.1 (2.3 n=6)
	(<i>E</i>)	1.3	-	6.5–7.5	- 75.9
$3e [R = (CH_a)_a NH_a]^{f}$		-	31	65-75	- 84.0
$3f [R = (CH_2)_3 NH_2]^8$		_	1.2, 2.0, 3.0 ^h	6.8–7.4	- 87.9
$3g[R = (CH_2)_4 NH_2]$		-	1.6, 2.9	6.7-7.6	- 83.5
3h $[R = (CH_2)_2OH]^{+}$		-	3.3 ^j , 4.0 ^j	6.7-7.5	- 85.0
$3i [R = (CH_2)_2 Me_2]^k$		2.2	3.5	6.7–7.4	- 76.2

^a Highfield shifts allocated negative signs (TMS and CCl₃F used as standards).

^b $\delta_{\rm H}$ = 10.3 (OH); 13.8 (NH) ppm; only one set of signals found.

° No resonance for the phenolic OH group found.

^d Signals for *E* and *Z* isomer overlapping.

^e $\delta_{\rm H} = 3.5$ (CH) ppm for E and Z isomer.

- ${}^{f}\delta_{H} = 2.5 \text{ (NH}_{2}\text{)}, 11.4 \text{ (OH) ppm.}$
- ^g $\delta_{\rm H} = 11.4$ (OH) ppm.

^h 4H, CH₂ and NH₂.

ⁱ No signal found for OH.

^j Multiplets, centred at value given.

^k $\delta_{\rm H} = 10.1$ (OH) ppm.

 Table 3

 Experimental details for the preparation of compounds 3a-i

Compound	Reactants	[g (mmol)]	M.p. (°C)	Yield [g (%)]
3a ª	1	3.3 (17.4)	25	2.8 (86)
	NH ₃	0.5 (23.5)		
3b	1	2.5 (13.2)	88	1.9 (73)
	H ₂ NCH ₃	0.4 (15.0)		
3c	1	2.2 (11.5)	125	1.8 (68)
	$H_2N(CH_2)_2CH_3$	0.7 (12)		
3d	1	1.9 (10)	128	2.0 (86)
	$H_2NCH(CH_3)_2$	0.6 (11)		
3e	1	1.9 (10)	85	1.9 (81)
	$H_2N(CH_2)_2NH_2$	0.6 (10)		
3f	1	2.8 (15)	91	2.6 (70)
	$H_2N(CH_2)_3NH_2$	1.0 (15)		
3g	1	1.9 (10)	121	2.4 (90)
	$H_2N(CH_2)_4NH_2$	0.9 (10)		
3h	1	1.9 (10)	87	1.8 (77)
	$H_2N(CH_2)_2OH$	0.6 (10)		
3i	1	3.0 (16)	114	3.8 (91)
	$H_2N(CH_2)_2NMe_2$	1.5 (16)		

^a B.p. 81/12 mmHg, orange solid.

3.2. Crystal structure analysis of **3b**, **3d** and **3i** (see Table 4)

The main crystallographic data are listed in Table 5.

Table 4

Crystal and data reduction parameters for compounds 3b, 3d and 3i

3.3. Analytical data

2-[1'-Imino-2',2',2'-trifluoroethyl]phenol (**3a**): MS (30 °C) m/e (%): 189 (M⁺, 100); 120 (M⁺ - CF₃, 97); 102 (C₇H₄N⁺, 38); 92 (C₇H₈⁺, 25) and other fragments. Analysis: C₈H₆F₃NO (189.14): found C, 50.68; H, 3.30; F, 30.0%. Calc.: C, 50.80; H, 3.20; F, 30.13%.

2-[1'-N-Methylimino-2',2',2'-trifluoroethyl]phenol (**3b**): MS (60 °C) m/e (%): 203 (M⁺, 36); 134 (M⁺ - CF₃, 100); 119 (C₇H₅NO⁺, 10), 77 (C₆H₅⁺, 6); 69 (CF₃⁺, 5); 42 (CH₂=N=CH₂), 20) and other fragments. Analysis: C₉H₈F₃NO (203.23): Found: C, 53.26; H, 4.11; F, 28.2%. Calc.: C, 53.19; H, 3.97; F, 28.04%.

