

View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: M. LI, P. Li, K. Chang, T. Wang, L. Liu, Q. Kang, S. Ouyang and J. Ye, *Chem. Commun.*, 2015, DOI:

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Journal Name

RSCPublishing

Published on 27 March 2015. Downloaded by University of Oklahoma on 28/03/2015 07:10:04

Highly efficient and stable photocatalytic reduction of CO₂ to CH₄ over Ru loaded NaTaO₃

Mu Li,^{*ab*} Peng Li,^{**b*} Kun Chang,^{*b*} Tao Wang,^{*b*} Lequan Liu,^{*c*} Qing Kang,^{*b*} Shuxin Ouyang^{*c*} and Jinhua Ye^{**abc*}

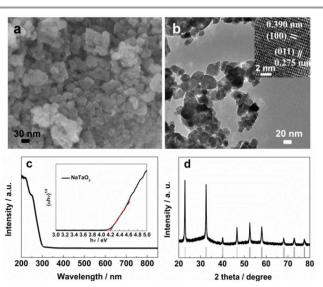
Received ooth January 2012, Accepted ooth January 2012

Cite this: DOI: 10.1039/xoxxooooox

DOI: 10.1039/x0xx00000x

www.rsc.org/

An efficient and stable photocatalytic activity was obtained over NaTaO₃ by introducing electron donor (H₂) into the CO₂ reduction process with water. Ru/NaTaO₃ demonstrated the best activity (CH₄ 51.8 μ mol h⁻¹ g⁻¹) and product selectivity in converting CO₂ to CH₄.


Ever since the profound Honda-Fujishima effect has been discovered by the early 1970s, semiconductor photocatalysis has received much attention as a potential solution to the worldwide energy shortage due to its promising ability in directly converting solar energy into chemical fuels.^{1,2} In particular, photoreduction of CO₂ appears to be a highly fascinating process in lessening the requirement of fossil fuels and climate accommodation by atmospheric CO₂ balance. Generally, CO₂ reduction is a chain reaction with the product varying from CO (2e) to CH_4 (8e). Although the reduction potential of CH_4/CO_2 is about -0.24 V (vs. NHE at pH=7) which seems to be an attainable level to many semiconductors, CO₂ reduction has to go through a tough uphill process and its intermediates' redox potentials are much more negative ($E^{\theta}CO_2/CO = -0.61$ V vs. NHE at pH=7).³ Thus, to date, only a limited number of materials, such as $ZnGa_2O_4$, Zn_2GeO_4 , Zn_2G $NaNbO_{31}^{8-10} TiO_{21}^{11-13}$ etc., have exhibited photocatalytic activities in CO₂ reduction with various reducing outcomes. In the point view of products, CH₄ is more preferable when considering the high importance as a potential solar fuel.¹⁴ But consequently, it enforces that the semiconductors must possess a negative enough conduction band (CB) to provide enough energy of the photogenerated electrons to overcome the activation barrier and fulfill the 8e⁻ reaction during the CO₂ reduction process.¹¹ NaTaO₃, which is one of the best pure water splitting photocatalysts reported by Kudo et al., 15-17, possesses a significantly negative CB and analogous band gap to the abovementioned semiconductors, likewise, should also bear a gigantic potential in CO₂ reduction, although there are few reports about it.

In previous researches, water was generally employed in reducing CO_2 as an active hydrogen source. However, although it is believed that CO_2 could react with H_2O to simultaneously produce CH_4 and O_2

through two respective half reactions with photogenerated electrons and holes in an ideal process,⁵ O₂ could hardly be detected over most of the oxide semiconductors. It is usually accompanied by a decay of reactivity of CO₂ reduction reaction, since some peroxide intermediates could form and accumulate at the oxide semiconductor surface during the oxygen photoevolution reaction from water.18 These peroxides would hinder the holes to oxidize the water and increase the recombination of the photogenerated electrons and holes, and consequently suppress the release of O2. The unstable production rate has significantly limited the development and the practical application of CO₂ photoreduction. On the other hand, in the point view of reduction reaction, metal cocatalysts are commonly considered effective and broadly used in facilitating photocatalytic activities of semiconductors by (i) promoting the charge separation, (ii) improving the photostability, and (iii) lowering the activation energy of the catalytic reaction.^{19,20} A recently attempt by Kang et al showed that the photocatalytic activity and stability can be significantly enhanced by replacing water with N_2H_4 · H_2O as electron donor.²¹ H₂ gas has also been confirmed that it can effectively facilitate the CO₂ reaction with water.²²⁻²³ It opens a promising strategy to promote the photocatalytic efficiency and stability by using electron donor¹¹.

