Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and in vitro antibacterial activity of quinolone/naphthyridone derivatives containing 3-alkoxyimino-4-(methyl)aminopiperidine scaffolds

Kai Lv^{a,†}, Jinwei Wu^{b,†}, Jian Wang^c, Mingliang Liu^{a,*}, Zengquan Wei^a, Jue Cao^a, Yexin Sun^a, Huiyuan Guo^a

^a Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China ^bZhejiang Starry Pharmaceutical Co., Ltd, Xianju 317300, China

^c The No. 5 Hospital of Harbin, Harbin 150040, China

ARTICLE INFO

Article history: Received 5 November 2012 Revised 3 January 2013 Accepted 15 January 2013 Available online 24 January 2013

Keywords: Quinolone/naphthyridone Synthesis Antibacterial activity

ABSTRACT

We report herein the synthesis of a series of 7-[3-alkoxyimino-4-(methyl)aminopiperidin-1-yl]quinolone/naphthyridone derivatives. In vitro antibacterial activity of these derivatives was evaluated against representative strains, and compared with ciprofloxacin (CPFX), levofloxacin (LVFX) and gemifloxacin (GMFX). The results reveal that all of the target compounds 19a-c and 20 have considerable Gram-positive activity, although they are generally less active than the reference drugs against the Gram-negative strains with some exceptions. Especially, novel compounds 19a2, 19a4 and 19a5 were found to show strong antibacterial activity (MICs: <0.008-0.5 µg/mL) against all of the tested 15 Gram-positive strains including MRSA, LVFX- and GMFX-resistant MRSE, and CPFX-, LVFX- and GMFX-resistant MSSA.

© 2013 Elsevier Ltd. All rights reserved.

Since the discovery of norfloxacin (NFLX) by Koga et al. in the early 1980s,¹ fluoroquinolones/naphthyridones, as important weapons in our antibacterial arsenal,² have been used mainly to fight both community-acquired and serious hospital-acquired infections.³ These antibiotics depict several properties such as excellent bioavailability, good tissue penetrability, and a relatively low incidence of adverse and toxic effects.⁴ During the past 30 years, a great number of fluoroquinolone/naphthyridone derivatives have been designed and synthesized, and a large body of structureactivity relationship (SAR) has been accumulated. The C-4 carbonyl and C-3 carboxylic groups are known to be essential for antibacterial activity. Cyclopropyl and methoxyl (or hydrogen) groups are generally accepted as the optimal substituents at the N-1 and C-8 positions of fluoroquinolones, respectively.⁵ And for fluoronaphthyri dones, the optimal substituent at the N-1 position can be cyclopropyl [gemifloxacin (GMFX)] or 2,4-diflurophenyl group (tosufloxacin, trovafloxacin). Moreover, the basic group at the C-7 position is the most adaptable site for chemical change and an area that greatly influences their potency, spectrum and safety, and the presence of a five- or six-membered nitrogen heterocycle including pyrrolidine, piperazine and piperidine at this position is particularly structural feature of important fluoroquinolones/naphthyridones on the market,⁶ such as ciprofloxacin (CPFX), levofloxacin (LVFX), GMFX and moxifloxacin, and so on.

Recently, oxime-functionalized pyrrolidines as novel C-7 substituents have attracted great attention and led to the discovery of some new fluoronaphthyridones, such as GMFX, zabofloxacin (DW224a) and DW286. All of the three show excellent antibacterial activity and pharmacokinetic profiles which emphasize the importance of the oxime group with respect to biological activity.7-9

As part of an ongoing program to develop novel fluoroquinolones/naphthyridones, we have focused our attention on introduction of an oxime functional group to azetidine or piperidine ring containing an amino/aminomethyl moiety, as side chains at the C-7 position.^{10–12} IMB-070593 (Fig. 1), a candidate discovered in

Figure 1. Structures of some fluoroquinolones/fluoronaphthyridones.

^{*} Corresponding author. Tel.: +86 10 63036965; fax: +86 10 63036965.

E-mail address: lmllyx@yahoo.com.cn (M. Liu).

