INTERACTION OF INDOLES WITH GLYCOSYL HALIDES IN THE PRESENCE OF SILVER OXIDE

TATIANA N SOKOLOVA, VALERY E SHEVCHENKO, AND MARIA N PREOBRAZHENSKAYA

Cancer Research Center of the USSR Academy of Medical Sciences, Moscow 115478 (USSR)

(Received September 19th, 1979, accepted for publication, December 3rd, 1979)

ABSTRACT

The reaction of indole with 2,3,4-tri-O-acetyl- β -L-arabinopyranosyl bromide in the presence of silver oxide yielded a mixture of O-acetylated 1- α -L-arabinopyranosylindole, 3- α -L-arabinopyranosylindole (the first indole C-nucleoside), and 1,2-O-[1-(indol-1-yl)ethylidene]- β -L-arabinopyranose. The corresponding derivatives were obtained from 5- or 6-nitroindole Likewise, 6-nitroindole and 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide gave O-acetylated 1,2-O-[1-(6-nitroindol-1-yl)ethylidene]- α -D-glucose and 1,2-O-[1-(6-nitroindol-3-yl)ethylidene]- α -D-glucose, and 6-nitroindole with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide gave O-benzoylated 1,2-O-[6-nitroindol-1-yl(phenyl)methylidene]- α -D-ribofuranose and its 6-nitroindol-3-yl analogue Only 1,2-O-[indol-1-yl(phenyl)methylidene]- α -D-ribofuranose was isolated after the condensation of indole with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide The deacetylation of the above compounds afforded the corresponding N- and C-nucleosides or 1,2-O-alkylidene derivatives

INTRODUCTION

Indole nucleosides have been widely studied and are usually prepared by the indoline-indole method¹ ². Attempts to synthesise an indole nucleoside from an acylglycosyl halide and an indole salt were unsuccessful, although the reaction³ of indolylmagnesium halide and tetra-O-acetyl- α -D-glucopyranosyl bromide gave 1-D-glucopyranosylindole Recently, O-benzoylated 4-nitro-1- β -D-ribofuranosylindole was obtained by treatment of 4-nitroindole with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide in the presence of silver oxide and molecular sieve⁴, and we now report another application of this method Nitroindole nucleosides are of interest because the 1- α -L-arabinopyranosides of 5- or 6-nitroindole inhibit the growth of some solid tumours in mice^{5,6}.

RESULTS AND DISCUSSION

Indole reacted with 2,3,4-tri-O-acetyl- β -L-arabinopyranosyl bromide in the presence of silver oxide and molecular sieve in dry benzene to yield 1-(2,3,4-tri-O-

TABLE I

DATA FOR NEW INDOLE DERIVATIVES

Com-	Mp	$[\alpha]_{D}^{20}$ (c 1)	Found	(%) H	N	Calc C	(%) H	**	Formula
pound	(degrees)	(degrees)	<i>C</i>					<i>N</i>	
5	175–176	-65	54 4	49	71	54 3	48	67	C ₁₉ H ₂₀ N ₂ O ₉
		(CHCl ₃)							
6	α	+25 5	<i>5</i> 4 0	48	69	54 3	48	67	$C_{19}H_{20}N_2O_9$
		(CHCl ₃)							
7	a	+22	609	58		60 8	58		$C_{19}H_{21}N_1O_7$
		(CHCl ₃)							
8	a	23	54 4	49		54 3	48		$C_{19}H_{20}N_2O_9$
		(CHCl ₃)							
9	a	-10	51 9	48	65	52 1	5 1	64	$C_{19}H_{20}N_2O_9$ H_2O
		(CHCl ₃)							
l 1	a	+29	53 6	49	84	53 6	48	83	$C_{15}H_{16}N_2O_7$
		(EtOH)							
2	170-171	+43	53 3	49	86	53 6	48	83	$C_{15}H_{16}N_2O_7$
		(Me ₂ CO)							
13	a	+41 5							
		(MeOH)							
14	Œ	T44							
		(MeOH)							
15	230-231	-48	52 5	48		52 4	49		C13H14N2O6 02H2C
		$(c 0 5, C_5H_5N)$							-101111-0
6	185-186	+26	53 8	49	59	53 7	49	57	C22H24N2O11
		(CHCl ₃)							
8	a	- 39	49 5	5 1		49 4	53		C ₁₆ H ₁₈ N ₂ O ₈ 1 25H ₂
		(MeOH)							
9	a	+89	67.3	46	47	67 3	43	46	C34H26N2O9
		(CHCl ₃)							
1	a	+79	72 0	49	27	72 1	49	25	C34H27N1O7 0 25H2
-		(CHCl ₃)		. ,					034122711107 0 25112
3	a	+43	60 2	48	70	60 3	46	70	C20H18N2O7
		(MeOH)	-			•			0201-101 (20)
4	a	+16	64 7	56	38	64 7	57	38	C20H19N1O5 H2O
•		(c 1 83, MeOH)		- 0	• •		٠.		020121314103 1120
6	a	-12		47	58	63 4	45	5 5	C27H22N2O8 05H2O
-		(MeOH)		- •		•		-	-1,-721.208 0 DI120
7	a	+23	57 7	49	67	57 6	48	67	C ₂₀ H ₁₈ N ₂ O ₈ H ₂ O
•		(MeOH)	···		.	0	. •	J.	C2022161 1206 1120

