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Abstract 

TiO2/g-C3N4 photocatalysts with the ratio of TiO2 to g-C3N4 ranging from 0.3/1 to 2/1 were 

prepared by simple mechanical mixing of pure g-C3N4 and commercial TiO2 Evonik P25. All the 

nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance 

spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, Raman spectroscopy, 

infrared spectroscopy, transmission electron microscopy, photoelectrochemical measurements 

and nitrogen physisorption. The prepared mixtures along with pure TiO2 and g-C3N4 were tested 

for the photocatalytic reduction of carbon dioxide and photocatalytic decomposition of nitrous 
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oxide. The pure g-C3N4 exhibited the lowest photocatalytic activity in both cases pointing to a 

very high recombination rate of charge carriers. On the other hand, the most active photocatalyst 

towards all the products was (0.3/1)TiO2/g-C3N4. The highest activity is achieved by 

combination of number of factors: (i) specific surface area, (ii) adsorption edge energy, (iii) 

crystallite size and (iv) efficient separation of the charge carriers. Where the efficient charge 

separation is the most decisive parameter. 

1. Introduction 

The greenhouse effect and global warming are the most discussed topics of present days. A 

number of initiatives is trying to come up with a way how to decrease emissions of greenhouse 

gases. CO2, CH4, N2O and fluorinated gases belong among anthropogenic greenhouse gases. 

Carbon dioxide and nitrous oxide is one of  the highest contributors to global warming based on 

their radiative forcing and concentration at the atmosphere 1. 

Carbon dioxide’s radiative forcing is around 1.74 W m-2 and it is estimated CO2 is the largest 

contributor in global warming accounting for 63 % of total radiative forcing 2. Carbon dioxide is 

mainly produced from fossil fuels combustion and it is estimated more than 31 billion tons of 

CO2 is produced annually all over the world 3. The CO2 concentration in the atmosphere already 

crossed 400 ppm in most places and keeps increasing approximately about 2 ppm per year 4. One 

of the closely watched methods how to utilize carbon dioxide is its photocatalytic reduction. The 

reaction is mostly done under UV irradiation and the reaction scheme is as follows: 

��� + ���
��,	�
�
������
�������������������������	������ � +	��  (1) 

Nitrous oxide is the third highest contributor to global warming, accounting approximately for 

6.2 % of global radiative forcing. The concentration of N2O at the atmosphere is quite low 
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(320 ppb) but its contribution to global warming potential is nearly 300 times higher than the one 

of CO2 
1. The photoinduced decomposition is focused on both indoor and outdoor abatement of 

nitrous oxide. The reaction is carried out under ambient conditions and UV or visible irradiation 

as: 

!��
��,	�
�
������
�������������!� +

"

�
��      (2) 

The photocatalytic reduction of carbon dioxide attracted great attention after the successful 

photoelectrocatalytic reduction of CO2 by Innue et al. 5. Since then the number of publication 

focusing on the photocatalytic reduction of CO2 rises exponentially every year. Due to high 

attention of this topic there are several thorough reviews summing up the state of art 6-9. Nitrous 

oxide on the other hand is attracting only partial attention of the photocatalytic society and to the 

best of authors´ knowledge there are no reviews summarizing achievements in the field of 

photocatalytic reduction of nitrous oxide. Matsuoka et al. conducted the photocatalytic reduction 

of N2O in the presence of zeolite photocatalysts in the beginning of this millennia 10, 11 but after 

that there have not been reported any papers dealing with photocatalytic reduction of nitrous 

oxide. Our group published several papers about photocatalytic reduction of N2O in the presence 

of ZnS immobilized on montmorillonite and TiO2 based photocatalysts 12-14. 

The most studied photocatalyst is, without any doubt, titanium dioxide. Nevertheless, carbon 

nitride has attracted huge attention in last couple years. Especially graphitic carbon nitride (g-

C3N4) has been used as photocatalyst quite extensively. The g-C3N4 is one of materials with 

medium sized band gap (2.7 – 2.8 eV) capable of visible light absorption. It is also relatively 

chemically, photochemically and thermally stable semiconductor. The main drawback of g-C3N4 

is its high recombination rate of generated charge carriers which is resulting in low 

photocatalytic performance. The extensive review of g-C3N4 of Dong et al. summarizes its 
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properties and utilization as photocatalyst 15. The review of Ye et al. goes even further and 

summarizes the fabrication methods of C3N4 and its utilization for photocatalytic water splitting 

and CO2 reduction 16. 

In order to slow down the recombination rate of charge carriers the creation of heterojunction 

on the semiconductor’s surface has been studied. Various different heterojunctions have been 

studied and tested to improve the photocatalytic activity of g-C3N4 
17-19. Yu et al. successfully 

prepared ZnO/g-C3N4 heterostructure and used it for the photocatalytic reduction of carbon 

dioxide and obtained results twice higher than in the presence of pure ZnO or g-C3N4 
20. 

