

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 3652-3656

Biaryl cannabinoid mimetics—Synthesis and structure–activity relationship

Karin Worm,^{a,*} Q. Jean Zhou,^a Gabriel J. Stabley,^b Robert N. DeHaven^b and Roland E. Dolle^a

^aDepartment of Chemistry, Adolor Corporation, 700 Pennsylvania Drive, Exton, PA, USA ^bDepartment of Pharmacology, Adolor Corporation, 700 Pennsylvania Drive, Exton, PA, USA

> Received 2 March 2007; revised 10 April 2007; accepted 16 April 2007 Available online 25 April 2007

Abstract—Synthesis, in vitro biological evaluation, and structure–activity relationships of a biaryl cannabinoid mimetic 2 are reported. Variations in the substitution pattern yielded a number of agonists with low nanomolar affinity. Replacing the phenol group by a methyl morpholino acetate group led to compound 28, a 500-fold selective CB_2 receptor agonist. © 2007 Elsevier Ltd. All rights reserved.

 Δ^9 -Tetrahydrocannabinol (THC, 1) and other classical cannabinoids display a wide range of physiological effects including analgesic, anti-inflammatory, anticonvulsive, and immunosuppressive activities.¹ Two cannabinoid receptors have been cloned. The CB₁ receptor is mainly expressed in the CNS and the CB₂ receptor is localized mainly in peripheral tissues.² A number of SAR studies have explored the lipophilic side chain through variations in length, branching, spatial orientation or introduction of heteroatoms.³ It has been shown that introducing a 1',1'-dimethylheptyl- or 1',1'-cyclopropylheptyl chain leads to enhanced affinity for both cannabinoid receptors.⁴ Also it has been found that the tricyclic moiety in 1 is not essential for high cannabinoid receptor affinity as demonstrated by the biaryl phenol 2, a cannabinoid mimetic originally described by researchers at Merck Frosst.⁵

To fully evaluate the potential of this underexplored but synthetically more accessible non-classical cannabinoid lead structure, we investigated modifications to the side-chain R^1 (3), top aryl group R^2 (4), and phenol replacements R^3 (5).

Previously **2** was synthesized in nine steps starting from 1,3-dimethoxy-5-(2-methyloctan-2-yl)benzene. This synthesis included a low yielding monophosphonation step (16%) resulting in a 4% yield overall.⁵ Scheme 1 illustrates our shortened synthesis resulting in a 42% yield over six steps by adapting a procedure recently described by Papahatjis^{4b} starting from commercially available (3-benzyloxyphenyl)acetonitrile **6**. After dial-kylation with methylbromide gas in 50% aq NaOH, the nitrile intermediate was converted to aldehyde **7** with DIBAL-H. Wittig reaction with pentyltriphenyl-phosphonium bromide and NaH in DMSO and subsequent hydrogenation, followed by bromination, led to advanced intermediate **8** in good overall yield. The final step consisted of a Suzuki reaction with 3,5-

Keywords: Cannabinoid CB₁ receptors; Cannabinoid CB₂ receptors; Structure–activity relationships.

^{*} Corresponding author. Tel.: +1 484 595 1944; fax: +1 484 595 1551; e-mail: kworm@adolor.com

Scheme 1. Reagents and condition: (a) 50% aq NaOH, CH₃Br; (b) DIBAL-H, aq H₂SO₄; (c) NaH, DMSO, PPh₃C₅H₁₁Br; (d) H₂, 10% Pd/C; (e) Br₂, CCl₄; (f) 3,5-dimethylphenylboronic acid 9, Pd(PPh₃)₄ cat., Cs₂CO₃, DMF, 90 °C.

dimethylphenylboronic acid 9, tetrakis-triphenylphosphine palladium, and cesium carbonate in DMF.