These authors contributed equally to the work.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2013.01.048

Scheme 1. Synthesis of piperidine derivatives 6 and 11a-c. Reagents and conditions: (i) KBH₄, EtOH, rt, 2 h; (ii) NH₃:H₂O, DMF, H₂O, rt, 36 h; (iii) NaBrO, (Boc)₂O, H₂O, EtOH, 4 h, 80 °C; (iv) HCl gas, CH₂Cl₂, rt, 3 h; (v) DPCP, Et₃N, DMSO, CH₂Cl₂, -25 °C, 5 h; (vi) HONH₂·HCl, pyridine, rt, 5 h; (vii) R¹I, K₂CO₃, DMF, rt, 5 h; (viii) R²I, NaH, MeCN, rt, 4 h.

Scheme 2. Synthesis of the target compounds 19a-c and 20 (See Table 1 for structures). Reagents and conditions: (x) Et₃N, CH₃CN, 50 °C, 5 h; (xi) (1) Et₃N, CH₃CN, 50 °C, overnight. (2) 5% NaOH, 50 °C, 1 h.

our lab, was found to have better in vitro antibacterial activity than LVFX and GMFX, and good in vivo activity comparable to GMFX and MXFX against Gram-positive strains including methicillinresistant *Staphylococcus aureus* (MRSA) and methicillin-resistant *Staphylococcus epidermidis* (MRSE).¹¹ IMB-070593 in late pre-clinical stage of development currently, was also observed to possess extremely low phototoxicity, hepatotoxicity and cardiac toxicity (unpublished). Moreover, a preliminary SAR study shows that oxime-containing fluoroquinolones have significantly increased activity, when directly compared to the corresponding fluoronaphthyridones (IMB-070593 vs IMB-070595, Fig. 1).¹¹

Dang et al. reported a series of fluoronaphthyridone derivatives containing 3-alkoxyimino-4-(methyl)aminopiperidine moieties.

The most active compound DZH Figure 1 shows excellent in vitro antibacterial activity against some important pathogens such as methicillin-sensitive *S. aureus* (MSSA), *Staphylococcus pneumoniae*, *Enterococcus faecalis*, and *Pseudomonas aeruginosa*, which is even better than vancomycin and GMFX. However, it is a pity that 1-cyclopropyl fluoronaphthyridone was chosen as the only nucleus in this study.¹³

The above research results intensified our interest, and considering the fact small structural changes of quinolone/naphthyridone nuclei usually cause dramatic improvement in antibacterial activity (such as NFLX vs CPFX and ofloxacin vs LVFX), it was decided to synthesize a series of 3-alkoxyimino-4-(methyl)aminopiperidinecontaining derivatives in which the selected nuclei were common

In vitro antibacterial activity of compounds **19a–c** and **20** against Gram-positive strains

Table 2

Table 1

Structures and physical data of compounds **19a–c** and **20**

^a Melting points are uncorrected.

quinolones and other naphthyridones instead of the 1-cyclopropyl fluoronaphthyridone in Dang's study. It could be anticipated that some of these derivatives (such as 8-methoxylfluoroquinolone) should have superior antibacterial activity to DZH. Our primary objective was to optimize the potency of these compounds against clinical familiar pathogens (especially Gram-positive ones). A preliminary SAR study is also explored to facilitate the further development of the quinolones/naphthyridones.

Dang et al. reported a synthetic route of piperidine derivatives **11a–c** via a 12-step procedure with low total yield.¹³ To overcome its disadvantages, a simpler route for synthesis of **11a–c** was developed in this work.

Detailed synthetic pathways to **11a–c** and quinolones/naphthyridones **19a–c** are depicted in Schemes 1 and 2, respectively. By the way, three known compounds **19a1** (**DZH**), **19b1** and **19c1**¹³ were also prepared in this work for the purpose of comparing antibacterial activity and exploring SAR.

Reduction of readily available 1-*tert*-butyl 4-ethyl 3-oxopiperidine-1,4-dicarboxylate **1** with KBH₄ in ethanol gave hydroxyl ester **2**, which upon aminolysis in NH₃·H₂O–DMF (catalytic amount) solution yielded hydroxyl amide **3**. However, Hoffmann degradation of the amide **3** used commercially sodium hypochlorite met no success.