Although there are many possibilities for creating the heterostructure the TiO2/g-C3N4 is one of 

the most extensively studied one. There have been many studies focused on TiO2/g-C3N4 for its 

superior visible light absorption 21-33. The most of the mentioned studies tested the photocatalytic 

activity of the TiO2/g-C3N4 composite on degradation of organic pollutants in liquid phase. This 

work was focused on testing the photocatalytic activity of mechanically created mixtures of TiO2 

and g-C3N4 for two different reactions, the photocatalytic reduction of CO2 and photocatalytic 

reduction of N2O, respectively. 

2. Experimental 

2.1. Preparation of TiO2/g-C3N4 photocatalysts 

The g-C3N4 was synthesized by simple heating of melamine in the muffle furnace. 10 g of 

melamine powder as precursor were heated to 550 °C at a heating rate of 10 °C/min in a covered 

crucible. The temperature was kept at 550 °C for 2 h and then cooled down to room temperature. 

A yellow product of g-C3N4 was obtained and was ground to a fine powder. 

As a precursor of TiO2 commercial P25 (Evonik) was used. The TiO2/g-C3N4 composites were 

prepared by mechanical mixture and calcined in a muffle furnace at 450 °C for 2 h with 

Page 4 of 45

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5 
 

temperature increasing at the rate of 10 °C/min. The samples were labelled according to weight 

ratio of TiO2/g-C3N4 as follows: (0.3/1), (0.5/1), (1/1) and (2/1) TiO2/g-C3N4. 

2.2. Characterization of photocatalysts 

X-ray powder diffraction patterns (XRD) were measured using a Bruker D8 (Bruker AXS) 

diffractometer equipped by a detector sensitive for the placement (VÅNTEC 1). The CoKα lamp 

was used as a source of irradiation of wavelength λ = 0.178897 nm. Measurements were done in 

the conventional Bragg–Brentano setup. 

Nitrogen physisorption at 77 K was performed on a 3Flex automated volumetric apparatus 

(Micromeritics Instruments, USA) after degassing of materials at 150 °C for more than 24 h 

under vacuum below 1 Torr. Degassing at low temperature was applied to remove physisorbed 

water, but having no influence on the porous morphology of the developed materials. The 

specific surface area was calculated according to the classical Brunauer–Emmett–Teller (BET) 

theory for the p/p0 range of 0.05–0.30 34. As the specific surface area, SBET, is not a proper 

parameter in the case of mesoporous solids containing micropores 35, the mesopore surface area, 

Smeso, and the micropore volume, Vmicro, were also evaluated based on the t-plot method 36 with 

the Cmodif constant 35, 37. The net pore volume, Vnet, was determined from the nitrogen adsorption 

isotherm at maximum p/p0 (~0.99). The pore-size distribution was evaluated from the adsorption 

branch of the nitrogen adsorption desorption isotherm by the Barrett–Joyner–Halenda (BJH) 

method 38 using the de Boer standard isotherm and assuming cylindrical pore geometry. 

IR spectra of samples were measured by potassium bromide pellets technique. Exactly 1.0 mg 

of sample was ground with 200 mg dried potassium bromide. This mixture was used to prepare 

the potassium bromide pellets. The pellets were pressed by 8 tons for 30 seconds under vacuum. 

The IR spectra were collected using FT-IR spectrometer Nexus 470 (ThermoScientific, USA) 
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with DTGS detector. The measurement parameters were the following: the spectral region of 

4000-400 cm-1, spectral resolution 4 cm-1; 64 scans; the Happ-Genzel apodization. Treatment of 

spectra: polynomial (second order) baseline, subtraction spectrum of pure potassium bromide. 

A 180° sampling was used as measurement technique of Raman spectroscopy. The Raman 

spectra were measured at dispersive Raman spectrometer DXR SmartRaman (ThermoScientific, 

USA) with CCD detector. The measurement parameters were as follows: excitation laser 780 

nm, grating 400 lines/mm, aperture 50 µm, exposure time 1 second, number of exposures 1000, 

the spectral region of 1800-50 cm-1. An empty sample compartment was used for background 

measurement. Treatment of spectra: fluorescence correction (6th order). 

The UV–visible spectra of prepared nanocomposites were recorded using a UV-2600 

spectrophotometer with an ISR-2600 integrating sphere attachment (Shimadzu Scientific Co., 

Japan) from 220 to 1400 nm. Sampling interval was 1 nm and width of slit was 2 nm. Barium 

sulphate (BaSO4) was used as reference material. 