^aAmorphous

acetyl-α-L-arabinopyranosyl)indole (1), 3-(2,3,4-tri-O-acetyl-α-L-arabinopyranosyl)indole (7), and 3,4-di-O-acetyl-1,2-O-[1-(indol-1-yl)ethylidene]-β-L-arabinopyranose (4) The products were separated by p1c Similarly, 5- or 6-nitroindole yielded a mixture of O-acetylated 1-nucleoside 2 or 3, C-nucleoside 8 or 9, and (nitroindol-1-yl)ethylidene derivative 5 or 6 Some properties of these compounds are presented in Table I The major product from indole was 1 (15%), and only 2% of 4 (contaminated with indole) was obtained The major reaction products from nitroindoles

were 5 or 6 (40%) The yields of the C-nucleosides 7-9, which were not isolated pure, were $\sim 10\%$ The 1-nucleosides 1-3 were identical to the products synthesised by the indoline-indole method^{7,8}.

AcO OAC
$$R$$

1 R = H

2 R = 5-NO₂

3 R = 6-NO₂

10 R = R' = AC

10 R = R' = H

11 R = 5-NO₂ R' = AC

12 R = 6-NO₂ R' = AC

10 R = R' = H

11 R = 5-NO₂ R' = H

12 R = 6-NO₂ R' = H

15 R = 6-NO₂ R' = H

Zemplén deacetylation of 4, 5, or 6 afforded the 1,2-O-ethylidene derivatives 10, 11, or 12, respectively On treatment with acetone-0.05 sulphuric acid, 5 or 6 did not change, but 11 or 12 gave traces (t1c) of 5- or 6-nitroindole, respectively. In acetone-5 sulphuric acid, each of these compounds gave the corresponding indole during 30 min 1-Arabinopyranosyl-6-nitroindole and its triacetate (3) were stable under these conditions

The p m r spectra of 4-6 and 10-12 contained singlets (δ 1 80-1 94) for methyl groups (Table II) The ${}^3J_{\rm H,H}$ values for the carbohydrate protons of these compounds reflect distortion of the chair conformation similar to that observed in ortho esters of arabinopyranose¹⁰

The formation of C-nucleosides in the above reactions is noteworthy, as they were not obtained previously. C-Nucleosides 7-9 were deacetylated (Zemplén) to yield 13-15, reacetylation (acetic anhydride-pyridine) regenerated 7-9. Compounds 7-9 were partially decomposed during deacetylation, cf 1-(indol-3-yl)glycerol which, in the presence of alkali, gives indole and glyceraldehyde¹¹

The structures of 7–9 were confirmed by spectroscopy The 1 r spectra contained bands characteristic of NH-stretching vibrations at 3360–3400 cm⁻¹. The signal (11 p p m) for the NH proton in the p m r spectrum of 7 in (CD₃)₂SO disappeared after exchange with D₂O. There were no H-3 doublets at δ 6 5 in the spectra of 7–9 and 13–15 (Table III), and the H-2 singlets were shifted downfield to the region of the H-7 and H-4 signals The value (9 6 Hz) of $J_{1,2}$ confirmed that H-1,2 were trans-diaxial and demonstrated the α -configuration and 4C_1 conformation of the pyranoid ring The c d spectra of the C- and N-nucleosides 9 and 3 showed positive Cotton effects at 355 (θ 7.6 \times 10³) and 330 nm (θ 2.5 \times 10³); 6 gave no definite maxima