In this study, an electron donor (H₂ gas) was introduced to the reaction system to verify the peroxide intermediates mechanism during the water oxidation reaction and to enhance the activity as well as the stability of the CO₂ reduction. The effect of different metal cocatalysts for CO₂ photoreduction was studied with and without the electron donor, respectively. Among various metal cocatalysts loaded NaTaO₃ samples, Ru/NaTaO₃ (CH₄ 51.8 µmol h⁻¹ g⁻¹) and Pt/NaTaO₃ (CO 139.1 µmol h⁻¹ g⁻³) exhibited the best products selectivity in the presence of the electron donor. Moreover, Ru/NaTaO₃ showed a linear growth of CH₄ evolution over 24 hours and demonstrated an efficient and stable photocatalytic activity in converting CO₂ to CH₄. The key point of the performance over Ru/NaTaO₃ is owing to using H₂ as electron donor and distributing Ru as co-catalysts.

Published on 27 March 2015. Downloaded by University of Oklahoma on 28/03/2015 07:10:04

Fig. 1 (a) SEM image of NaTaO₃ sample; (b) TEM image of NaTaO₃ sample, the insert shows HRTEM image; (c) UV-vis absorption spectrum of NaTaO₃ sample and the inset is the corresponding $(\alpha h\nu)^{1/2}$ – hv curve; (d) XRD pattern of NaTaO₃ sample.

The NaTaO₃ (NTO) samples were synthesized through a furfural alcohol derived polymerization-oxidation (FAPO) process.^{8,9} The detailed characteristics were examined by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, scanning electron microscope (SEM) and transmission electron microscopy (TEM). The XRD pattern (Fig. 1d) and its corresponding HRTEM (insert in Fig. 1b) show that the NaTaO₂ prepared through the FAPO route crystallized in a monoclinic system with the space group of P_2/m_1 , which could be well indexed to the JCPDS database card (JCPDS-01-074-2477). According to the SEM and TEM images (Fig. 1a and 1b), the sample mainly contains particles about 20 ~ 30 nm. UV-visible absorption spectrum of the NaTaO3 nanoparticles is shown in Fig.1c, with an intense absorption with steep edge in the UV region. The band gap (E_q) of NaTaO₃ was determined to be 4.2 eV according to the following equation $(\alpha h v)^{1/2} = A(h v - E_q)$ and shown in the inset of Fig.1c, in which α , ν , A, and E_q are the absorption coefficient, light frequency, proportionality constant and band gap, respectively.

The photocatalytic properties of the as-prepared NaTaO₃ were estimated by photoreduction of gaseous phase CO2 under the irradiation of a 300 W UV-enhanced Xe lamp. Fig. 2a and Fig. 2b exhibit the results of CO2 reduction over the series of NaTaO3 only using water as the reducing agent. All the samples showed certain abilities, where CH₄ and CO presented to be the two main carbon products as well as some trace amount of other hydrocarbon compounds (Fig. S11) with CO appears more dominant. The total productivities were listed in Table S2. Metal cocatalysts mainly benefited H_2 evolution in this reaction condition (CO₂+H₂O), because H₂ evolution is a highly preferred competing reaction. The CO₂ reduction reactions exhibited not linear growth of the products evolution. The bent curves indicate an unstable reactivity of CO₂ reduction reaction for all the samples. Moreover, O₂ could also not be detected as the product of water oxidation. Thus, an obstructive O₂ release process should be the main reason for the above phenomena. It has been reported that some peroxide intermediates would be

