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The copper-catalyzed asymmetric conjugate addi-
tion of Grignard reagents to a,b-unsaturated car-
bonyl compounds has established itself as a reliable
and efficient method for the preparation of chiral
building blocks that contain a new carbon–carbon
bond and a single stereogenic center.[1] The resultant
magnesium enolate formed during this process lends
itself towards the development of sequential pro-
cesses, where trapping of the enolate leads to the
formation of two or more stereocenters in a one-pot
procedure.[2] This strategy is particularly attractive
as a high degree of structural and stereochemical
complexity can be achieved in a sequential process
using small amounts of a chiral catalyst.[2b,3]

To develop new sequential transformations
compatible with the copper-catalyzed conjugate
addition of Grignard reagents, we explored the
synthetic utility of oxidative dearomatization pro-
cesses of phenol and naphthol compounds.[4] Oxi-
dative dearomatization is an important pathway in
the biosynthesis of many natural products[5] and
likewise, it is a method regularly used in their
laboratory synthesis.[6] During the oxidative dearo-
matization event, the phenol reactivity changes
from nucleophilic to electrophilic. Subsequent nucleophilic
addition can afford chiral products from substrates that once
featured planar structures.[4b] Recently, the research groups of
Gaunt[7] and Jørgensen[8] employed an oxidative dearomatiz-
ation strategy of phenols in conjunction with enamine
catalysis for the synthesis of chiral phenol derivatives.

Our proposed reaction scheme comprises a naphthol (1)
bearing an ortho-tethered a,b-unsaturated carbonyl group
(Scheme 1). Conjugate addition to afford enolate 2, and
subsequent intramolecular oxidative coupling, involving a
naphtholate and an enolate, would yield a chiral spirocyclic
five- or six-membered ring compound (3).

One-pot transformations to yield chiral small molecules
displaying a high degree of skeletal complexity, diversity, and

functionality are a mainstay of diversity oriented synthesis.[9]

Our proposed process would provide, besides the spirocyclic
framework, two new carbon–carbon bonds and three con-
tiguous stereocenters—including one quarternary stereocen-
ter—in a single transformation (Scheme 2). The products are
architecturally complex, possessing optically active cyclo-
hexenone and spirocyclic moieties, both of which have been
used as intermediates in the synthesis of natural products and
pharmaceuticals (see Scheme 1).[10, 11] Substituents R2 and R3

are easily varied, depending on the substrate or Grignard
reagent employed. Product 3 also contains a number of
functional groups, including an a,b-unsaturated ketone and
two carbonyl units, which are amenable to further trans-
formations such as [4+2] cycloadditions as well as 1,4- and
1,2-additions.

Scheme 1. Proposed conjugate addition/oxidative dearomatization of naphthols
and targets accessible from this approach.

Scheme 2. Features of product 3.
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Despite existing strategies for the synthesis of chiral
molecules through oxidative dearomatization/nucleophilic
addition,[12] to the best of our knowledge, this is the first
method to use the enolate intermediate of a catalytic
asymmetric conjugate addition of Grignard reagents.[13]

Our initial investigations focused on 2-naphthol-based
substrate 4 (Scheme 3). We first needed to optimize the
reaction conditions for the copper-catalyzed conjugate addi-
tion of EtMgBr to 4. Under slightly modified conditions, 5 was
isolated in 84 % yield and 88 % ee, with an S configuration at
the stereocenter (see below).[14–16]

Our preliminary experiments for the sequential conjugate
addition/oxidative cyclization reaction gave highly promising
results (Scheme 4).

Under racemic reaction conditions, the conjugate addition
of EtMgBr to 4 was followed by the addition of copper(II) 2-
ethylhexanoate as an oxidant,[13a–d, 17] in the same pot
(Scheme 4). The desired spirocyclic product 6 was obtained
in 59% yield upon isolation, as a single diastereomer. Under
the asymmetric reaction conditions employing (R)-binap as
the chiral ligand, the same transformation afforded product 6
with high yield (69%) and 88% ee. Further screening of
oxidizing reagents (other sources of CuII, FeIII, phenyliodine-
(III) diacetate, and phenyliodine (III) bis(trifluoroacetate))
did not improve on these results. The enantiomeric excess of 6
matches exactly that of 5 obtained under the same reaction
conditions for the conjugate addition (see Scheme 3). The
high diastereoselectivity (> 20:1 d.r.) achieved in the cycliza-
tion to 6 suggests that once the first stereocenter is established
during the conjugate addition, it controls the formation of the
two subsequent stereocenters.