1 ABLE II
P M R DATA FOR THE 1,2-O-INDOLYLETHYLIDENE DERIVATIVES OF L-ARABINOPYRANOSE

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	d tertine manner													
pouna	Indole protons	rotons					Sugar protons	otons						
	Н-7	9-Н	Н-5	H-4	Н-3	Н-2	H-1 (J _{1,2})	H-2 (J2,3)	H-3 (J _{3,4})	H-4 (J4,5b)	H-5a (J _{4,5a})	H-5b (J _{5a,5b})	Ac Me	
4	- 6L L			. 6784	637	e	5 42 (4 4)	4 06 <i>b</i> (4 8)	5 38 —	-5 15 (4 4)	4 11–3 90 ^b (4 6)	3 62 (12 8)	1 92 1 87	CDCIs
3 4	7 73	8 07		8 48	6.61	7 41	5 53 (4 6)	4 23 (4 0)	5 38 (5 6)	5 27 (4 4)	4 16 (4 1)	3 86 (12 5)	180 2 10 2 03	CDCI
9	8 67		8 00	7 60	6 57	7 53	5 57 (4 6)	4 25 ^b (4 8)	5 55 —	-5 30 (4 2)	4 35-4 08 ^b (4 0)	3 83 (12 8)	2 2 3 2 03 3 3 4	CDCI3
10	7 80 —			. 700	641	7 32	5 49	4 20 —		- 3 82	3 78	3 68	191 187	CD3OD
114	7 80	8 02		8 48	199	7 54	545 245 3	4 03	00 4 2	391 391 56	3 82	3.70	1 88	CDsOD
12	8 54		7 93	7 75	199	7 81	5 00 (4 4)	4 10 —	(£ £)	- 3 50	551	5 28	1 90	(CD ₃) ₂ SO

a, b Overlapping signals 'Spectrum recorded at 50° 4360-MHz spectrum recorded with a Bruker WH spectrometer

TABLE III P.M r data for the 3-¢-t-arabinopyranosyl derivatives of indoles

Com-	Chemical shifts, p p m (Coupling constants, Hz)	s, p p m (Cc	upling const	ants, Hz)								
pouna	Indole protons					Sugar protons	tons					
	Н-7	9-H	Н-5	H-4	H-2	H-1 (J _{1,2})	H-2 (J _{2,3})	H-3 (Ja,4)	H-4 (Ja,50)	H-5a (J4,5a)	H-5b (J _{5a,5b})	Ac
70	8 37				- 6 92	4 46	5 65	5 19	5 40	4 12	3 78	2 16
					1	96)	(10 0)	(3.6)	(8 0)	(5.0)	(132)	195
8	7 40-7 20a	8 05		8 78	8	4 63	5 60	5 20	5 43	4 17	3 80	7 7 8
						(96)	(10 0)	(3 (3 (3	(8 0)	(5 0)	(132)	1 96
ş	9 27		8 17	7.75	777	4 62	5 52	5 19	5 42	4 15	3 84	2 19
						(96)	(10 0)	(3.6)	(0 8)	(2 0)	(128)	197
13°	7 90				069—	4 06	4 30	4 00	—3 86	3 86	-3 50	2
Ş	Š			6		(9 6)	(9 2)	(3 6)		(10)	(12.8)	
150	8 33	\$ &	7 904	08 8 8	7 65	4 65					13.77	

^aOverlapping signals ^bIn CDCl₃ ^cIn CD₃OD

TABLE IV P M R DATA FOR THE D-GLUCOSYL DERIVATIVES OF INDOLES

Compound	Chemical	shifts, p p	m (Coupli	Chemical shifts, p p m (Coupling constants, Hz)	s, Hz)	:							
	Indole protons	otons					Sugar protons	otons					
	Н-7	H-5	H-4	Н-3	Н-2	NH	H-1 (J _{1,2})	H-2 (J _{2,3)}	H-3 (J _{3,4})	H-4 (J4,5)	H-5	9-H	Ac Me
16 ^b	99 8	7 98	7.60	6 54	7 50		574 (50)	" (24)	5.28 (2.4)	4 94 (9 2)	4 364 004	4 00%	2 16 2 12 2 03
170	8 18	7.82	7 40		77.7	9 20	5 53 (5 0)	e	5 18	4 84	4 303 84a	-384ª	2 00 2 08 1 06
18c	8 65	7 88	7 56	6 58	7 64		5 70 (5 0)	4 20 —				3,44	1 90