Degradation of **3** was then conducted successfully by freshly prepared sodium hypobromite instead of sodium hypochlorite, and subsequent protection of the resulting primary amine by treatment with di-*tert*-butyl dicarbonate (Boc₂O) gave the desired *bis*-Boc protected amino alcohol **4**. Unexpectedly, a new compound containing a lactam ester moiety was simultaneously separated and its chemical structure (shown as **5**) was established by ¹H NMR and MS. Compound **6** was prepared from **5** via deprotection of the Boc group by pumping dry hydrogen chloride gas in dichloromethane

Strains	Compd	MIC (µg/m	(T)															
	19a1	19a2	19a3	19a4	19a5	19a6	19a7	19b1	19b2	19b3	19b4	19c1	19c2	19c3	20	GMFX	LVFX	CPFX
S. a ATCC259233	0.5	0.25	0.25	0.25	0.125	0.5	0.125	0.5	0.125	0.5	0.5	0.25	0.06	0.5	1	<0.008	0.125	0.25
MSSA 12-6	0.25	0.06	0.25	0.03	0.03	2	0.5	0.25	0.25	1	0.5	0.25	0.25	0.5	1	0.03	0.125	0.125
MSSA 12-7	0.5	0.125	1	0.06	0.06	4	1	32	32	128	128	32	8	64	128	4	32	64
MSSA 12-10	0.25	0.06	0.25	0.03	0.03	2	0.5	0.5	0.125	>128	0.125	2	0.125	0.25	0.5	0.03	0.06	0.25
MRSA 12-3	1	0.25	1	0.06	0.03	4	1	4	0.25	1	0.5	0.25	0.25	1	2	0.03	0.125	0.125
MRSA 12-13	1	0.25	1	0.06	0.03	4	1	4	0.25	1	0.5	0.25	0.25	1	2	0.015	0.125	0.125
MRSA 12-15	1	0.25	1	0.06	0.03	4	1	4	0.25	1	0.5	0.25	0.25	1	2	0.03	0.125	0.125
MSSE 12-1	0.5	0.25	0.5	0.25	0.125	8	0.5	1	0.5	0.5	0.5	0.5	0.25	0.5	1	0.06	0.25	0.06
MSSE 12-2	2	0.5	2	0.5	0.5	16	16	4	1	2	1	2	0.5	1	2	0.25	0.25	0.5
MSSE 12-3	0.5	0.25	0.5	0.25	0.125	8	0.5	1	0.5	0.5	0.5	0.5	0.25	0.5	1	0.06	0.25	0.06
MRSE 12-5	0.25	0.06	0.125	0.015	0.015	2	0.5	1	1	0.5	1	2	0.25	0.5	0.5	0.015	0.125	0.015
MRSE 12-33	0.06	0.125	<0.008	<0.008	0.015	4	8	0.25	1	8	1	4	2	0.5	1	4	8	0.015
MRSE 12-35	0.25	0.06	0.125	0.015	0.015	2	0.5	1	1	0.5	1	2	0.25	0.5	0.5	0.008	0.125	0.015
S. p. 12-2	0.5	0.125	1	0.06	0.06	4	1	0.25	0.25	1	0.5	0.25	0.25	0.5	2	0.25	0.125	0.5
S. p. 12-5	0.5	0.125	1	0.06	0.06	4	1	0.25	1	8	1	4	2	0.5	0.5	0.25	0.125	0.5
GMFX, gemifloxacin;	LVFX, leve	ofloxacin; C	CPFX, ciprofi	loxacin: S. d	a., Staphylo	coccus aur	eus; MSSA.	Methicillir	n-sensitive	Staphylococc	us aureus; M	IRSA, Meth	icillin-resis	tant Staphy	vlococcus c	ureus; MSS	E, Methicill	in-sensitive
Staphylococcus epidern	nidis; MRS	E, Methicill	in-resistant	Staphylococ	cus epiderm	vidis; S. p., 2	Streptococcu	is pneumon	ia.									