Scheme 2 describes utilizing this shortened approach to substitute the 1',1'-dimethyl group in 2 with carbocycles of various ring sizes 10 to probe the steric limits of this system. Using the same starting material 6, alkylations and ring closures were accomplished using 1,2-dichloroethane, 1,4-dibromobutane, and 1,5-dibromopentane, respectively, followed by the chemistry described for the synthesis of $2.^{6}$ Scheme 3 outlines the synthesis of analogs 3 with modifications of the hydrocarbon tail by varying length and substitution pattern which were investigated next. Three different ester core structures 12a-c were prepared and converted to alcohols 14, acids 15, and amides 16. The solid phase synthesis approach shown in Scheme 4 and the commercial availability of a diverse set of aryl boronic acids allowed access to a large number of analogs 4. Coupling of 8 to solid support followed by Suzuki coupling and cleavage from resin vielded aryl- and heteroaryl-substituted analogs 19.7

The phenol group in 2 seemed to be essential for the cannabinoid binding affinity of this biaryl system, since replacing it with hydrogen led to a striking loss of bind-

Scheme 2. Reagents and condition: (a) LHMDS, HMPA, 1,2-dichloroethane, 1,4-dibromobutane, 1,5-dibromopentane; (b) DIBAL-H, aq H_2SO_4 ; (c) NaH, DMSO, PPh₃C₅H₁₁Br; (d) H₂, 10% Pd/C; (e) Br₂, CC1₄; (f) 3,5-dimethylphenyl boronic acid, Pd(PPh₃)₄ cat., Cs₂CO₃, DMF, 90 °C.

Scheme 3. Reagents and conditions: (a) MeI, DCM; (b) TBAF, THF; (c) Br₂, CC1₄; (d) NaH, DMSO, trimethyl phosphonoacetate or 4-(dimethoxyphosphoryl)but-2-enoic acid methyl ester; (e) H₂, 10% Pd/C; (f) Br₂, CC1₄; (g) 3,5-dimethyl-phenylboronic acid, Pd(PPh₃)₄ cat., Cs₂CO₃, DMF, 90 °C; (h) NaBH₄; (i) LiOH; (j) CH₃NH₂, TBTU, DIEA, acetonitrile, 25 °C.

Scheme 4. Reagents and conditions: (a) Compound 8, K_2CO_3 , DMF, 80 °C; (b) boronic acids, Pd(PPh₃)₄ cat., Cs₂CO₃, DMF, 90 °C; (c) TFA/DCM (1:1).

ing.⁵ In order to further evaluate the effectiveness of the phenol functionality as a H-bond donor, it was replaced with a wide range of substituents displaying various

Scheme 5. Reagents and conditions: (a) $(Tf)_2O/pyridine$, DCM; (b) Ph₂CNH, Pd₂(dba)₃/dppf, NaO'Bu, toluene, 80 °C, 16 h; (c) H₂NOH-HC1, KOAc, MeOH, 25 °C, 1.5 h; (d) CO/Pd(OAc)₂/dppf, TEA, MeOH/DMSO; (e) PdCl₂(PPh₃)₂, HMDS, DMF, CO, 95 °C, 16 h; (f) 2 N aq H₂SO₄; (g) LiOH/H₂O/MeOH, rt; (h) LAH/THF, 0–25 °C; (i) TBTU, DIEA, (CH₃)2CHNH₂, 0–25 °C; (j) 2-bromoacetyl chloride, DCM; (k) morpholine.

Table 1. Side chain and top modifications^{a,b}

H-bond strengths, H-bond orientations/conformations, and charge distributions. The synthesis is summarized in Scheme 5. The phenol replacement analogs 5 were prepared from 2 through the trifluoromethanesulfonate intermediate 20. Cross-coupling with benzophenone imine catalyzed by $Pd_2(dba)_3/dppf$ with NaO^tBu as base followed by hydrolysis gave the aniline 21. Pd-catalyzed CO insertion with hexamethyldisilazane yielded analog 23, which was then reduced by LiAlH₄ to generate compound 26. A similar CO insertion catalyzed by Pd(OAc)₂ in MeOH/DMSO gave the methyl ester analog 22, which was in turn reduced to a benzylic alcohol 25. Analog 22 was also hydrolyzed to a carboxylic acid 24, which was then coupled with isopropyl amine with assistance of TBTU to give amide 27. Esterification of 25 with 2-bromoacetyl chloride followed by amination with morpholine generated not only the desired product 28, but also a side product 29.8