"Overlapping signals "In CDCI3 In CD3OD

The reaction of 6-nitroindole with 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide yielded only the 1,2-O-ethylidene derivatives 16 and 17 in the ratio 3 1, pure 17 could not be isolated Deacetylation of 16 with methanolic ammonia gave 1,2-O-[1-(6-nitroindol-1-yl)ethylidene]- α -D-glucopyranose (18) Under these conditions, 17 gave 3-acetyl-6-nitroindole

CH₂OR
$$OR$$

$$OR$$

$$OR$$

$$NO_{2}$$

$$OAC$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{6}$$

$$NO_{7}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{6}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{6}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{6}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{6}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{6}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{6}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{6}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{6}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{6}$$

$$NO_{6}$$

$$NO_{7}$$

$$NO_{8}$$

$$NO_{8}$$

$$NO_{9}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{1}$$

$$NO_{2}$$

$$NO_{3}$$

$$NO_{4}$$

$$NO_{5}$$

$$NO_{6}$$

$$NO_{7}$$

$$NO_{8}$$

In the p m r spectra of 16–18, the singlets (δ 1 9–2 0) at highest field correspond to ethylidene methyl groups. The J_{12} values (5 Hz) are the same as for glucopyranose ortho esters¹² (Table IV). For 17, the absence of a signal for indole H-3 was confirmed by the appearance of a sharp singlet for H-2 at low field. The 1 r spectrum of 17 showed absorption for NH at 3360 cm⁻¹. The c d spectrum of 16 contained a strong, negative extremum at 360 nm (θ 1 4 × 10³)

Treatment of 16 or 18 with acetone-5M sulphuric acid gave 6-nitroindole, 16 being the more stable Likewise, 17 yielded 3-acetyl-6-nitroindole

Dreiding models of the indolylethylidene derivatives of L-arabinose and D-glucose demonstrated that the configuration having the indole nucleus *exo* is the more probable

Whereas treatment of 6-nitroindole with 2,3,5-tri-O-acetyl-D-ribofuranosyl bromide did not afford any nucleoside derivatives, the reaction with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide gave a mixture of 3,5-di-O-benzoyl-1,2-O-[6-nitroindol-1-yl(phenyl)methylidene]-α-D-ribofuranose (19) and 3,5-di-O-benzoyl-1,2-

ABLE V

P M R DATA FOR THE D-RIBOFURANOSYL DERIVATIVES OF INDOLLS

Compound	Chemical shi	shifts, p p m (Coupling constants, Hz)	(Coup	lıng consi	ants, Hz)							1		
	Indole protons	Sta					Sugar protons	suojo.	Type and the same					-
	Н-7 Н-6	.6 H-5		H-4	H-3 (NH)	H-2	H-1 (J _{1,2})	H-2 (J _{2,3})	H-3 (J3,4)	H-4 (J _{4,5b})	H-5a (J4,5a)	H-5b (Jsa,5b)	Ph	Bz
198	8 44	8.2	8 20 — 7 20°	7 20ª	661	z	618	5.21	5 28 —			4 40	731	B
20°	8 40			7 20"	(9 46)	8	6 16 6 16 9 9	5 36		The state of the s	Anthony of the State of the Sta	4 35	e	8
210	8 16		-	6 834	6 50	e	(5.8) (5.14) (5.14)	5 22	-500	4 88	Application of the state of the	. 4 32	7 31	ø
230	841	98	8 04 7 20 ^a	7 20ª	6 70	8	606 908 908	4 66	4 20	-404	3 91	3 62	7 31	
24°	764	***************************************	-	6 88a	6 53	8	5.97 5.97	4 62	4 20 —	A PROPERTY OF THE PROPERTY OF	And the second s	3 48	7 26	
25^b	8 40	1 96		7 58	6 64	7 65	(40) 609 800 800	505 502 503	4.76	464	-430	4.20	7 31	2 12
26°	8 32	8 20	000	7 204		8	(4.2) 5,97	472	-4 S4	(3.3) 434	4 21	4 05	=	TO 7
27°	8 31	7 82		7 28a		e	591 (40)	4 55 (4 0)	4 08 —	-384 (44)	3.75 (1.2)	3 62	a	
MATTER STREET, SPACES STREET, SPACES STREET, SPACES STREET, SPACES STREET, SPACES	amenta e a company de la compa	***************************************	abadina and special property					And the second s	Halle Street or Street Street Street	** ************************************	***************************************			