(Scheme 1). Given the oxazolidinone moiety of **5** is one of the key constituents of linezolid, it was also decided to synthesized a naph-thyridone derivative **20** containing lactam ester **6** (Scheme 2) so that more SAR could be explored.

The oxime **8** was obtained using 'one-pot' method from the alcohol **4** via Swern oxidation¹⁴ involving phenyl dichlorophosphate (DPCP) as the electrophilic activator, and subsequent condensation of the resulting ketone **7** with hydroxylamine hydrochloride in the presence of pyridine. Nucleophilic substitution of **8** with iodoalkanes in the presence of anhydrous K₂CO₃ gave alkyloximes **9a–b**, which upon methylation by reaction with iodomethane in the presence of NaH produced compounds **10a–b**. Deprotection of the *bis*-Boc groups on the amines **10a–b** and **9a** was carried out in a similar manner as for the preparation of **6** to afford the piperidine derivative dihydrochlorides **11a–b** and **11c**, respectively (Scheme 1).¹⁵

Finally, the target compounds **19a–c** and **20** were obtained by coupling piperidine derivatives **11a–c** and **6** with various compounds containing naphthyridone and quinolone cores according to well-established literature procedures.¹⁶ In the case of quinolone/naphthyridone derivatives **19a1**, **19a5**, **19a6**, **19b1**, **19c1** and **20**, condensations of **12–14** with **6** and **11a–c** were performed in the presence of triethylamine. However, for **19a2–4**, **19a7**, **19b2–4**, **19c2** and **19c3**, boric chelates **15–18** were required to increase reactivity (Scheme 2). Table 1 shows structures and physical data of compounds **19a–c** and **20**.¹⁷

Because the oxime group is present in the *E* or *Z* configuration, it was necessary to determine the geometries of all the oxime target compounds **19a–c**. Unfortunately, we were unable to prepare X-ray-quality single crystals of any oxime intermediate or product. Nonetheless, we can speculate that the oxime group of the target compounds is present in a single configuration of *E* or *Z* isomer due to signal singleness of the piperidine ring of the compounds observed in the ¹H NMR spectra.

The target compounds **19a–c** and **20** were evaluated for their in vitro antibacterial activity against representative strains using standard techniques.¹⁸ Minimum inhibitory concentration (MIC) is defined as the compound concentration required to give complete inhibition of bacterial growth, and MIC values of **19a–c** and **20** against Gram-positive and Gram-negative strains, along with those of the three standard drugs GMFX, LVFX and CPFX for comparison, are listed in Tables 2 and 3, respectively.

Our results indicate that the derivatives **19a–c** and **20**, like the reference drugs, have potential broad-spectrum antibacterial

activity. Their MIC values against Gram-positive strains are generally smaller than those against Gram-negative ones. Although **19a–c** and **20** are less active than GMFX, LVFX and CPFX against the Gram-negative strains with some exceptions, all of them have considerable activity against the Gram-positive ones. Novel compounds **19a2**, **19a4** and **19a5** exhibit strong activity (MICs: <0.008–0.5 µg/mL) against all of the tested fifteen Gram-positive strains including MSSA, MRSA, methicillin-susceptible *S. epidermidis* (MSSE), MRSE, and *S. pneumoniae*. It is especially worth to note that **19a2**, **19a4** and **19a5** also display excellent activity (MICs: <0.008–0.125 µg/mL) against GMFX-, LVFX- and CPFX-resistant MSSA (MICs: 4–64 µg/mL), and GMFX- and LVFX-resistant MRSE (MICs: 4–8 µg/mL).