Photoluminescence (PL) spectra were measured by a spectrometer FLS920 (Edinburgh 

Instrument Ltd, UK). The spectrometer was equipped with a 450 W Xenon lamp (Xe900). The 

excitation wavelength was 325 nm. The width of excitation and emission slits was 0.5 nm. 

Gas chromatography with isotope ratio mass spectrometry (GC/IRMS) DELTA Advantage 

(Thermo Scientific, USA) was used for the detection of 13C in gas samples before and after 

photocatalytic reaction. 

X-ray photoelectron spectra (XPS) were recorded using a hemispherical VG SCIENTA R3000 

analyzer with constant pass energy of 100 eV, a monochromatized aluminum source Al Kα (E = 

1486.6 eV) and a low energy electron flood gun (FS40A-PS) to compensate the charge on the 

surface of nonconductive samples. The base pressure in the analytical chamber was 5×10-9 mbar. 
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The binding energies were referenced to C 1s core level (Eb = 284.6 eV). The composition and 

chemical surrounding of the sample surface were investigated on the basis of the areas and 

binding energies of Ti 2p, O 1s, N 1s and C 1s photoelectron peaks. The fitting of high resolution 

spectra was provided through the Casa XPS software. 

The morphology of particles was observed on a transmission electron microscope (TEM) 

JEOL 2010 HC (JEOL Ltd., Japan). The particles were dispersed in ethanol and using an 

ultrasonic sprayer deposited on a TEM grid with carbon holey support film. 

Photoelectrochemical measurements were performed using a photoelectric spectrometer 

equipped with the 150 W Xe lamp and coupled with the P-IF 1.6 potentiostat (Instytut 

Fotonowy, Poland). The photocurrent responses were recorded using a classical three electrode 

setup. The platinum wire and Ag/AgCl were used as the auxiliary and reference electrodes, 

respectively. The working electrode consisted of photocatalyst powder deposited onto indium-tin 

oxide (ITO) foil coated by polyethylene terephthalate. The 0.1 M KNO3 was used as an 

electrolyte solution. The photocurrent spectra were recorded within the range of 240 – 500 nm 

with the step of 10 nm in the potential range of - 0.2 to 0.8 V, step 0.1 V. Before the 

measurement itself the electrolyte was purged by argon to ensure oxygen free environment. The 

argon purge was also kept constant during the measurement. 

2.3. Photocatalytic reduction of CO2 

The photocatalytic reduction of carbon dioxide was carried out in a homemade apparatus ( 

Figure 1). A cylindrical stirred batch reactor with a photocatalyst spread on the bottom of the 

reactor was illuminated by an 8 W Hg lamp (λ = 254 nm; intensity = 0.5 mW/cm2) placed in 

horizontal position on top of the quartz glass visor. The reactor shell was made from stainless 

steel. The internal volume was 355 cm3. The photocatalyst powder loading was 0.1 g. Before the 
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irradiation was turned ON, a supercritical fluid-grade CO2 with a certified maximum of 

hydrocarbons less than 1 ppm (SIAD Technical Gases, CZ) to avoid any hydrocarbon 

contamination was purged through distilled water reservoir to saturate it by humidity (50 rel.%). 

Afterwards the water saturated CO2 was purged through the reactor in order to displace the air 

from the reactor. The CO2 pressure was maintained at 120 kPa through the purging for 20 

minutes. The pressure inside the reactor was continuously monitored. The reactor was 

pressurized to 140 kPa and sealed. The sample at 0 hour was taken and immediately analyzed on 

barrier discharge ionization detector (GC/BID). The photocatalytic reaction was started by 

switching on the Hg lamp. Gas samples were discontinuously taken at various times during the 

irradiation (8 hours). Gas sampling was performed using a gas-tight syringe (10 ml) through a 

septum. GC/BID equipped by ShinCarbon ST micropacked column was used for the analysis of 

reaction products in the gas phase. 

CO2
cylinder

Humidity sensor

Discontinuous sampling

UV lamp

 

Figure 1: The schematic description of the CO2 photocatalytic reduction apparatus. 

The accuracy of the experiment was verified by a series of repeated measurements, and the 

relative error of product yields (µmol/gcat) was determined to be less than 10 %. Blank tests were 

carried out to guarantee that the methane production was due to the photocatalytic reduction of 

CO2 and to eliminate the surrounding interference. During the first test, the reactor was UV-
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illuminated without the photocatalyst, the second blank test was conducted in the dark with the 

photocatalyst under the same experimental conditions, and the third test consisted of irradiating 

the photocatalyst in the absence of CO2. No hydrocarbons were detected in the above blank tests. 

To double check the products are really coming from the photocatalytic reduction of CO2 the 

measurement with CO2 containing 13C isotope was conducted. Samples were taken at various 

times and the increase of 13C amount in methane was observed with increasing irradiation time. 

