

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 7823-7826

Tetrahedron Letters

Selective displacement of aryl fluorides with hydroquinone: synthesis of 4-phenoxyphenols

Benjamin F. Marcune,* Michael C. Hillier, Jean-François Marcoux and Guy R. Humphrey

Department of Process Research, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA

Received 29 June 2005; revised 6 September 2005; accepted 6 September 2005 Available online 21 September 2005

Abstract—The selective displacement of a variety of aryl fluorides with hydroquinone has been achieved to give substituted 4-phenoxyphenols 3. In some cases the addition of 18-crown-6 resulted in a significant rate enhancement, and the reactions could be carried out at lower temperature. One of these derivatives, 3a (X = Cl) was converted to 2-propyl-4-(4-chlorophenoxy)phenol 2a, a precursor to the PPAR γ receptor agonist 1.

© 2005 Elsevier Ltd. All rights reserved.

As part of a general program to prepare and evaluate a series of selective peroxisome proliferator-activated receptor- γ (PPAR γ) agonists similar to **1a** (Fig. 1), we required quantities of the 2-propyl-4-(4-chlorophenoxy)phenol 2a, which was elaborated from 3a (X = Cl) in three steps.¹ The synthesis of **3a** involved displacement of 4-fluorobenzaldehyde with a 4-chlorophenol followed by a Dakin-type oxidation and in situ hydrolysis according to a known process.² In order to construct these substrates in a more expeditious fashion, we envisioned the direct S_NAr displacement of 1-chloro-4-fluorobenzene (4a) with hydroquinone (5). This idea presented two potential challenges, namely the displacement of an unactivated aryl fluoride and the potential for 'trimer' formation due to over arylation of hydroquinone.³ According to the literature, aryl fluorides with strong electron withdrawing groups (e.g., NO₂, CN, and CHO) undergo fluoride displacement with phenol quite easily;⁴ there are fewer examples with hydroquinone.^{5,6} On the other hand, to the best of our knowledge, the displacement of aryl fluorides containing less electronegative substituents (e.g., Cl, Br, or H) with phenol or hydroquinone does not work well.⁷ In this letter, we wish to report our efforts towards the general synthesis of 4-phenoxyphenols using this methodology, and the subsequent conversion of 3a to 2a.

Keywords: Aryl fluorides; Hydroquinone; Fluoride displacement.

* Corresponding author. Tel.: +1 732 594 6159; fax: +1 732 594 1499; e-mail: ben_marcune@merck.com

0040-4039/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.09.025

Investigation and optimization of the arylfluoride displacement was carried out using 1-chloro-4-fluorobenzene 4a and hydroquinone (5), and these results are summarized in Table 1. When the reaction was run using stoichiometric amounts of hydroquinone and KO-t-Bu, no conversion was observed in various solvents at reflux after 24 h (entries 1-3). However, when the reaction was carried out in DMSO significant conversion of starting material to product was observed, but a large amount of the trimer 6a was also formed (entry 4). Increasing the amount of hydroquinone and base used (4 equiv each, entry 5) resulted in a dramatic decrease in the presence of trimer and the product 3a could be isolated in 96% yield after 24 h at 170 °C. If this reaction was repeated at 100 °C, full conversion could be achieved after 72 h but the isolated yield of product was lowered to 72%. The use of other high-boiling polar solvents generally resulted in poor isolated yield of 3a and increased trimer (6a) formation. Inorganic bases (entries 11-13) provided product in very low yield due to decomposition of starting material 4a.

During the course of these investigations, we found that DMSO had the potential to undergo catalytic decomposition at elevated temperatures (>140 °C) under the optimized reaction conditions (Table 1, entry 5).⁸ Therefore, in the interest of developing milder reaction conditions, we examined the displacement of **4a** with **5** at 100 °C using 4 equiv of the cation complexing agent, 18-crown-6 (Table 2).⁹ Under these conditions, the reaction was driven to near completion after 24 h in good yield (85%) and with minimal trimer formation (Table 2,

Figure 1. Retro-synthesis of a PPAR γ agonist 1.