"Overlapping signals "In CDCl3 "In CD3OD

O-[6-nitroindol-3-yl(phenyl)methylidene]- α -D-ribofuranose (20) in the ratio 4 1 In a parallel reaction, indole gave 3,5-di-O-benzoyl-1,2-O-[indol-1-yl(phenyl)methylidene]- α -D-ribofuranose (21, 77%) and only traces of the 3-indolyl compound 22

The properties of 19 and 21 are different from those of O-acylated 1-ribo-furanosylindoles For example, the $J_{1,2}$ values 13 for indole nucleosides are 5 5–7 5 Hz, but the $J_{1,2}$ values for 19, 21, and its derivatives 23–25 are \sim 4 Hz (Table V) Debenzoylation of 19 or 21 with methanolic ammonia gave 23 or 24, respectively, and acetylation of 23 yielded 25 The p m r spectrum of 25 revealed two acetyl singlets at high field and a singlet for phenyl protons at δ 7 31 (Table V) Treatment of 19, 23, or 25 with acetone–5M sulphuric acid gave 6-nitroindole Under these conditions, 6-nitro-1- β -D-ribofuranosylindole and its O-acylated derivatives were stable

Treatment of 20 with methanolic ammonia at 4° effected monodebenzoylation and gave 26 (cf ref 14), but 1,2-O-[6-nitroindol-3-yl(phenyl)methylidene]- α -D-ribofuranose 27 was formed at 25° The p m r spectra of 20, 26, and 27 contain no signals for H-3 (Table V) The 1 r spectra contain NH absorbances at 3360 cm⁻¹ Treatment of 20 with acetone-10m sulphuric acid gave 3-benzoyl-6-nitroindole, the mass spectrum of which contained signals at m/e 266 (M⁺), 189 (M⁺ — Ph), 143 (M⁺ — Ph — NO₂), 105 (PhCO), and 162 (B + 1) The c d spectrum of 19 showed negative and positive Cotton effects at 305 (θ 1 6 × 10³) and 360 nm (θ 0 7 × 10³), respectively

The electron-impact mass spectra of the O-acylated 1- and 3-indole nucleosides and the 1,2-O-(indol-1-yl)alkylidene and 1,2-O-(indol-3-yl)alkylidene derivatives were complex, showing low-intensity peaks for molecular ions. The formulae of compounds 2, 3, 5, 6, 8, 9, 16, 17, 19, 20, 22, and 25 were confirmed by high-resolution mass spectrometry. Fragmentation of the carbohydrate-heterocycle bond leads to $(S - X_1)$ and $(B + 1 - X_2)$ peaks. Peaks corresponding to m/e values of B + 28, B + 29, B + 30, and B + 43, as well as S and B + 1, are diagnostic. The data in Table VI show that the fragmentation of the N-nucleosides 2 and 3 and the C-nucleoside 8 agrees with that obtained previously for compounds of similar type 15,16 . The fragmentation of the ethylidene-heterocycle bond in the ethylidene derivatives 5, 6, 16, and 17 leads to peaks with m/e B + 43. For 17, this peak is rather prominent, due to stabilisation through the six-membered structure 28. The lack of such stabilisation is the reason for the absence of peaks with m/e B + 28 and B + 29 in the mass spectra of 5, 6, and 16. This pattern appears to be general for 1,2-O-(indol-1-yl)-alkylidene derivatives of sugars which possess a heterocycle attached to the ethylidene

TABLE VI	-	
STRUCTURAL CORRELATIONS FO	R DIAGNOSTIC IONS	FROM THE MASS SPECTRA

Compound	Relative	intensities				
	S	B+I	B+28	B + 29	B+30	B+43
2	100	3	13			9
3	100	20		17		6
5	100	17	_			4
6	100	14				1
8	100		20	14	100	10
16	100	33	_		-	3
17	100	18	8		_	40

moiety via an N-C bond Probably due to the tendency to eliminate benzoic acid, the differences in fragmentation pathways of 19 and 20 are not informative Many of the fragmentations suggested were supported by metastable peaks.