2-[1'-*N*-Propylimino-2',2',2'-trifluoroethyl]phenol (**3c**): MS (80 °C) m/e (%): 231 (M⁺, 61); 202 (M⁺ - C₂H₅, 15); 162, (M⁺ - CF₃, 32); 120 (HOC₆H₄CNH⁺, 100) and other fragments. Analysis: C₁₁H₁₂F₃NO (231.22): Found: C, 57.31; H, 5.34; F, 24.7%. Calc.: C, 57.14; H, 5.23; F, 24.65%. 2-[1'-*N*-Isopropylimino-2',2',2'-trifluoroethyl]-

phenol (**3d**): MS (50 °C) m/e (%): 231 (M⁺, 42); 189 (M⁺ - C₃H₆, 13); 162 (M⁺ - CF₃, 10); 120 (HOC₆H₄CNH⁺, 100); 102 (C₆H₅CN⁺, 8); 42 (C₃H₆⁺, 7) and other fragments. Analysis: C₁₁H₁₂F₃NO (231.22): Found: C, 57.34; H, 5.34; F, 24.7%. Calc.: C, 57.14; H, 5.23; F, 24.65%.

2-[1'-N-(2"-Aminoethyl)imino-2',2',2'-trifluoroethyl]phenol (**3e**): MS (50 °C) *m/e* (%): 232 (M⁺, 62); 203

	3b	3d	3i			
Formula	C ₉ H ₈ F ₃ NO	C ₁₁ H ₁₂ F ₃ NO	C12H15F3N2O			
Formula weight	203.2	231.2	260.3			
Crystal size (mm)	$1.0 \times 0.8 \times 0.7$	$0.3 \times 0.4 \times 0.2$	$0.6 \times 0.5 \times 0.5$			
F(000)	416	480	544			
Crystal system	monoclinic	orthorhombic	monoclinic			
Space group	$P2_1/n$	P2,2,2	$P2_1/n$			
a (Å)	6.641(3)	7.784(2)	8.660(2)			
b (Å)	18.044(8)	9.291(2)	11.135(2)			
c (Å)	7.716(3)	15.942(4)	13.300(2)			
β(°)	99.95(4)	_	99.83(2)			
V (Å ³)	910.6(7)	1153.1(5)	1263.6(3)			
Z	4	4	4			
D_{calc} (g cm ⁻³)	1.482	1.332	1.368			
μ (cm ⁻¹)	1.38	1.18	1.18			
Index ranges	$-8 \le h \le 8$	0≤h≤9	$-5 \le h \le 11$			
	$-14 \le k \le 23$	$0 \le k \le 11$	$-14 \leq k \leq 14$			
	$-10 \le l \le 9$	$0 \le 1 \le 18$	$-17 \le 1 \le 17$			
Temperature (K)	153	153	153			
θ_{max} (°) for data	55	50	55			
Reflections collected	4774	1246	3284			
Independent reflections	2099 ($R_{\rm int} = 1.77\%$)	$1203 (R_{int} = 0.89\%)$	$2890 (R_{int} = 1.98\%)$			
Observed reflections	1918 [F>4.0 σ (F)]	958 [F>4.0 σ (F)]	$1503 [F > 4.0\sigma(F)]$			
Diffractometer used	Siemens P4 m/V					
Radiation	Mo K α ($\lambda = 0.710$ 73 Å)					
Monochromator	Highly oriented graphite crystal	Highly oriented graphite crystal				
Background measurement	Stationary crystal and stationary cou	Stationary crystal and stationary counter at beginning and end of scan, each for 25% total scan time				
Standard reflections	3 measured every 197 reflections	3 measured every 197 reflections				
Hydrogen atoms	Riding model, fixed isotopic U					

Table 5 Coordinates (×10⁴) for non-hydrogen atoms and their equivalent isotopic temperature factors B_{eq} (Å²×10⁻¹)