Table 1. Displacement of 4a with hydroquinone (5)

	CI	F + HO	conditions H see table					
	4a	5			3a	6a		
Entry	Base	Base (equiv)	5 (equiv)	Solvent	Temperature (°C)	Time (h)	3a:6a ^a	3a Yield (%)
1	KO-t-Bu	1	1	Decane	Reflux	24		0
2	KO-t-Bu	1	1	MeCN	Reflux	24		0
3	KO-t-Bu	1	1	Toluene	Reflux	24		0
4	KO-t-Bu	1	1	DMSO	170	24	65:35	_
5	KO-t-Bu	4	4	DMSO	170	24	98:2	96
6	KO-t-Bu	4	4	DMSO	100	72	99:1	72
7	KO-t-Bu	4	4	NMP	170	72	72:28	42
8	NaO-t-Bu	4	4	NMP	170	24	92:8	37
9	KO-t-Bu	4	4	DMF	Reflux	24	96:4	23
10	KO-t-Bu	4	4	DMAc	Reflux	24	82:18	39
11	K_2CO_3	4	4	DMSO	170	24	92:8	16
12	NaOH	4	4	DMSO	170	24	80:20	8
13	LiOH	4	4	DMSO	170	24	96:4	30

^a Product ratios determined by HPLC analysis.

entry 2). Similarly, compounds **4d**,**f**, and **4g** reacted more quickly to give product at 100 °C in the presence of the additive. On the other hand, substrates **4b**,**c**, and **4e** showed no rate enhancement in the reaction with **5** with or without the crown ether at 100 °C. However, substrates **4c** and **4e** could be converted to **6c** and **6e** in better yield, 94% and 99% yield, respectively, when 18-crown-6 was employed.

Another aryl fluoride substrate, 1-fluoro-4-iodobenzene (7), exhibited a unique reaction profile as shown in Table 3. When the reaction of this compound with hydroquinone was run at 170 °C the desired product **8** was isolated in low yield (1%) along with the iodide displaced product **9** and the dehalogenated intermediate **10**. Clearly, these by-products arise from benzyne formation via elimination of iodide under the reaction conditions.¹⁰ When the displacement of **7** was run at a lower temperature (100 °C) the desired product **8** was recovered in 72% yield after 72 h. Utilization of the additive 18-crown-6 provided for a similar yield of **8** after 24 h (71%), but elevated amounts of benzyne impurities could be detected.

With a reasonable synthesis of 4-(4-chlorophenoxy)phenol (3a) in hand, we wanted to convert this intermediate to the key starting material 2a (Scheme 1). Therefore, allylation of **3a** with allyl bromide (1.4 equiv) and K₂CO₃ (4 equiv) in refluxing acetone provided the allylated species 11 in nearly quantitative yield after removal of the inorganics by filtration and concentration. This material was taken on crude and subjected to a Lewis acid promoted Claisen rearrangement with Et₂AlCl (1.3 equiv) to give 12 in >95% yield.¹¹ Workup of this reaction involved quench with 6 N HCl and removal of the resultant aluminum salts by filtration. The crude product containing filtrate could be used in the next reaction without purification after removal of heptane. Hydrogenation of 12 in the toluene solution was accomplished using Wilkinson's catalyst [RhCl(PPh₃)₃, 1 mol %] at 45 °C and 45 psi H₂ to give the reduced product 2a in 90% yield after purification.¹²

In summary, we have demonstrated the selective S_NAr displacement of a variety of aryl fluorides with hydroquinone (4 equiv) using KO-*t*-Bu (4 equiv) in DMSO

Table 2. Scope of the aryl fluoride displacement and effect of 18-crown-6

	R ₁	F R ₂	HO + (4 e	OH eq.)	KOtBu (4 eq.), 18-crown-6, DMSO R ₁ R ₂	о R ₃ ОН +	R_1 R_2 R_3 C	R_1 R_2	
		4a-g		5	3	a-g	6a-g		
Entry	4	R ₁	R_2	R_3	18-Crown-6 (equiv)	Time (h)	Temperature (°C)	3:6	3 Yield (%)
1	а	Cl	Н	Н	_	72	100	99:1	72
2	а	Cl	Н	Η	4	24	100	99:1	85
3	b	Н	Cl	Η	_	24	100	98:2	91
4	b	Н	Cl	Η	4	24	100	99:1	80
5	с	Н	Н	Cl	_	24	100	97:3	89
6	с	Н	Н	Cl	4	24	100	97:3	94
7	d	Br	Н	Η	_	24	170	96:4	80
8	d	Br	Н	Η	_	72	100	99:1	81
9	d	Br	Н	Η	4	24	100	99:1	65
10	e	CF_3	Н	Н	_	24	100	98:2	85
11	e	CF_3	Н	Η	4	24	100	99:1	99
12	f	OCF_3	Н	Η	_	24	170	94:6	77
13	f	OCF_3	Н	Η	_	72	100	99:1	14
14	f	OCF ₃	Н	Η	4	24	100	98:2	68
15	g	Н	Н	Η	_	24	170	92:8	16
16	g	Н	Н	Η	4	24	100	99:1	53