Atwood⁴ reported that 4-nitro-1- β -D-ribofuranosylindole was obtained by treatment of 4-nitroindole with 2,3,5-tri-O-benzoylribofuranosyl bromide in the presence of Ag₂O and molecular sieve in benzene and subsequent debenzoylation However, analytical data, the instability in acids, and the $J_{1,2}$ value (4 5 Hz) suggest that this compound was 1,2-O-[4-nitroindol-1-yl(phenyl)methylidene]- α -D-ribofuranose

EXPERIMENTAL

General — P m r spectra (internal Me₄Si) were recorded with a Jeol JNM-MH-100 instrument at 30° I r spectra were recorded with a Perkin-Elmer 283 instrument C d spectra were determined for solutions in ethanol with a Mark-III Dichrograph Optical rotations were determined with a Perkin-Elmer 241 polarimeter T1c was performed on Silufol, and p1c on a mixture of silica gel AA_{254} 5/40 μ m and silica gel A 40/100 μ m, O-acetylated compounds were developed in carbon tetrachloride-acetone (4 1) Detection was effected, as appropriate, with u.v. light or with 5% p-dimethylaminobenzaldehyde in ethanolic hydrogen chloride (N-indole derivatives immediately gave red spots, and C-indole derivatives gave brown spots after heating) Substances were eluted from silica gel by methanol Mass spectra (80 eV) were obtained with a Varian MAT-311A instrument, samples were introduced directly at 100–200° with an accelerating voltage of 3 kV and an emission current of 3 mA

Condensations with 2,3,4-tri-O-acetyl-β-L-arabinopyranosyl bromide — (a) With indole A mixture of indole (234 mg), Ag₂O (464 mg), dry benzene (100 ml), and molecular sieve (Wolfen Zeosorb 4A Kugelform) was heated to reflux in a stream of nitrogen Solvent (~20 ml) was evaporated and a solution of glycosyl bromide

(1016 mg) in dry benzene (20 ml) was added dropwise during 2 5 h. The mixture was boiled for 4 h with very slow distillation of solvent (\sim 15 ml), cooled, and filtered, and the insoluble material was washed with benzene. The combined filtrate and washings were concentrated and the residue was subjected to p l c, to give crude 7 (R_F 0 26), 1 (R_F 0 40, 110 mg, 14 7%), and crude 4 (R_F 0 47, \sim 20 mg).

Compound 1 had m p. 135–136° (from ethanol), $[\alpha]_D^{20} + 51^\circ (c4, \text{chloroform})^7$.

(b) With 5-nitroindole. 5-Nitroindole (324 mg) was treated with Ag_2O (464 mg) and glycosyl bromide (1016 mg) as described in (a) Crystallisation of the product from ethanol gave 5 (270 mg) The material in the mother liquor was subjected to p1c to give more 5 (R_F 0 42, 62 mg, total yield 39 5%), 2 (R_F 0 32, 70 mg, 8 3%), and crude 8 (R_F 0 22)

Compound 2 had m p $162-164^{\circ}$ (from xylene), $\lceil \alpha \rceil_{D}^{20} + 25^{\circ}$ (c 1, chloroform)⁸

(c) With 6-nitroindole The reaction of 6-nitroindole (324 mg), Ag_2O (464 mg), and glycosyl bromide (1016 mg), as described in (a), gave, after p 1 c, 6 (R_F 0 38, 340 mg, 40 4%), crude 9 (R_F 0 21) and 3 (R_F 0 29, 90 mg, 10 7%)

Compound 3 had m p. 157-158° (from xylene), $\lceil \alpha \rceil_D^{20}$ -44° (c 1, chloroform)⁸