We next focused our efforts on the scope of the reaction
(Table 1). Linear alkyl Grignard reagents provided the
desired products in good to excellent yields (entries 1–3)
and good ee (entries 1–3, 5, and 6). The addition of iPrMgBr
proceeded in good yield, but with lower enantioselectivity,

which is common for this particular Grignard reagent in the
copper-catalyzed asymmetric conjugate addition reaction
(entry 4). Electron-withdrawing (entry 8) or electron-donat-
ing (entry 9) groups in the 6 position of the naphthol core
were both compatible under the reaction conditions, and gave
the cyclized products in good yields and enantioselectivities.
The use of a Grignard reagent bearing a terminal olefin
(entry 5), MeMgBr (entry 6),[18] and PhMgBr (entry 7)[19]

afforded the products in lower yields either as a result of
the reactivity of the Grignard reagent (entries 6 and 7) or
instability towards the oxidative conditions (entry 5). Low or
no enantioselectivity with PhMgBr in conjugate addition
reactions is also common.[1] Finally, cyclization of substrate 17
to afford a six-membered spirocyclic ring proceeded in a
lower yield than the formation of a five-membered ring, but
with the highest enantioselectivity (94 %) achieved with this
method (entry 10). Although it would appear at first glance
that yields could be improved in a few cases, the high degree
of structural and stereochemical complexity introduced in a
single-pot operation makes this method highly valuable.
Furthermore, current oxidative dearomatization processes
are difficult, prone to side reactions, and are generally lower
yielding.[20]

To explore the synthesis of different spirocyclic architec-
tures using this method, we employed 1-naphthol substrate
19, with the pendant a,b-unsaturated ester in the 2-position.
The desired product 20 was obtained in 41% yield and with a
diastereoselectivity of 8:1 (Scheme 5). The enantioselectivity
toward the major isomer was 89 % ee.[21]

Scheme 3. Optimized conditions for the conjugate addition of EtMgBr
to substrate 4. binap =2,2’-bis(diphenylphosphino)-1,1’-binaphthyl.

Scheme 4. Initial result for the sequential conjugate addition/oxidative
cyclization reaction.

Table 1: Reaction scope of substituted 2-naphthols.

Entry[a] Substrate R2 Product (d.r.[b]) Yield [%][c] ee [%][d]

1 4 Et 6 (>20:1) 69 88
2 4 hexyl 7 (>20:1) 84 80
3 4 CH2CH2Ph 8 (>20:1) 51 80
4 4 iPr 9 (>20:1) 70 54
5 4 but-3-enyl 10 (>20:1) 20 87
6 4 Me 11 (>20:1) 32 82
7 4 Ph 12 (>20:1) 8 0
8 13 Et 14 (>20:1) 63 83
9 15 Et 16 (>20:1) 63 89
10 17 Et 18 (>20:1) 13 94

[a] Reaction conditions: 4 (0.25 mmol) in CH2Cl2 (0.8 mL) was added
over 1 h to a solution of CuI (5 mol%), (R)-binap (7.5 mol%), and
Grignard reagent (2.5 equiv) in CH2Cl2 (0.4 mL) at �40 8C. The reaction
mixture was stirred at �40 8C for 4–12 h, and solid copper(II) 2-
ethylhexanoate (2.5 equiv) was added to the reaction mixture and
warmed to RT. [b] Determined by 1H NMR analysis of the crude reaction
mixture. [c] Yield of isolated product. [d] Determined by HPLC on a chiral
stationary phase.
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To determine the absolute configuration of the spirocyclic
products, we converted the ethyl ester of bromo-substituted
product 14 into the corresponding carboxylic acid 22. Slow
diffusion of hexanes into a solution of 22 in ethyl acetate gave
crystals suitable for X-ray diffraction, which established the
absolute configuration of 22 (Figure 1).[22]

The X-ray crystal structure of 22 verifies the trans config-
uration between the ethyl and carboxylic acid substituents on
the five-membered ring. The vicinal proton coupling constant
measured for the trans substituents on the cyclopentane ring
of 22 is J = 9.4 Hz. The analogous coupling constant for 14
(the ester precursor of 22) is J = 9.8 Hz. Similarly, the vicinal
coupling constant of these two protons for all the spirocyclic
products (6–12 and 16) have values between J = 9.8–10.0 Hz.
Owing to the similarity between the NMR spectra, we assume
the absolute configuration to be the same for all products 6–
12 and 16.