These measurements confirmed that the methane is a product of the CO2 photocatalytic 

reduction. 

2.4. Photocatalytic reduction of N2O 

The photocatalytic reduction of N2O was carried out in a homemade apparatus at ambient 

temperature with and without the photocatalyst (photocatalysis and photolysis, respectively) 12. 

The 0.1 g of photocatalyst was placed on an adhesive tape inserted on the bottom of the batch 

reactor (635 ml volume). In both photochemical and photocatalytic experiments, the reactor was 

filled with a N2O/He mixture (968 ppm) and irradiated by an 8 W Hg lamp (λ = 254 nm; 

intensity = 0.5 mW/cm2). Pressure was continuously monitored inside the photoreactor during 

the experiments. A gas chromatograph equipped by ShinCarbon ST micropacked column and 

GC/BID was used for the analysis of N2O decrease. The concentration of N2O was measured 

before switching on the UV lamp to determine initial concentration and during the reaction. The 

reproducibility of the photocatalytic experiments was verified by repeated tests in the interval of 

0–18 h. The accuracy of the measurement was certified by a series of repeated measurements, 

and the relative error of the N2O concentration was determined to be less than 5 %. 

3. Results and discussion 

3.1. Photocatalysts characterization 
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Results from nitrogen physisorption, UV-Vis DRS and XRD are summarized in Tab. 1. The 

specific surface area of mixed photocatalysts increased significantly compared to pure g-C3N4. 

Due to very organized arrangement of g-C3N4 crystal lattice its specific surface area is very low. 

Usually the value is somewhere around 10 m2/g 21, 39. Excluding pure g-C3N4 all the prepared 

photocatalysts and TiO2 Evonik P25 had very similar specific surface area with a value close to 

50 m2/g. 

Absorption edge energy is one of the key aspects of the photocatalysis (Tab. 1). Graphitic 

C3N4 has relatively low band gap energy which is one of the reasons why this material attracted 

great attention of the photocatalytic society. The band gap energy of commercial TiO2 Evonik 

P25 is quite high, 3.26 eV in our case and the addition of g-C3N4 decreased the absorption edge 

energy only slightly (Table 1). The absorption edge energies of photocatalysts were determined 

from UV-Vis DRS spectra (Figure 2b). Based on the UV-vis DRS spectra the blue shift can be 

observed after addition of TiO2 to pure g-C3N4 (Figure 2a). The absorption edges of all TiO2/g-

C3N4 composites are the same within the experimental error. Therefore, the UV-vis DRS spectra 

of all composites are the same but different from pure TiO2 and g-C3N4. 
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Figure 2: a) UV-Vis DRS spectra of TiO2/g-C3N4 photocatalysts and b) the determination of the 

absorption edges of TiO2/g-C3N4 photocatalysts. 

 

Table 1: Specific surface area, absorption edge energy and crystallite size of prepared 

photocatalysts. 

Photocatalyst Specific surface 

area (m
2
/g) 

Absorption edge 

energy (eV) 

Crystallite size 

(nm) 

Anatase Rutile 

TiO2 (Evonik P25) 51 3.26 20 29 

(2/1)TiO2/g-C3N4 43 3.13 23 42 

(1/1)TiO2/g-C3N4 48 3.16 24 41 

(0.5/1)TiO2/g-C3N4 49 3.16 23 43 

(0.3/1)TiO2/g-C3N4 53 3.13 23 28 

g-C3N4 11 2.78 ----- ----- 
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The commercial TiO2 is composed from anatase and rutile phase which was confirmed by 

Raman spectroscopy (Figure 3a). The Ti–O vibrational modes of anatase are located around 395, 

515 and 640 cm-1. The Ti–Ti vibrational modes of anatase are located at 140 and 195 cm-1 40, 41. 

Rutile’s Ti–O vibrational modes are located around 445, 610, 825 cm-1 and Ti–Ti vibrational 

mode of rutile is located around 140 cm-1 41. Since the rutile phase is representing the minority, 

the only recognizable peaks were at 445 and 791 cm-1. The other ones are being overlapped by 

the anatase vibrational modes. 

 

Figure 3: Raman spectra of a) commercial TiO2 Evonik P25 and b) g-C3N4.  

The interpretation of pure g-C3N4 Raman spectra is a little bit more complicated (Figure 3b). 

The number of vibrational modes and their intensity depends on calcination temperature and 

temperature ramp rate. Characteristic peaks for g-C3N4 calcined at 550°C can be found at 472, 

712, 751, 980, 1152 and 1226 cm-1 42, 43. 
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Figure 4: a) Raman spectra of all prepared photocatalysts; b) evolution of the Raman spectra 

focused on TiO2 characteristic peak at 143 cm-1. 