formed at the oxide semiconductor surface during the oxygen photoevolution reaction from water.¹⁸ As shown in Fig. 2c, the intermediates are proved to be generated by the in situ FTIR spectra. By referring the method reported in the literature, ¹⁸ NaTaO₃ film was exposed to a 30% H_2O_2 aqueous solution to position the peak of peroxide intermediates (dot line), the peaks at 834 cm⁻¹ and 883 cm⁻¹ belong to the peroxide intermediates and H_2O_2 , respectively. During the CO₂ reduction process, the peroxide intermediates formed and accumulated with the time when only using water as the reducing agent (dash line). As the schematic model shown in Fig. 2d, the peroxide intermediates hindered the photogenerated holes to oxidize water. Consequently, the recombination of electrons and holes increased, and so that reflects on a decreased photocatalytic activity.

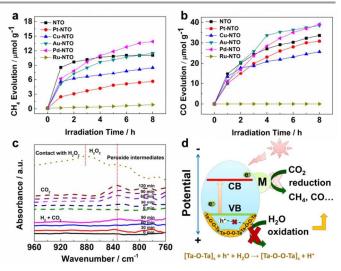
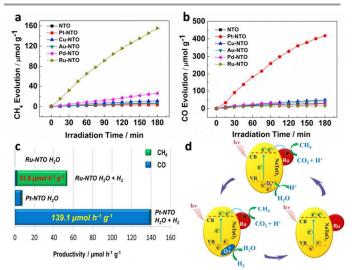



Fig. 2 Gaseous product generation over 0.5 wt% co-catalysts loaded NaTaO₃ in H_2O and CO_2 atmosphere: (a) CH₄, (b) CO; (c) In situ FTIR spectra of NaTaO₃ during the CO₂ reduction process; (d) Schematic model of the formation and accumulation of peroxides at the surface of NaTaO₃.

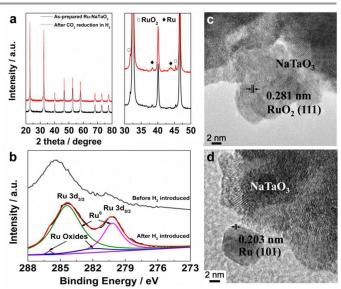

In order to eliminate the hamper of peroxide intermediates and realize a stable reduction of CO₂, an electron donor (H₂ gas) was introduced to the reaction system to release the peroxides. Fig. 3a and 3b show the results of CO₂ reduction over the series of NaTaO₃ in the presence of H_2O_1 CO_2 and H_2 . All the samples exhibit promotions of the catalytic activity compared with the counterparts only using H₂O and CO₂ as shown in Table S2. Almost linear curves indicate that enhanced stabilities and activities of the CO₂ reduction are obtained over the catalysts, especially for Ru/ NaTaO₂ (Fig. S4a). As the solid lines in Fig. 2c shown, there is almost no accumulation of the peroxides in the presence of electron donor H_2 . It can be concluded that the peroxide intermediates are effectively reduced by H₂ and so that a stable reduction of CO₂ are observed. An isotope experiment within a D₂O₁ CO₂ and H₂ atmosphere was carried out to distinguish the hydrogen source between water (D₂O) and H₂ of the produced methane. Initially, CD4 is the dominant methane products (Fig. S2a), which illustrates clearly that the hydrogen in methane comes from water (D₂O). With the reaction proceeded after several hours, some CD₂H and CD₂H₂ can be observed among the methane products (Fig. S2b). It is deduced that the protium atoms should mainly derive from the normal water (H_2O) reduced from peroxides at NaTaO₃ surface by H_2 Thus, it is confirmed that the direct hydrogen source of the CO_2 reduction is still water, but not the H_2 gas introduced as the electron donor. H_2 promotes the CO_2 reduction reaction by a successful conversion of peroxide intermediates (O_2^*) into water rather than directly reduces CO_2 to CH_4 as the schematic model shows in Fig. 3d. This is because that the requisite active hydrogen to react with CO_2 in a photocatalytic process should be atomic hydrogen rather than molecular hydrogen. The hydrogenation reaction between molecular hydrogen and CO_2 must climb over an energy barrier to push forward, ^{25,26} where the requirement could not be met in this work. The atomic hydrogen is activated from other hydrogen sources (water in this work), although there are hydrogen molecules in the system.²¹

