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Abstract: The synthesis of an advanced A-ring subunit of taxol has been performed from D-glucose. 

Ever since its isolation some twenty-five years ago, taxol 1 has attracted tremendous attention due to both 

its potent antitumour activity and its architecturally complex structure. A great variety of approaches towards the 

taxane diterpenes has been reported during the past years 1. However, the total synthesis of taxol itself had 

remained an unattained goal until its recent independent completion by two research groups2, 3. In this and the 

lbllowing papers we wish to disclose preliminary results in our quest for the total synthesis of taxol. 

We were planning to design our synthetic scheme in a step-efficient divergentio-convergent mode taking 

advantage of a A + C---)ABC approach which reveals hidden symmetry of the taxol molecule (Scheme 1). As a 

result of our retrosynthetic analysis, the A-(2) and C-ring (3) subunits have been selected as targets. 

Appropriately protected regiomeric allylic alcohol functions present therein can be generated from the very similar 

o~-hydroxyketones 4 and 5 which might be available via tandem conjugate addition - t~-functionalization to 

cyclohexenone(s) 6. 

With respect to the A-ring subunit 2, the solution is quite clear since both the resident and the entering 

groups are methyls. The corresponding 3-substituted cyclohexenone 6 (X=H) is available in a two-step sequence 

fi'om hydroxycyclohexanone 7, the product of a Ferrier rearrangement of A5-enopyranoside 8 4. The synthesis of 

the latter from D-glucose is based on well-documented schemes. As far as the synthesis of the C-ring is 

concerned, the situation is more complex. Whether the resident group in the starting substrate should be methyl 

also depends on the stereochemical outcome of the conjugate addition step. Although the factors controlling the 

stereochemistry of such an addition have been under investigation during the last thirty years 5, the predictions of 

the resulting configuration appear unreliable for complex substrates, particularly for the addition of a vinyl 

group 6 which we considered to be the most attractive precursor for the carboxyl function of the C-ring subunit 3. 

In a favourable case, both A- and C-rings become available from the common enone 6 (X=H), otherwise the 

most promising precursor for the C-ring seems to be the protected 3-hydroxymethylcyclohexenone 6 (X=OR) 

accessible from the same hydroxycyclohexanone 7. Our strategy, being relatively flexible, permits the creation of 

the correct configuration of the quaternary cen~e anyhow. 
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Scheme i 

Reduction of manno-epoxide 107 with LiAIH4 followed by protection of the resulting alcohol as TBS 

ether at'forded 11 which was subjected to reductive p-methoxybenzylidene acetal ring cleavage. Among several 

reagents u'ied, the SnC14 - Et3SiH system gave the best result with the formation of only one regiomer 12 in high 

yield. The product obtained was converted to AS-enopyranoside 8 via elimination from the derived iodide 13 and 

then subjected to catalytic Ferrier rearrangement 8 to give the hydroxycyclohexanone 7 as an almost pure isomer at 

the carbinol centre 9. Methyl Grignard addition to 7 followed by oxidation of the secondary hydroxyl group in the 

intermediate 14 and elimination of the tertiary alcohol via the derived mesylate or trifluoroacetate gave the oqff- 

unsaturated ketone 15. Conjugate addition of lithium dimethylcuprate to enone 15 in the presence of TMSC1 

afforded silyl enol ether 16 which underwent electrophilic addition of phenylsulphenyl chloride 10 to give the 

kinetic phenylthio ketone 17 possessing its cyclohexane ring in a (distorted) conformation bearing the 13- 

silyloxy group (Taxol numbering) equatorial 11. According to our strategy, the hydroxy group at C-13 of axial 
orientation is of crucial importance at the A- and C-ring connection step. Under mild basic conditions the ketone 

17 underwent fast isomerization at C-11, without affecting the C-13 configuration, to give a readily separable 

mixture of 17 and its isomer 18 (17 : 18 = 4 : 6 at equilibrium). Both were subjected to Peterson 

methylenationl2 affording respectively 19 and 20. The product 20, preserving the conformation of the 

cyclohexane ring of the starting ketone 18, has its phenylthio group a-oriented, as evidenced by NOESY 

(Figure, Scheme 2) and t3C NMR spectroscopy. On the contrary, olefination of 17 was accompanied by a 

conformational change as the C-13 silyloxy group of 19 has mainly the axial orientation. The cyclohexane ring 

conformation in 19 appears rather flexible as judged by strong signal broadenings in both its 1H and 13C NMR 
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Scheme 2 

spectrum. The product 1913 represents the suitably protected A-ring subunit towards the stereoselective 

synthesis of taxol. 
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