Figure 4a shows the Raman spectra of all investigated photocatalysts. The decrease of TiO2 

characteristic peaks intensity and increase of g-C3N4 peaks intensity can be observed with 

decreasing ratio of TiO2/g-C3N4. Also no peak shifts were observed which means no structural 

changes occurred during preparation of mixed photocatalysts regarding to pure TiO2 and g-C3N4. 

For better resolution the most intense anatase peak part is shown in Figure 4b. 

The FT-IR spectra of prepared g-C3N4, TiO2 Evonik P25 and TiO2/g-C3N4 photocatalysts are 

shown in Figure 5. In the FT-IR spectra of g-C3N4 the strong band region from 1200 to 1650 cm-

1 can be found. The peak at 1640 cm-1 is attributed to C–N stretching, while three bands at 1555, 

1461 and 1405 cm-1 are the result of the typical stretching vibrations of C–N heterocycles 44, 45. 

The last two bands at 1319 and 1243 cm-1 of the region belong to stretching vibration of 

connected units of C–NH–C, which is also supported by the broad band at 2900 – 3500 cm-1. 

This broad band is attributed to N–H and O–H stretches due to the free amino groups and 

adsorbed hydroxyl species, respectively 45. The peak at 806 cm-1 is attributed to the characteristic 

breathing mode of s-triazine 44, 45, which increases with the increase of the g-C3N4 content. All 
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the g-C3N4 characteristic bands are also present in the mixtures of TiO2/g-C3N4 with decreasing 

intensity as the ratio of TiO2/g-C3N4 increase. The following bands are typical for TiO2 based 

materials. The broad band in the region of 3200 – 3600 cm-1 can be assigned to OH stretching 

modes. The two very small hard recognizable bands at 1600 and 1400 cm-1 are attributed to 

bending OH modes of hydroxyl groups. The broad band below at 900 cm-1 belongs to Ti–O 

vibrations 46. 

 

Figure 5: FT-IR spectra of TiO2/g-C3N4 photocatalysts. 

The photoluminescence spectra of the TiO2/g-C3N4 samples are shown on Figure 6. All 

samples exhibit similar profiles with a broad emission band from 435 to 600 nm under an 

excitation wavelength of 325 nm. These spectra imply that PL intensities of the prepared 

nanocomposites are strongly dependent on recombination of charge carriers mainly in g-C3N4. 

The pure g-C3N4 has strong PL emission at wavelength between 440 - 500 nm which is caused 

by fast radiative recombination of electron and holes in the planar structure of g-C3N4. Position 

of emission band of g-C3N4 depends strongly on preparation conditions 47. Weaker PL emission 

intensity is caused by electrons and holes transfer between g-C3N4 and TiO2 
48, 49. With 

increasing content of TiO2 the probability of recombination between electrons and holes in 
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prepared samples significantly dropped. Similar results was observed on the g-C3N4-TiO2 

heterojunction systems by other groups 28, 50, 51. 

 

 

Figure 6: Photoluminescence spectra of TiO2/g-C3N4 photocatalysts. 

 

Figure 7: XRD patterns of TiO2/g-C3N4 photocatalysts. 

0

50000

100000

150000

200000

250000

300000

350000

425 475 525 575 625

P
L

 in
te

ns
it

y 
(c

ps
)

Wavelength (nm)

g-C3N4

(0.3/1)TiO2/g-C3N4
(0.5/1)TiO2/g-C3N4
(1/1)TiO2/g-C3N4
(2/1)TiO2/g-C3N4

TiO2

5.00 15.00 25.00 35.00 45.00 55.00 65.00 75.00 85.00

In
te

ns
it

y 
(c

ou
nt

s)

2θ (°)

TiO2
(2/1)TiO2/g-C3N4
(1/1)TiO2/g-C3N4
(0.5/1)TiO2/g-C3N4
(0.3/1)TiO2/g-C3N4
g-C3N4

g-
C

3N
4 

(1
00

)

g-C3N4 (002)

A
na

ta
se

 (
10

1)

A
na

ta
se

 (
20

0)

R
ut

il
e 

(1
01

)
A

na
ta

se
 (

11
2)

R
ut

il
e 

(1
11

)

A
na

ta
se

 (
10

5)
A

na
ta

se
 (

21
1)

A
na

ta
se

 (
20

4)

A
na

ta
se

 (
22

0)

Page 15 of 45

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16 
 

Two main diffraction peaks for g-C3N4 located at around 14.89 and 31.95°, were observed and 

indexed as (100) and (002) planes, respectively (Figure 7). These two diffraction peaks are in 

good agreement with the g-C3N4 (JCPDS no. 87–1526) 50. Titanium dioxide was identified in 

composite samples in anatase (JCPDS no. 084–1285) and rutile (JCPDS no. 079–6029) forms. 