All the compounds⁹ were evaluated in CB₁ and CB₂ binding studies.^{10a} Active compounds were tested in [³⁵S]GTP γ S binding and behaved as full agonists relative to the maximal effect of WIN55212-2.^{10b} The results of the in vitro binding assays for side-chain analogs **3** and aryl modifications **4** are presented in Table 1. Connecting the two methyl groups into a cyclopropyl ring leads to some loss of activity, in contrast to what was

				3	4				
Compound	\mathbf{R}^1	K _i CB ₁ (nM)	K _i CB ₂ (nM)	Ratio CB ₁ /CB ₂	Compound	\mathbf{R}^2	K _i CB ₁ (nM)	K _i CB ₂ (nM)	Ratio CB ₁ /CB ₂
2	X ^{C₆H₁₃}	2.7	2.3	1	18a	2,6-Dimethylphenyl	1.7	18	0.1
10a	∑ ^{C₆H₁₃}	13	55	0.2	18b	2,5-Dimethylphenyl	4.6	6.6	0.7
10b	C ₆ H ₁₃	2.9	5.5	0.5	18c	2,3-Dimethylphenyl	49	20	2
10c	C ₆ H ₁₃	1.8	1.7	1	18d	3,4-Dimethylphenyl	600	830	0.7
13a	$X^{CO_2CH_3}$	160	16	10	18e	2-Methoxyphenyl	1.7	1.0	2
13b	$\times^{(CH_2)_2CO_2CH_3}$	120	5.6	20	18f	2,3-Dimethoxyphenyl	34	7.8	4
13c	$\times^{(CH_2)_4CO_2CH_3}$	24	14	2	18g	3-Methoxyphenyl	91	580	0.2
15a	Хсоон	>1000	>1000	n.d.	18h	3,4-Dimethoxyphenyl	1400	1700	0.8

 \mathbf{R}^2

Table 1 (continued)

Compound	\mathbf{R}^1	K _i CB ₁ (nM)	K _i CB ₂ (nM)	Ratio CB ₁ /CB ₂	Compound	\mathbf{R}^2	K _i CB ₁ (nM)	K _i CB ₂ (nM)	Ratio CB ₁ /CB ₂
15b	∕ ^{(CH₂)₄CO₂OH}	>1000	>1000	n.d.	18i	2-Aminophenyl	5.2	17	0.3
14a	X ^{CH₂OH}	2200	600	4	18j	3-Aminophenyl	15	44	0.3
14b	(CH₂)₃OH	1100	56	20	18k	4-Aminophenyl	320	1000	0.3
14c	∕(CH ₂₎₅ OH	39	3.6	10	181	3-Cyanophenyl	27	45	0.6
16a	X	>1000	>1000	n.d.	18m	4-Cyanophenyl	>1000	>1000	n.d.
16b	\times (CH ₂) ₂ CONHCH ₃	840	140	6	18n	Phenyl-3-carboxylic acid	>1000	>1000	n.d.
16c	\times (CH ₂) ₄ CONHCH ₃	96	39	2	180	3-Pyridyl	23	20	1

^a Values are geometric means computed from at least three separate determinations.

^b For assay description, see Ref. 10.

observed for THC analogs.^{4b} Increasing the ring size restores affinity and substitutions up to a six-membered ring in 3 are well accepted, indicating some tolerance for steric bulk in the C1'-subsite. In general, longer side chains give better binding, as seen in THC analogs. Introduction of a carboxylic acid group results in loss of affinity for both receptors ($K_i > 1000$ nM). The CB₂ receptor seems more tolerant toward polar groups in \mathbf{R}^{1} , accepting alcohol, ester, and amide functionalities. Ester 13b and alcohol 14b exhibit a 20-fold selectivity for the CB₂ receptor. In compound 4 activity is retained relative to compound 2 when the top aryl ring is substituted in the 2 and/or 3 positions, with the 2-position being preferred. Substitution in the 4-position reduces receptor affinities by about two orders of magnitude compared to substitution in the 2-position and again the introduction of a carboxylic acid group leads to a loss of affinity at both receptors. Aryl analogs 4 did not show significant selectivity for either receptor with the exception of 18a with a modest 10-fold selectivity for the CB₁ receptor.