Fig. 3 Gaseous product generation over 0.5 wt% co-catalysts loaded NaTaO₃ in CO₂, H₂O and H₂ atmosphere: (a) CH₄, (b) CO; (c) Productivity with and without H₂ over Ru-NaTaO₃ and Pt-NaTaO₃; (d) Schematic model of a proposed reaction process of Ru-NaTaO₃ in CO₂, H₂O and H₂ atmosphere.

In the point view of cocatalyst, except for Ru and Pt, other cocatalysts did not exhibit a pronounced activity enhancement and selectivities of CO₂ reduction due to their natural properties as shown in Table S2. Ru/NaTaO₃ (CH₄ 51.8 μ mol h⁻¹ g⁻¹) and Pt/NaTaO₃ (CO 139.1 µmol h⁻¹ q⁻¹) exhibited the best activities and products selectivity over the series (Fig. 3a and Fig. 3b). The CH₄ or CO versus total carbon products (CH₄ + CO) ratio is about 0.96 for Ru/NaTaO₂ and 0.99 for Pt/NaTaO₃ (Fig. 3c). These results accord well with the results in the literatures.²⁶⁻²⁸ It is mainly attributed to the excellent abilities of Ru and Pt in hydrogen activation, stabilization and utilization, since these two metals are commonly used materials for hydrogen storage^{29,30} and fuel cells.^{31,32} Since converting CO₂ to CH₄ is a multiple-step and multiple-electron reaction (Fig. S₃), there must be an inexhaustible supply of active hydrogen (H*) to CO₂. CO molecules possess dominant adsorption ability than H₂O at Pt surface.³³ After CO₂ molecules have been reduced to CO, the supply of active hydrogen decrease gradually until the Pt surface was fully occupied by CO and finally poisoned by them.33,34 Thus, the CO2 reduction over Pt predominantly carries out a 2e⁻ reaction and CO become the main product. Conversely, water molecules are more adsorptive at Ru surface,³³ and Ru has a relative high overpotential in H₂ evolution³⁵ to depress the H^{*} recombining to H₂. Thus, active hydrogens could be

constantly provided to CO₂ to carry out 8e⁻ reaction. In addition, the state of Ru is also very important to the activity. Different from other noble metals, Ru is very easy to be oxidized during the drying process. Moreover, this oxidation might be even enhanced when only using water as the reductant due to the formation of Ru(OH)_{ads}.^{32,33} Thus, the real state of the cocatalysts should be a mixture of Ru and RuO₂ or RuO_x (Fig. 4a). The partially oxidized RuO_x not only hinder the electron transfer from NaTaO₃ to Ru, but also weaken the hydrogen activation on metal Ru. So that it lead to a very poor activity (Fig. 1). However, after introducing the electron donor H₂, RuO_x could be reduced and transformed to metal Ru again (Fig. 4). As the XPS spectra shown in Fig.4b, Ru oxides in the as-prepared Ru-NaTaO₃ were reduced to metal Ru. The corresponding TEM image (Fig.4c and 4d) also indicates the successful transformation to metal Ru. Thus, a stable CO₂ reduction can be ensured over Ru/NaTaO₃.

Fig. 4 (a) XRD patterns of Ru/NaTaO₃ samples. Black line: as-prepared Ru/NaTaO₃, Red line: Ru/NaTaO₃ after a CO₂ reduction under H₂ atmosphere. \Box RuO₂, \blacklozenge Ru. 10 wt% Ru/NaTaO₃ was adopted for better observation of the responds of RuO₂ and Ru. (b) XPS spectra of Ru/NaTaO₃ before and after CO₂ reduction in H₂ atmosphere. TEM image of (c) as-prepared Ru/NaTaO₃; (d) Ru/NaTaO₃ after CO₂ reduction in H₂ atmosphere.