The crystallite size of the TiO2 was determined from the half-width of peaks using Scherrer’s 

formula (where K=0.89) on the anatase (101) and rutile (110) peaks. The intensity of g-C3N4 

peaks in TiO2 composites was attenuated in a simile way as reported 52. The presence of g-C3N4 

did not have a significant influence on the phase structure of TiO2. 

In Figure 8 the examples of high-resolution XPS spectra of elements identified on the surface 

of TiO2/g-C3N4 photocatalyst with the highest g-C3N4 loading are shown in comparison to those 

measured for pure TiO2 and g-C3N4. The C 1s spectrum of (0.3/1)TiO2/g-C3N4 can be 

deconvoluted into two peaks at 284.6 eV (C1) and 288.1 eV (C2) attributed to C-C 

(contaminated carbon) and N=C-N (sp2-bonded carbon in carbon nitride) coordination, 

respectively 53, 54. Moreover, three components are identified in the XPS N 1s spectrum of this 

sample at 398.5 eV (N1), 399.8 eV (N2) and 401.1 eV (N3), corresponding to the N atoms in the 

C=N-C groups, the sp2 hybridized N atoms and the sp3 hybridized terminal N atoms in the 

heptazine rings (-NH2), respectively 53, 54. A slight shift (0.2-0.3 eV) towards lower binding 

energies for the C2, N1 and N2 peaks related to the N=C-N species is detected after the addition 

of TiO2 to g-C3N4. This finding indicates changes in electron cloud density in the nitrogen and 

carbon atoms, which can result from the interaction of carbon nitride with titania. On the other 

hand, the Ti 2p spectra of commercial titania before and after doping with g-C3N4 show only two 

photoelectron peaks at 458.2-458.3 eV and 464.0-464.1 eV, with a peak separation of 5.7-5.8 eV, 

which correspond to Ti4+ 2p3/2 and Ti4+ 2p1/2, respectively 55. The detectable changes in the peak 
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positions are observed in the high-resolution XPS O 1s spectra for pure TiO2 and TiO2 mixed 

with g-C3N4. Among two main O 1s components found in pure TiO2, attributed to lattice O2- 

(529.5 eV) and the O2- ions/hydroxyl groups (530.6 eV) 56, the latter one is shifted to 530.9 eV in 

the case of (0.3/1)TiO2/g-C3N4, confirming the occurrence of interactions between TiO2 and g-

C3N4 in the formed composites. 

 

 

Figure 8: XPS N 1s, O 1s, C 1s and Ti 2p spectra measured for TiO2, (0.3/1)TiO2/g-C3N4 and g-

C3N4. 
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The morphology of the photocatalysts was examined by TEM. Figure 9 shows the TEM 

images of g-C3N4, TiO2, and (0.3/1)TiO2/g-C3N4. It can be seen that pure g-C3N4 (Figure 9a) 

indicates a 2D lamellar structure while pure TiO2 (Figure 9b) shows spherical particles. For 

(0.3/1)TiO2/g-C3N4 (Figure 9c,d), the TiO2 particles are embedded in the g-C3N4 lamellar 

structure. This finding suggests the creation of a heterojunction between TiO2 and g-C3N4, which 

could lead to improved separation of electron and hole. 

  

   

Figure 9: TEM images of g-C3N4(a), TiO2 (b), and (0.3/1)TiO2/g-C3N4 (c, d). 

a) 
b) 

c) d) 
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The photocurrent measurements were conducted to predict the photocatalytic activity of the 

prepared photocatalysts (Figure 10). It is evident all the prepared photocatalysts except pure g-

C3N4 show large increase of generated photocurrent after switching the light source ON. The 

results revealed the pure g-C3N4 has the highest rate of charge carriers’ recombination which in 

agreement with experimental data. On the other hand, the measurements suggest the 

(0.3/1)TiO2/g-C3N4 and pure TiO2 possess the most efficient separation of electrons and holes. 
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Figure 10: a) Photocurrent generation at electrodes made from the studied photocatalysts and b) 

cutoff interval of wavelengths recorded at 0.8 V vs. Ag/AgCl in deoxygenated 0.1 M KNO3. 