The results for analogs **5** are summarized in Table 2. Replacing the phenol group in **2** leads generally to a significant loss of potency at both receptors with the methoxy and amino compounds **30** and **21** retaining some binding affinity to CB₂. Introducing a methyl morpholino acetate considerably enhances the CB₂ binding affinity of the benzylic alcohol precursor **25** leading to the discovery of **28** with a selectivity for the CB₂ receptor of 500-fold.

Overall the side-chain SAR was comparable to that reported for THC analogs.^{3,4} This general observation does not extend to the introduction of a cyclopropyl

 Table 2. Phenol replacements^{a,b}

Compound	\mathbf{R}^3	K _i CB ₁ (nM)	K _i CB ₂ (nM)	Ratio CB ₁ /CB ₂
22	–OH	2.7	2.3	1
30 ¹¹	-OCH ₃	320	34	9
31 ⁵	H	>30000	2138	>10
21	$-NH_2$	80	51	2
22	-COOCH ₃	230	110	2
23	-CONH ₂	370	320	1
24	-COOH	>1000	>1000	n.d.
25	-CH ₂ OH	360	480	0.8
26	$-CH_2NH_2$	1500	380	4
27	°⊥_N⊥ H ∽-	>1000	>1000	n.d.
28		370	0.81	500
29		3900	660	6

^a Values are geometric means computed from at least three separate determinations.

ring, which leads to an increase in affinity for THC analogs^{4b} but to a loss of affinity in the biaryl system (10a). The high selectivity for the CB₂ receptor observed in 28

^b For assay description, see Ref. 10.

was not paralleled in the tricyclic system, suggesting a divergence in the SAR and promising areas for future exploration. In summary, these synthetically more accessible biaryl cannabinoid mimetics may represent a valid starting point for the development of more selective ligands. The results of a combinatorial approach examining substitutions in the R^1 , R^2 , and R^3 positions conducted in our laboratories will be reported subsequently.

References and notes

- (a) Farquhar-Smith, W. P. Pain Rev. 2002, 9, 41; (b) Klein, T. W. Nature Rev. Immun. 2005, 5, 400; (c) Walter, L.; Stella, N. Brit. J. Pharmacol. 2004, 141, 775; (d) Smith, P. F. Curr. Opin. Investig. Drugs 2005, 6, 680.
- (a) Howlett, A. C.; Breivogel, C. S.; Childers, S. R.; Deadwyler, S. A.; Hampson, R. A.; Porrino, L. J. *Pharmacol. Rev.* 2002, *54*, 161; (b) Pertwee, R. G. *Prog. Neurobiol.* 2001, *63*, 569.
- (a) Martin, B. R.; Jefferson, R.; Winckler, R.; Wiley, J. L.; Huffman, J. W.; Crocker, P. J.; Saha, B.; Razdan, R. K. J. Pharmacol. Exp. Ther. 1999, 290, 1065; (b) Khanolkar, A. D.; Lu, D.; Fan, P.; Tian, X.; Makriyannis, A. Bioorg. Med. Chem. Lett. 1999, 9, 2119; (c) Papahatjis, D. P.; Kourouli, T.; Abadji, V.; Goutopoulos, A.; Makriyannis, A. J. Med. Chem. 1998, 41, 1195; (d) Singer, M.; Ryan, W. J.; Saha, B.; Martin, B. R.; Razdan, R. K. J. Med. Chem. 1998, 41, 4400.
- (a) Pertwee, R. P. Curr. Med. Chem. 1999, 6, 635; (b) Papahatjis, D. P.; Nikas, S. P.; Andreou, T.; Makriyannis, A. Bioorg. Med. Chem. Lett. 2002, 12, 3583.
- Gareau, Y.; Dufresne, C.; Gallant, M.; Rochette, C.; Sawyer, N.; Slipetz, D. M.; Tremblay, N.; Weech, P. K.; Metters, K. M.; Labelle, M. *Bioorg. Med. Chem. Lett.* 1996, 6, 189.
- Worm, K.; Zhou, Q. J.; Seida, P.; Dolle, R. E.; Stabley, G.; DeHaven, R. N. *Abstracts of Papers*, 226th National Meeting of the American Chemical Society, New York, NY; American Chemical Society: Washington, DC, 2003; MEDI 312.
- Worm, K.; Zhou, Q. J.; Dolle, R. E.; Stabley, G.; DeHaven, R. N. *Abstracts of Papers*, 228th National Meeting of the American Chemical Society, Philadelphia, PA; American Chemical Society: Washington, DC, 2004; MEDI 65.
- 8. Zhou, Q. J.; Worm, K.; Dolle, R. E.; Stabley, G.; DeHaven, R. N. Abstracts of Papers, 230th National