- 1,2-O-[1-(5-N)troindol-1-yl) ethylidene]- β -L-arabinopyranose (11) To a solution of 5 (230 mg) in methanol (5 ml) was added methanolic 0 lM sodium methoxide, and the stirred reaction mixture was kept at 20° for 30 min, and then stirred with KU-2 (H⁺) resin, filtered, and concentrated The residue was subjected to p1 c with carbon tetrachloride-acetone (1 2), to give 11 (160 mg, 87 0%), R_F 0 58
- 1,2-O- $[1-(6-Nitroindol-1-yl)ethylidene]-<math>\beta$ -L-arabinopyranose (12) Treatment of 6 (340 mg) as described above for 5 afforded a crude product which crystallised from ethanol to yield 12 (210 mg, 77 2%)

3- α -L-Arabinopyranosylindole (13) — To a solution of crude 7 (obtained from 234 mg of indole) in methanol (5 ml) was added methanolic 0 1M sodium methoxide (0 5 ml) The reaction mixture was treated as described for 11, to give 13, which was purified by p1c with carbon tetrachloride-acetone (1 2) The product (51 mg, 10.3%) had R_F 0 17

 $3-\alpha$ -L-Arabinopyranosyl-5-nitroindole (14) — Similar treatment of crude 8 (obtained from 324 mg of 5-nitroindole) gave 14 (61 mg, 10 3%), R_F 0 17

 $3-\alpha$ -L-Arabinopyranosyl-6-nitroindole (15) — Similar treatment of crude 9 (obtained from 324 mg of 6-nitroindole) gave 15 (77 mg, 12 9%), $R_{\rm F}$ 0 15, as yellow needles from methanol

- $3-(2,3,4-Tri-O-acetyl-\alpha-L-arabinopyranosyl)$ indole (7) Acetylation of 13 (30 mg) in pyridine (15 ml) with acetic anhydride (1 ml), followed by concentration and p1c of the residue, gave 7 (36 mg, 79 6%)
- 5-Nitro-3-(2,3,4-tri-O-acetyl- α -L-arabinopyranosyl)indole (8) Acetylation of 14 (30 mg) gave 8 (28 mg, 65 1%)
- 6-Nitro-3-(2,3,4-tri-O-acetyl- α -L-arabinopyranosyl)indole (9) Acetylation of 15 (30 mg) yielded 9 (34 mg, 77 3%)

Reaction of 6-nitroindole and 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide — The reaction of 6-nitroindole (162 mg), Ag₂O (232 mg), and glycosyl bromide

(617 mg), as described above, followed by plc, gave two products (16 and 17) That (16) with R_F 0 42 was crystallised from chloroform-methanol to yield 16 (270 mg, 54 8%) A solution of crude 17 (R_F 0 25) in methanolic ammonia (5 ml) was kept at room temperature for 12 h Evaporation of the solvent and trituration of the residue with chloroform and methanol gave 3-acetyl-6-nitroindole (35 mg, 17 1%), v_{max} 1636, 1619 [CO, C(2)=C(3)], and 3108 cm⁻¹ (NH) Mass spectrum m/e 204 (M⁺), 189 (M⁺ — Me), and 143 (M⁺ — Me — NO₂).

Anal Calc for $C_{10}H_8N_2O_3$ 0 $5H_2O$ C, 56 3, H, 4 3, N, 13 1 Found C, 56 5, H, 4 2, N, 13 1

1,2-O-[I-(6-Nitroindol-I-yl)ethylidene]- α -D-glucopyranose (18) — A solution of 16 (90 mg) in methanolic ammonia (5 ml) was kept at room temperature for 12 h and then concentrated, and the residue was subjected to plc with carbon tetrachloride-acetone (3 1). Further chromatography of the major product in carbon tetrachloride-acetone (1 2) gave 18 (62 mg, 87 3%), $R_{\rm F}$ 0 69

Reactions of 2,3,4-tri-O-benzoyl-D-ribofuranosyl bromide. — (a) With 6-nitro-indole 6-Nitroindole (324 mg), glycosyl bromide (obtained from 1 512 g of 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose), and Ag_2O (464 mg) were treated as described above, to give 19 (R_F 0 50, 960 mg, 79 1%) and crude 20 (R_F 0 34, 240 mg)