3.2. Photocatalytic reduction of CO2 

The effect of irradiation time on the formation of gaseous products in the photocatalytic 

reduction of carbon dioxide was studied in the presence of all prepared TiO2/g-C3N4 

photocatalysts including pure TiO2 Evonik P25 and g-C3N4. Figure 11 demonstrates the 

evolution of CO2 photocatalytic reduction products as the function of irradiation time. Methane 

and carbon monoxide are the direct products of CO2 reduction. The methane production rate is 

more or less linear in the first 8 hours of irradiation (Figure 11a); carbon monoxide yields on the 

a) 

b) 
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other hand, rapidly increase in first 2 hours and then are almost constant (Figure 11b). The last 

detected product was hydrogen which is coming from the photocatalytic water (vapor) splitting 

(Figure 11c). The highest yields of the three products were reached in the presence of 

(0.3/1)TiO2/g-C3N4. On the other hand, the lowest products production was achieved over pure 

g-C3N4.  

 

  

 

Figure 11: Time dependence of the a) methane yields, b) carbon monoxide yields and c) 

hydrogen yields over TiO2/g-C3N4 photocatalysts in the CO2 photocatalytic reduction.  
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Conditions: 8 W Hg lamp, CO2 pressure at carbonation of 120 kPa, humidity 50%, photocatalyst 

loading of 0.1 g. 

3.3. Photocatalytic reduction of N2O 

The effect of irradiation time on the photochemical and photocatalytic decomposition of N2O 

was investigated for all TiO2/g-C3N4 photocatalysts including pure TiO2 and g-C3N4 for a time 

period of 0–16 h. The time dependences of N2O conversion for photocatalysis and photolysis are 

shown in Figure 12. A gradual increase of N2O conversion with increasing time of irradiation 

can be noticed. The highest N2O conversion of 57 % was observed for the (0.3/1)TiO2/g-C3N4 

catalyst after 16 h. On the other hand, both pure TiO2 and g-C3N4 photocatalysts exhibited the 

same N2O conversions as during the photolysis experiments. The products of the reaction are 

oxygen and nitrogen; no other compounds were detected. 

 

Figure 12: Time dependence of the N2O conversion over TiO2/g-C3N4 photocatalysts. 

Conditions: 8 W Hg lamp, N2O (968 ppm)/He mixture, photocatalyst loading of 0.1 g. 
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The most active photocatalyst in both cases, the photocatalytic reduction of CO2 and N2O, 

respectively, was the one composed of 0.3/1 ratio of TiO2/g-C3N4. The photocatalytic 

experiments showed the ratio of TiO2 and g-C3N4 plays significant role in photocatalysis. It also 

confirmed pure g-C3N4 is not very active photocatalyst due to its high recombination rate of 

charge carriers and very low specific surface area 15. The very high recombination of g-C3N4 also 

confirms photoluminescence spectra where the g-C3N4 band has the intensity several times 

higher than the rest of the photocatalysts (Figure 6). 

Even though both studied reactions are reductions the reaction mechanism is different for each 

of them. Photocatalytic reduction of carbon dioxide heavily depends on sufficient potentials of 

photocatalyst’s conduction and valence bands. CO2 molecule is very stable and direct reduction 

by electron (CO2/CO2
•) is limited by very negative potential (–1.9 V vs. NHE) 6, 57. The main 

products of the photocatalytic reduction of CO2 are methane and carbon monoxide and also by-

product hydrogen. Hydrogen is produced from water which is present in the form of vapor. The 

most important redox potentials vs. NHE are given in Eqs. (3) – (8) 6: 

2 H+ + 2 e –  →  H2      E0 = – 0.41 V    (3) 

CO2 + 2 H+ + 2 e–  →  CO + H2O    E0 = – 0.53 V    (4) 

CO2 + 8 H+ + 8 e–  →  CH4 + 2 H2O     E0 = – 0.24 V    (5) 

2 H2O + 4 h+  →  O2 + 4 H+;      E0 = + 0.82 V    (6) 

H2O + h+  →  OH• + H+;      E0 = + 2.32 V    (7) 

O2 + e–  →  O2
•–;     E0 = – 0.33 V    (8) 

The pure g-C3N4 proved to be the least efficient towards any of the products. This is in 

agreement with g-C3N4 valence band not having sufficient potential of generated holes for 

oxidation of water to hydroxyl radicals (5). Only the less effective water oxidation, due to more 
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holes needed to achieve it, can be conducted. Because of this limitation, lower amounts of H+ are 

formed and through these lower yields of all products were detected. The pure TiO2 on the other 

hand gives the average yields of CH4 and CO and the higher yields of H2. 

In case of the nitrous oxide reduction the potential of N2O/N2 redox couple is around 1.35 V 

which fits in between of valence and conduction bands of both, TiO2 and g-C3N4 as well. 

Nevertheless, pure TiO2 and C3N4, respectively showed no photocatalytic activity, the results 

were the same as in case of photolysis. The addition of TiO2 to C3N4 improved the conversion 

about over 10 %.  