Compound	Atom	<i>x</i>	у	z	$B_{\rm eq}$ (Å ²)
3b	C(1)	2381(2)	3306(1)	6516(2)	20(1)
	C(2)	1696(2)	3876(1)	5329(2)	18(1)
	C(3)	2481(2)	4590(1)	5637(2)	22(1)
	C(4)	3916(2)	4742(1)	7131(2)	26(1)
	C(5)	4585(2)	4176(1)	8298(2)	27(1)
	C(6)	3848(2)	3462(1)	8004(2)	24(1)
	C(7)	203(2)	3688(1)	3712(2)	19(1)
	C(8)	991(2)	3787(1)	1986(2)	27(1)
	C(9)	-2513(2)	3360(1)	5169(2)	27(1)
	O(1)	1589(2)	2622(1)	6140(1)	28(1)
	N(1)	-1595(2)	3432(1)	3593(1)	21(1)
	F(1)	2840(1)	3487(1)	2074(1)	45(1)
	F(2)	-212(2)	3486(1)	619(1)	45(1)
	F(3)	1193(2)	4506(1)	1627(1)	48(1)
3d	C(1)	-919(6)	3404(5)	3324(3)	30(1)
	C(2)	-1620(6)	4419(5)	3876(3)	30(1)
	C(3)	-2654(7)	4003(5)	4529(3)	41(2)
	C(4)	-3031(7)	2537(5)	4632(3)	43(2)
	C(5)	-2322(6)	1549(5)	4103(3)	37(2)
	C(6)	-1300(6)	1964(5)	3445(3)	33(2)
	C(7)	-1145(6)	5975(5)	3708(3)	32(1)
	C(8)	384(8)	6526(6)	4177(3)	48(2)
	C(9)	-3446(6)	6434(5)	2764(3)	39(1)
	C(10)	-3101(7)	6207(7)	1845(3)	62(2)
	C(11)	-4709(9)	7622(9)	2908(4)	95(3)
	0(1)	59(5)	3938(3)	2694(2)	39(1)
	N(1)	-1863(5)	6831(4)	3206(2)	32(1)
	F(1)	83(6)	6489(5)	5004(2)	98(2)
	F(2)	871(5)	7823(3)	3988(2)	89(2)
	F(3)	1754(4)	5675(4)	4082(3)	85(1)
3i	C(1)	1072(3)	3476(3)	2966(2)	27(1)
	C(2)	1600(3)	2297(2)	2886(2)	24(1)
	C(3)	1538(3)	1487(3)	3672(2)	31(1)
	C(4)	929(3)	1837(3)	4521(2)	37(1)
	C(5)	390(3)	3000(3)	4592(2)	38(1)
	C(6)	476(3)	3816(3)	3825(2)	33(1)
	C(7)	2228(3)	1937(2)	1949(2)	24(1)
	C(8)	1063(3)	1303(3)	1137(2)	31(1)
	C(9)	4763(3)	2700(3)	2493(2)	32(1)
	C(10)	6288(3)	2014(3)	2638(2)	31(1)
	C(11)	6194(4)	979(3)	4233(2)	41(1)
	C(12)	7493(3)	76(3)	2976(3)	39(1)
	0(1)	1166(3)	4243(2)	2184(2)	36(1)
	N(1)	3584(3)	2084(2)	1754(2)	28(1)
	N(2)	6182(3)	845(2)	3133(2)	28(1)
	F(1)	573(2)	271(2)	1488(1)	52(1)
	F(2)	1629(2)	1049(2)	302(1)	53(1)
	F(3)	-216(2)	1973(2)	858(1)	49(1)

 $(M^+ - H_2C=NH_2, 32);$ 163 $(M^+ - CF_3, 100);$ 134 [HOC₆H₄CN(CH₃)⁺, 68]; 120 (HOC₆H₄CNH⁺, 20); 44 (H₂C=NH - CH₃⁺, 48); 30 (H₂C=NH₂⁺, 60) and other frag-

ments. Analysis: $C_{10}H_{11}F_3N_2O$ (232.20): Found C, 51.78; H, 4.77; F, 24.70%. Calc.: C, 51.73; H, 4.77; F, 24.54%.