- (b) With indole The reaction of indole (117 mg), glycosyl bromide (obtained from 756 mg of precursor), and Ag_2O (232 mg), as described above, gave 21 (430 mg, 766%), R_F 0 46
- 1,2-O-[6-Nitroindol-1-yl(phenyl)methylidene]- α -D-ribofuranose (23) Deacetylation of 19 (620 mg) with methanolic ammonia (10 ml), as described for 18, gave, after p l c (carbon tetrachloride-acetone, 2 1), 23 (220 mg), $R_{\rm F}$ 0 38
- 1,2-O-[Indol-1-yl(phenyl)methylidene]- α -D-ribofuranose (24) Debenzoylation of 21 (200 mg) with methanolic ammonia (5 ml), as described for 18, gave, after p1c. (carbon tetrachloride-acetone, 2 1), 24 (90 mg, 68 9%), $R_{\rm F}$ 0 13
- 5-O-Benzoyl-1,2-O-[6-nitroindol-3-yl(phenyl)methylidene]- α -D-ribofuranose (26) A solution of crude 20 (270 mg) in methanolic ammonia (5 ml) was kept at 4° overnight Work-up as described for 18 with p l c (carbon tetrachloride-acetone, 2·1) of the product, gave 26 (60 mg, 59% yield from 6-nitroindole), R_F 0.50.
- 1,2-O-[6-Nitroindol-3-yl(phenyl)methylidene]- α -D-ribofuranose (27) Debenzoylation of crude 20 (530 mg) at room temperature gave 27 (210 mg, 28 2%), $R_{\rm F}$ 0 18

REFERENCES

- 1 M N PREOBRAZHENSKAYA, Usp Khim, 36 (1967) 1760-1798, Chem Abstr, 68 (1968) 104846
- 2 M N Preobrazhenskaya, M M Vigdorchik, and N N. Suvorov, *Tetrahedron*, 23 (1967) 4653-4660
- 3 M N PREOBRAZHENSKAYA, YU A ZHDANOV, V P SHABUNOVA, AND N N SUVOROV, Zh Org Khim, 9 (1973) 2624–2625, Chem Abstr, 80 (1974) 83505
- 4 E S ATWOOD, Diss Abstr Int B, 36 (1976) 3952
- 5 YA V DOBRYNIN, T G NIKOLAEVA, V I MUKHANOV, I V YARTSEVA, T D MINIKER, L V EKTOVA, V N TOLKACHEV, N D CHKANIKOV, AND M N PREOBRAZHENSKAYA, Khim -Farm Zh., 5 (1978) 33–38

- 6 Z P SOFINA, G N PLATONOVA, N A LESNAYA, N M PERETOLCHINA, O Z SMETANKINA, A B SYRKIN, AND O V GZOVSKAYA, Khim -Farm Zh, 6 (1978) 93-95
- 7 A A MAGNIN, A M STEPHEN, AND R Y H DAVIES, Tetrahedron, 28 (1972) 3069-3085
- 8 V. I MUKHANOV, I V YARTSEVA, L V EKTOVA, N D CHKANIKOV, T D MINIKER, AND M N PREOBRAZHENSKAYA, Khim Geterotsikl Soedin, 2 (1979) 224–229
- 9 N K. Kochetkov and A. F Bochkov, in A Ya Khorlin (Ed), Metody issledovaniya uglevodov, Mir, Moscow, 1975, pp 362-366
- 10 N K KOCHETKOV AND A F BOCHKOV, in R BOGNAR AND V BRUCHER (Eds), Recent Developments in the Chemistry of Natural Carbon Compounds, Vol IV, Szantay, Budapest, 1971, pp 76-191
- 11 K POTTS AND D LILJEGREN, J Org Chem, 28 (1963) 3202-3205
- 12 R U LEMIEUX AND A R MORGAN, Can J Chem, 43 (1965) 2199-2204
- 13 V I Mukhanov, T D Miniker, and M N Preobrazhenskaya, Zh Org Khim, 13 (1977) 214-218
- 14 J A MONTGOMERY AND K HEWSON, J Heterocycl Chem, 7 (1970) 443-445
- 15 A A MAGNIN AND A M STEPHEN, Tetrahedron, 26 (1970) 4019-4026
- 16 D C DEJONGH, in W W ZORBACH AND R S TIPSON (Eds.), Synthetic Procedures in Nucleic Acid Chemistry, Vol 2, Wiley-Interscience, New York, 1973, pp. 145-176