The photocatalytic activity of semiconductor nanomaterials can be influenced by several 

aspects such as: (i) specific surface area, (ii) adsorption edge energy, (iii) crystallite size and (iv) 

efficient separation of the charge carriers. All these factors can be significantly influenced by the 

formation of TiO2/g-C3N4 nanomaterials, which are formed by the addition of g-C3N4 to the 

TiO2. 

For (i), specific surface area of TiO2/g-C3N4 has increased with increasing amount of g-C3N4. 

The increase of the BET specific surface area of TiO2/g-C3N4 could be explained due to TiO2 

nanoparticles embedded in the g-C3N4 lamellar structure leads to the formation of thinner 

lamellar g-C3N4 (Figure 9). The grinding may lead to the exfoliation of g-C3N4, which increases 

the surface areas of the photocatalysts. The similar results were obtained by 50. The higher 

specific surface area can offer more available active sites and due to that higher photoactivity. 

The (0.3/1)TiO2/g-C3N4 has shown the highest specific surface area (SBET = 53 m2/g) in 

comparison with pure g-C3N4 (SBET = 11 m2/g) and also the highest photoactivity. On the other 

hand, the decrease of specific surface area with increase of TiO2 content can be explained by 

agglomerating of TiO2 (Figure 9c, d). 
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For (ii), all the prepared TiO2/g-C3N4 demonstrated lower absorption edge energy (Table 1) 

and simultaneously suitable position of conduction and valence bands in comparison with pure 

TiO2. The decrease of the absorption edge energy is leading to increased effectivity of electron 

hole pair generation due to the absorption of lower energy photons. 

For (iii), crystallinity size of rutile can also influence the photocatalytic activity due to 

formation of defects. Formation of lattice defects is enhancing electron-hole recombination 

resulting in lower photocatalytic activity 58. The (0.3/1)TiO2/g-C3N4 proved to have the smallest 

crystallite size of rutile from all the composites and this fact probably also contributed to the 

higher photoactivity of this photocatalyst. 

For (iv), the efficient separation of the charge carriers plays probably key role in photocatalytic 

activity of TiO2/g-C3N4 nanocomposites. The electronic structure of the photocatalyst determines 

whether the material is going to be active towards specific reaction or not. The conduction band 

potentials of g-C3N4 and TiO2 are –1.15 V and –0.3 V, respectively. The valence bands of g-

C3N4 and TiO2 have potentials at 1.5 V and 3.0 V, respectively. The quite big difference between 

electronic bands potentials of g-C3N4 and TiO2 makes the combination of these two materials 

very interesting. The electrons that are photogenerated from the semiconductor with a higher CB 

edge (the g-C3N4) migrate to the one with a lower CB edge (TiO2). Furthermore, the 

photogenerated holes are transported from the low VB of TiO2 to the high VB of g-C3N4 

between the semiconductors 59. This leads to the accumulation of electrons on TiO2 

semiconductor for a reduction reaction and accumulation of holes in g-C3N4 semiconductor for 

an oxidation reaction (Figure 13). Therefore, the electrons and holes are spatially separated to 

effectively repress charge recombination 59. 
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Figure 13: Schematic illustration showing the photogenerated charge separation in TiO2/g-C3N4 

photocatalysts. 

The enhancement in photocatalytic performance can be attributed to the synergetic effect of 

the surface area, crystallite size of rutile, absorption edge energy and mainly separation of the 

charge carriers which is confirmed by a higher activity of the prepared TiO2/g-C3N4 

nanocomposites compared to pure g-C3N4. The optimal ratio of TiO2 to C3N4 have been found to 

be 0.3 to 1. The similar result was observed by Li et. al. who found, that the most active g-

C3N4/TiO2 composite sample investigated for methyl orange degradation contained 74.4 wt.% of 

g-C3N4 
60. 

 

4. Conclusion 

A series of TiO2/g-C3N4 photocatalysts with different ratio of TiO2 to g-C3N4 (from 0.3/1 to 

2/1) have been fabricated by mechanical mixing of g-C3N4 prepared from melamine and 
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commercial TiO2 Evonik P25. The photocatalytic activity results from photocatalytic CO2 

reduction and NO2 decomposition revealed that all of the synthesized TiO2/g-C3N4 

photocatalysts had enhanced photocatalytic performance compared to their components 

especially to g-C3N4. The highest photocatalytic activity of these photocatalysts can be explained 

by the combination of several aspects: (i) specific surface area, (ii) adsorption edge energy, (iii) 

crystallite size and (iv) efficient separation of the charge carriers. The most active photocatalyst 

towards both oxides reduction was (0.3/1)TiO2/g-C3N4. Based on the obtained results it can be 

assumed that the semiconductor nanocomposite formed between g-C3N4 and TiO2 can have 

application for photocatalytic reaction in environmental remediation. 
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