The stereoselectivity in the formation of the quaternary
center can be rationalized by comparison of the three-
dimensional structures of 14 and its diastereomer 23
(Figure 2). Compound 14 (Figure 2) depicts the same absolute
configuration as compound 22 (Figure 1). The three-dimen-
sional structure of 14 shows the ester substituent positioned
under the aromatic ring, where minimal interaction between
all substituents can be achieved. This is the preferred
diastereomer from the ring-closing reaction. In contrast, the
three-dimensional structure of compound 23 clearly shows
that if this diastereomer were to form, there would be both an
electronic and steric clash between the carbonyl oxygen atom
of the ethyl ester and the carbonyl unit of the cyclohexenone
moiety.

The precise mechanism of the transformation described in
here is not yet known. The oxidative coupling or dimerization
of enolates with copper(II) 2-ethylhexanoate has been shown
by Baran and co-workers to operate via a single-electron

transfer (SET) mechanism, where both enolates may be
bound to a single copper(II) atom.[13d] Recent work by
Roithov� and Milko on the oxidative dimerization of
naphthol, mediated by copper(II), indicates that it occurs
via dinuclear clusters, where both naphthol units are activated
towards dimerization by binding to their own copper(II)
center through the phenoxy group.[23] On the other hand, for
the oxidation and dearomatization of phenols, an ionic
mechanism was proposed by Quideau and co-workers in
which an oxocyclohexadienylium cation is the intermediate at
which nucleophilic substitution occurs.[4b] So far, we are
unable to distinguish between an ionic or radical mechanism
for this reaction.

The benzofused spirocyclic cyclohexenone framework
produced by this new method is present in a variety of
pharmacologically active compounds (Scheme 1) such as
potential ACAT inhibitors (A),[24] inhibitors of HIF propyl
hydroxylase (B),[25] and RNA binding agents (C), which may
have potential in developing therapeutic agents for HIV.[26]

Our method would allow for easy access to chiral analogues of
these compounds, which now either are devoid of chirality or
require numerous synthetic steps to access them.

In summary, we have developed a sequential asymmetric
conjugate addition/oxidative cyclization of naphthol com-
pounds for the synthesis of highly functionalized benzofused
spirocyclic cyclohexenones. A high degree of molecular
complexity was achieved in this one-pot transformation,
along with the formation of three contiguous stereocenters.
The chiral catalyst controls the configuration of the first
stereocenter, achieving ee values of up to 94% and the
subsequent two stereocenters are formed with high diaste-
reoselectivity (up to > 20:1), which is governed by the first
stereocenter.

Experimental Section
General procedure for the copper(I)-catalyzed asymmetric conjugate
addition/oxidative dearomatization reaction (Table 1): In an oven-
dried Schlenk tube under nitrogen, CuI (2.38 mg, 13 mmol, 5 mol%)
and (R)-binap (6.38 mg, 19 mmol, 7.5 mol%) in CH2Cl2 (0.4 mL) were
stirred at RT for 15–30 min until a clear yellow solution resulted. The
catalyst solution was cooled to �40 8C and to this, ethylmagnesium

Scheme 5. Reaction of 1-naphthol-based substrate bearing a pendant
a,b-unsaturated ester.

Figure 1. Ball-and-stick structure of 22. (One half of a dimeric species
shown.)

Figure 2. Comparison of the 3D structures of 14 and diastereomer 23.
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bromide (0.63 mmol, 2.5 equiv) was added. The reaction mixture was
stirred at �40 8C for an additional 10 min before a solution of the
naphthol substrate (0.25 mmol, 1.0 equiv) in CH2Cl2 (0.8 mL) was
added slowly to the reaction mixture over 1 h by syringe pump. The
resulting reaction mixture was stirred at �40 8C for 4–16 h until the
reaction was complete (as evident by TLC). Copper(II) 2-ethyl-
hexanoate (220 mg, 0.63 mmol, 2.5 equiv) was added to the reaction
mixture in one portion at �40 8C. The mixture was further diluted
with CH2Cl2 (0.5–2.0 mL) if necessary, allowed to warm to RT and
stirred at RT for an additional 5–16 h. The reaction was quenched
with saturated aqueous ammonium chloride (5 mL) and the organic
layer was separated. The aqueous phase was extracted with CH2Cl2

(2 � 5 mL). The combined organic layers were washed with a 10%
aqueous ammonia solution and brine, separated, dried over MgSO4,
filtered, and the solvent removed under reduced pressure. The crude
product was purified by column chromatography on silica gel using
pentane/diethyl ether. The ee value was determined by HPLC on a
chiral stationary phase.
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