Table 3. Displacement of 1-iodo-4-fluorobenzene with hydroquinone

1		24	170	65:13:22	1
2		72	100	95:4:1	72
3	4	24	100	87:12:1	71

Scheme 1. Synthesis of 2-propyl-4-(4-chlorophenoxy)phenol 2a.

at elevated temperature with a minimum of trimer formation. It was noted that a cation scavenger, 18crown-6, can significantly accelerate this transformation in some cases, allowing for the reaction to be carried out at lower temperatures. One of these derivatives, **3a**, was efficiently converted to 2-propyl-4-(4-chlorophenoxy)phenol **2a**, an important intermediate in the synthesis of the PPAR γ agonist **1**.

References and notes

- (a) Koyama, H.; Boueres, J. K.; Han, W.; Metzger, E. J.; Bergman, J. P.; Gratale, D. F.; Miller, D. J.; Tolman, R. L.; MacNaul, K. L.; Berger, J. P.; Doebber, T. W.; Leung, K.; Moller, D. E.; Heck, J. V.; Sahoo, S. P. *Bioorg. Med. Chem. Lett.* 2003, 13, 1801–1804; (b) Desai, R. C.; Han, W.; Metzger, E. J.; Bergman, J. P.; Gratale, D. F.; MacNaul, K. L.; Berger, J. P.; Doebber, T. W.; Leung, K.; Moller, D. E.; Heck, J. V.; Sahoo, S. P. *Bioorg. Med. Chem. Lett.* 2003, 13, 2795–2798.
- 2. Yeager, G. W.; Schissel, D. N. Synthesis 1991, 63-68.
- For examples of dimerization, see: (a) Yeager, G. W.; Schissel, D. N. U.S. Patent 5,068,457, 1991; (b) Dimmock, J. R.; Puthucode, R. N.; Smith, J. M.; Hetherington, M.; Quail, J. W.; Pugazhenthi, U.; Lechler, T.; Stables, J. P. J. Med. Chem. 1996, 39, 3984–3997; (c) Eastmond, G. C.; Paprotny, J. Synthesis 1998, 6, 894–898; (d) Consiglio, G. A.; Failla, S.; Finocchiaro, P.; Siracusa, V. Phosphorus, Sulfur, Silicon 2002, 177, 2561–2569; (e) Masuda, G.; Okumura, Y.; Nishimae, S.; Naraya, T. PCT Int. Patent WO 2004111026.
- (a) Vlasov, V. M. Russ. Chem. Rev. 2003, 72, 681–703; (b) Sawyer, J. S. Tetrahedron 2000, 56, 5045.

- (a) Markley, L. D.; Tong, Y. C.; Dulworkth, J. K.; Steward, D. L.; Goralski, C. T.; Johnston, H.; Wood, S. G.; Vinogradoff, A. P.; Bergar, T. M. J. Med. Chem. 1986, 29, 427–433; (b) Tanaka, F. S.; Wien, R. G.; Zaylskie, R. G.; Hoffer, B. L. J. Agric. Food Chem. 1990, 38, 553–559; (c) Szurdoki, F.; Szekacs, A.; Le, H. M.; Hammock, B. D. J. Agric. Food Chem. 2002, 50, 29–40.
- For examples of the displacement of activated aryl chlorides with hydroquinone, see: (a) Wöhrle, D.; Eskes, M.; Shigehara, K.; Yamada, A. Synthesis 1993, 194–196; (b) Vangala, V. R.; Bhogala, B. R.; Dey, A.; Desiraju, G. R.; Broder, C. K.; Smith, P. S.; Mondal, R.; Howard, J. A. K.; Wilson, C. C. J. Am. Chem. Soc. 2003, 125, 14495– 14509.
- 7. Humpii, T. Synthesis 1985, 919-924.
- 8. Unpublished results.
- Sawyer, J. S.; Schmittling, E. A.; Palkowitz, J. A.; Smith, J. W., III. J. Org. Chem. 1998, 63, 6338–6343.
- Rudas, M.; Nyerges, M.; Töke, L.; Pete, B.; Groundwater, P. W. *Tetrahedron Lett.* **1999**, *40*, 7003–7006.
- (a) Sonnengerg, F. M. J. Org. Chem. **1970**, 35, 3166; (b) Castro, A. M. M. Chem. Rev. **2004**, 104, 2939–3002.
- 12. Hydrogenation of **12** with a catalytic amount Pd/C resulted in significant (ca. 10%) dechlorination.