Long-playing experiments were carried out to examine the stabilities of these two samples, respectively (Fig. S4). Ru/NaTaO₃ keeps a linear growth of CH₄ evolution even overnight, whereas Pt/NaTaO₃ exhibits a decay of CO evolution after several hours due to the poisoning of Pt by the produced CO.^{33,34} Further experiments were also carried out to confirm the light dependent photocatalytic activity (Fig. S5). Both Ru/NaTaO₃ and Pt/NaTaO₃ expressed obviously feedbacks, i.e., the reactions exhibit very poor activities under visible light irradiation and there were hardly increases of the products until the L42 filter was removed. Thus, it could be definitely concluded that CO₂ was photocatalytically reduced over Ru/NaTaO₃ and Pt/NaTaO₃, as NaTaO₃ is a wide band-gap semiconductor (4.2 eV). An isotope experiment was carried out over Ru/NaTaO₃ for further investigation using ¹³CO₂. The GC-MS spectrum exactly confirmed that the organic product ¹³CH₄ was reduced from ¹³CO₂ (Fig. S6).

In addition, Ru loaded $SrTiO_3$ and TiO_2 also exhibit stable photocatalytic activities of converting CO_2 to CH_4 in the presence of

ChemComm Accepted Manuscril

electron donor H₂ (Fig. S7a). The activity differences among NaTaO₃, SrTiO₃ and TiO₂ are mainly attributed to their different CB levels (Fig. S7 and Fig. S8). Moreover, these results demonstrate that electron donor could also be extended to other semiconductors to realize a stable photoreduction of CO₂. Some other electron donor will be studied to substitute H₂ in the following work.

In conclusion, this study demonstrated that the phototcatalytic activities of NaTaO₃ are greatly affected by reducing agents and cocatalysts. By introducing electron donor H₂ into the system, a stable reactivity has been obtained over the series of NaTaO₃ due to an effective release of the peroxides intermediates of water oxidation. Ru/NaTaO₃ (CH₄ 51.8 µmol h⁻¹ g⁻¹) and Pt/NaTaO₃ (CO 139.1 µmol h⁻¹ g⁻¹) exhibited the best products selectivity in the presence of the electron donor. Besides, Ru demonstrated an efficient and stable photocatalytic activity in converting CO₂ to CH₄ beyond 24 hours. These results and discussion reveal that as co-catalysts, Ru possesses an efficient ability to promote the photogenerated charge separation as well as the hydrogen activation, stabilization and utilization in the presence of electron donor in photoreducing CO₂ to CH₄.

This work was partly supported by World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics (MANA), MEXT, Japan, and National Basic Research Program of China (973 Program, 2014CB239301). M. Li gratelfully acknowledges financial support from China Scholarship Council (CSC). The author thanks Dr. H. Iwai and Dr. A. Tanaka from Materials Analysis Station, National Institute for Materials Science (NIMS) for XPS measurements.

Notes and references

a Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan. E-mail: Jinhua.YE@nims.go.jp

b Environmental Remediation Materials Unit and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan) Email: LI.Peng@nims.go.jp

c TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. China.

† Electronic Supplementary Information (ESI) available: [Experimental, supplementary activity characterization, isotope experiments, etc]. See DOI: 10.1039/c000000x/

- (1) Fujishima, A.; Honda, K. Nature 1972, 238, 37-38.
- (2) Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Adv. Mater. 2012, 24, 229–251.
- (3) Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C. P. Annu. Rev. Phys. Chem. 2012, 63, 541–569.
- (4) Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan, X. X.; Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G. Angew. Chem. Int. Ed. 2010, 49, 6400–6404.
- (5) Liu, Q.; Zhou, Y.; Kou, J.; Chen, X.; Tian, Z.; Gao, J.; Yan, S.; Zou, Z. J. Am. Chem. Soc. 2010, 132, 14385–14387.
- (6) Zhang, N.; Ouyang, S.; Li, P.; Zhang, Y.; Xi, G.; Kako, T.; Ye, J. *Chem. Commun.* 2011, 47, 2041–2043.
- (7) Yan, S.; Wan, L.; Li, Z.; Zou, Z. Chem. Commun. 2011, 47, 5632–5634.
- (8) Li, P.; Ouyang, S.; Xi, G.; Kako, T.; Ye, J. J. Phys. Chem. C 2012, 116, 7621–7628.