Meeting of the American Chemical Society, Washington, DC; American Chemical Society: Washington, DC, 2005; MEDI 88.

- 9. New compounds were fully characterized by ¹H NMR and LC/MS.
- 10. Binding assays were performed by modification of the method of (a) Pinto, J. C.; Potie, F.; Rice, K. C.; Boring, D.; Johnson, M. R.; Evans, D. M.; Wilken, G. H.; Cantrell, C. H.; Howlett, A. Mol. Pharmacol. 1994, 46, 516, Receptor binding assays were performed by incubating 0.2-0.6 nM [³H]CP55940 with membranes prepared from cells expressing cloned human CB1 or CB₂ receptors in buffer consisting of 50 mM Tris-HCl, pH 7.0, 5.0 mM MgCl₂, 1.0 mM ethylene glycol-bis(2aminoethylether)-N, N, N', N'-tetraacetic acid (EGTA), and 1.0 mg/ml fatty acid-free bovine serum albumin. After incubation for 60 min at room temperature for CB_2 binding or 120 min at 30 °C for CB_1 binding, the assay mixtures were filtered through GF/C filters that had been pre-soaked overnight in 0.5% (w/v) poly(ethyleneimine) and 0.1% BSA in water. The filters were rinsed six times with 1 ml each of cold assay buffer, 30 µl of MicroScint 20 (Perkin-Elmer) was added to each filter, and the radioactivity on the filters was determined by scintillation spectroscopy in a TopCount (Perkin-Elmer). Nonspecific binding was determined in the presence of $10 \,\mu\text{M}$ WIN55212-2.; The [³⁵S]GTP γ S binding method is a major modification of the method by (b) Selley, D. E.; Stark, S.; Sim, L. J.; Childers, S. R. Life Sci. 1996, 59, 659, CB2-mediated stimulation of [³⁵S]GTP_yS binding was measured in a mixture containing 100–150 pM [15 S]GTP γ S, 150 mM NaCl, 45 mM MgCl₂, 3 μ M GDP, 0.4 mM dithiothreitol, 1.0 mM EGTA, 1.0 mg/ml fatty acid-free bovine serum albumin, 25 µg of membrane protein, and agonist in a total volume of 250 µl of 50 mM Tris-HCl buffer, pH 7.0, in 96-well Basic FlashPlates (Perkin-Elmer). After incubation at room temperature for 6 h, the plates were centrifuged at 800g at 4 °C for 5 min and the radioactivity bound to the membranes was determined by scintillation spectrometry using a TopCount (Perkin-Elmer). The extent of stimulation over basal $[^{35}S]GTP\gamma S$ binding was calculated as a percentage of the stimulation by 10 μM WIN55212-2. Basal [^35S]GTP\gammaS binding was determined in the absence of agonist. Generally, the stimulation by 10 µM WIN55212-2 was between 50% and 100% over basal binding. Full agonists stimulate binding to the same maximal extent as WIN55212-2.
- 11. Zhou, Q. J.; Worm, K.; Dolle, R. E. J. Org. Chem. 2004, 69, 5147.