2-[1'-*N*-(3"-Aminopropyl)imino-2',2',2'-trifluoroethyl]phenol (**3f**): MS (50 °C) m/e (%): 246 (M⁺, 58); 216 (M⁺ - H₂C=NH₂, 32); 177 (M⁺ - CF₃, 100); 134 [HOC₆H₄CN(CH₃), 40]; 120 (HOC₆H₄CNH⁺, 42); 30 (H₂C=NH₂, 48) and other fragments. Analysis: C₁₁H₁₃F₃N₂O (246.23): Found: C, 53.79; H, 5.25; F, 23.0%. Calc.: C, 53.66; H, 5.32; F, 24.15%.

2-[1'-*N*-(3"-Aminobutyl)imino-2',2',2'-trifluoroethyl]phenol (**3g**); MS (80 °C) m/e (%): 260 (M⁺, 30); 191 (M⁺ - CF₃, 20); 120 (HOC₆H₄CNH⁺, 20); 70 (C₄H₈N⁺, 70); 43 (C₂H₅N⁺, 38); 30 (CH₄N⁺, 100) and other fragments. Analysis: C₁₂H₁₅F₃N₂O (260.26): Found: C, 55.43; H, 5.81; F, 22.00%. Calc.: C, 55.38; H, 5.81; F, 21.90%.

2-[1'-N-(Ethyl-2"-ol)imino-2',2',2'-trifluoroethyl]phenol (**3h**): MS (50 °C) m/e (%): 233 (M⁺, 70); 202 (M⁺-CH₂OH, 30); 164 (M⁺-CF₃, 100); 121 (HOC₆H₄N=CH₂, 70); 44 (H₂C=CHOH⁺, 60) and other fragments. Analysis: C₁₀H₁₀F₃NO₂ (233.12): Found C, 51.15; H, 4.32; F, 24.5%. Calc.: C, 51.51; H, 4.32; F, 24.44%. 2-[1'-N-(2"-Dimethylamino)ethyl)imino-2',2',2'-tri-

fluoroethyl]phenol (**3i**): MS (60 °C) m/e (%): 260 (M⁺, 95); 120 (HOC₆H₄CNH⁺, 42); 102 [M⁺ - H₂N=N(CH₃)₂, 25]; 77 (C₆H₅⁺, 30); 71 [H₃CCH=N(CH₃)₂, 68]; 58 [H₂N=N(CH₃)₂, 100]; 42 (H₂C=N=CH₂, 98); 30 (H₂C=NH₂, 90) and other fragments. Analysis: C₁₂H₁₅F₃N₂O (260.26): Found C, 55.30; H, 5.86; F, 21.80%. Calc.: C, 55.38; H, 5.81; F, 21.90%.

Acknowledgements

We are grateful for financial support by Fonds der Chemischen Industrie.

References

- [1] S. Matsumoto, H. Kobayashi and K. Ueno, Bull. Chem. Soc. Jpn., 42 (1969) 960.
- [2] R.D. Hund and G.-V. Röschenthaler, Phosphorus, Sulfur, Silicon, 62 (1991) 65.
- [3] R.D. Hund and G.-V. Röschenthaler, *Phosphorus, Sulfur, Silicon*, 66 (1992) 301.
- [4] R.D. Hund, U. Behrens and G.V. Röschenthaler, *Phosphorus, Sulfur, Silicon*, 69 (1992) 119.
- [5] R.D. Hund and G.-V. Röschenthaler, *Phosphorus, Sulfur, Silicon*, 73 (1992) 99.
- [6] F.U. Seifert and G.-V. Röschenthaler, Z. Naturforsch., Teilb, 48 (1993) 169.
- [7] R.-M. Schoth and G.-V. Röschenthaler, Phosphorus, Sulfur, Silicon, 103 (1995) 235.