- (9) Li, P.; Ouyang, S.; Zhang, Y.; Kako, T.; Ye, J. J. Mater. Chem. 2013, 1, 1185–1191.
- (10) Li, P.; Xu, H.; Liu, L.; Kako, T.; Umezawa, N.; Abe, H.; Ye, J. J. Mater. Chem. 2014, 2, 5606–5609.
- (11) Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem. Int. Ed.**2013**, *52*, 7372–7408.
- (12) Xu, H.; Ouyang, S.; Liu, L.; Wang, D.; Kako, T.; Ye, J. Nanotechnology 2014, 25.
- (13) Wang, T.; Meng, X.; Li, P.; Ouyang, S.; Chang, K.; Liu, G.; Mei, Z.; Ye, J. *Nano Energy* **2014**, *9*, 50–60.
- (14) Sastre, F.; Puga, A. V.; Liu, L.; Corma, A.; García, H. J. Am. Chem. Soc. 2014, 136, 6798–6801.
- (15) Kato, H.; Kudo, A. J. Phys. Chem. B 2001, 105, 4285-4292.
- (16) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082– 3089.
- (17) Yamakata, A.; Ishibashi, T.; Kato, H.; Kudo, A.; Onishi, H. J. Phys. Chem. B 2003, 107, 14383–14387.
- (18) Nakamura, R.; Nakato, Y. J. Am. Chem. Soc. 2004, 126, 1290–1298.
- (19) Yang, J.; Wang, D.; Han, H.; Li, C. Accounts Chem. Res. 2013, 46, 1900–1909.
- (20) Zhou, H.; Guo, J.; Li, P.; Fan, T.; Zhang Di.; Ye, J. Sci. Rep. 2013, 3.
- (21) Kang, Q.; Wang, T.; Li, P.; Liu, L.; Chang, K.; Li, M.; Ye, J. Angew. Chem. Int. Ed. **2015**, *54*, 841–845.
- (22) Tsuneoka, H.; Teramura, K.; Shishido, T.; Tanaka, T. J. Phys. Chem. C 2010, 114, 8892–8898.
- (23) Teramura, K.; Tanaka, T.; Ishikawa, H.; Kohno, Y.; Funabiki, T. J. Phys. Chem. B 2003, 108, 346–354.
- (24) Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Chem. Commun. 1997, 841–842.
- (25) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703–3727.
- (26) Meng, X.; Wang, T.; Liu, L.; Ouyang, S.; Li, P.; Hu, H.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. Angew. Chem. Int. Ed. 2014, 53, 11478– 11482.
- (27) Azuma, M.; Hashimoto, K.; Hiramoto, M.; Watanabe, M.; Sakata, T. J. Electrochem. Soc. 1990, 137, 1772–1778.
- (28) Lee, J.; Kwon, Y.; Machunda, R. L.; Lee, H. J. Chem. Asian J. 2009, 4, 1516–1523.
- (29) Wang, L.; Yang, R. T. J. Phys. Chem. C 2008, 112, 12486-12494.
- (30) Saha, D.; Deng, S. Langmuir 2009, 25, 12550-12560.
- (31) Oetjen, HF.; Schmidt, V. M.; Stimming, U.; Trila, F. J. Electrochem. Soc. 1996, 143, 3838–3842.
- (32) Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D. P. J. Power Sources 2006, 155, 95–110.
- (33) Yajima, T.; Uchida, H.; Watanabe, M. J. Phys. Chem. B 2004, 108, 2654–2659.
- (34) Wakisaka, M.; Ohkanda, T.; Yoneyama, T.; Uchida, H.; Watanabe, M. Chem. Commun. 2005, 2710–2712.
- (35) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Wiley, 2001.