In the case of Gram-positive strains, the activity of the nuclei in this study is in the order 2.4-difluorophenyl-1.8-naphthyridone \approx 1-cvclopropyl-6.8-difluoroquinolone > 1-cvclopropyl-8-me thoxylfluoroquinolone > LVFX nucleus > 1-ethvl-6.8-difluoroau inolone when 3-alkoxyimino-4-(methylamino)piperidines serve as the C-7 side chains. Introduction of a methyl group on the amino moiety of the piperidine ring seems to contribute to the antibacterial activity (19a1 vs 19c1, 19a2 vs 19c2, 19a3 vs 19c3), while replacement of the fluorine with hydrogen at C-6 position results in decreased activity (19a1 vs 19a6). Moreover, fluoroquinolones featuring methyloxime-incorporated piperidino-substitution at C-7 position are more active than the corresponding analogs containing ethyloxime (19a1 vs 19b1, 19a2 vs 19b2, 19a3 vs 19b3, 19a4 vs 19b4). It is interesting that 1-cyclopropylfluoronaphthyridones do show significantly decreased activity when compared to the corresponding 8-methoxylfluoroquinolones (19a1 vs 19a2, 19b1 vs 19b2, 19c1 vs 19c2), which is consistent with the SAR in our previous study.¹¹ Anyway, the validity of our strategy has been supported by the data listed in Table 2, especially two quinolone derivatives (19a2, 19a4) and one naphthyridone derivatives (19a5) possessing better Gram-positive activity than the most active compound DZH (19a1) reported in Dang's study.¹³

Notably, the naphthyridone derivative containing a lactam ester moiety at C-7 position (**20**) has also good activity with the MIC values of $0.5-2 \mu$ g/mL against all of the Gram-positive strains except MSSA 12-7. Furthermore, it was found to be comparable to or slightly less active than the corresponding compounds with the same naphthyridone nulei (**19a1, 19b1, 19c1**). This implies the existence of a free amino group on the piperidine ring at C-7 position is not always essential for antibacterial activity of the naphthyridones.

Table 3			
In vitro antibacterial ac	tivity of compounds	19a-c and 20 aga	inst Gram-negative strain

Strains	Compd MIC (µg/mL)																	
	19a1	19a2	19a3	19a4	19a5	19a6	19a7	19b1	19b2	19b3	19b4	19c1	19c2	19c3	20	GMFX	LVFX	CPFX
E. co. ATCC25922	0.125	0.125	0.25	0.03	0.125	0.5	0.5	4	16	16	16	32	4	8	1	0.015	0.015	0.008
E.co. 12-1	4	4	8	2	8	64	8	32	8	4	8	2	2	4	16	0.125	0.5	0.125
E.co. 12-4	>128	>128	128	>128	>128	>128	>128	>128	>128	>128	>128	>128	128	>128	>128	16	8	8
E.co. 12-5	>128	128	128	>128	>128	>128	>128	>128	>128	>128	>128	>128	64	128	>128	16	8	2
E. co.ª12-1	>128	>128	128	>128	>128	>128	>128	>128	>128	>128	>128	>128	64	128	>128	8	16	32
E.co. ^a 12-2	>128	>128	>128	>128	>128	128	>128	>128	>128	>128	>128	64	64	>128	>128	16	16	16
E.co. ^a 12-4	16	32	16	128	32	64	128	32	32	64	16	32	16	16	64	2	0.5	2
К. р. 12-1	0.5	1	1	0.5	1	2	4	4	4	2	2	0.25	2	8	2	0.03	0.06	0.03
К. р. 12-2	0.5	2	1	0.5	1	2	4	4	4	1	1	0.25	2	1	2	0.06	0.06	0.125
К. р. 12-4	0.125	0.5	0.5	0.5	1	2	1	2	2	1	1	0.125	0.5	1	32	0.06	0.25	0.125
K. p. ^a 12-1	16	16	16	8	64	128	16	64	32	8	16	8	8	0.5	128	2	1	2
К. р. ^а 12-2	16	16	16	8	32	>128	32	>128	32	32	16	8	16	16	>128	2	8	4
K. p. ^a 12-4	0.125	0.5	0.5	0.5	1	2	1	>128	>128	>128	>128	>128	64	128	128	2	4	4
P. a. ATCC27853	2	8	4	4	8	8	8	4	16	32	16	32	4	32	8	1	1	0.5
P. a. 12-1	16	16	8	8	4	16	8	128	16	16	16	8	16	16	16	8	4	0.125
P. a. 12-2	16	16	8	8	8	8	8	128	16	8	16	8	16	16	16	16	16	16

GMFX, gemifloxacin; LVFX, levofloxacin; CPFX, ciprofloxacin; *E. co., Escherichia coli*; *K. p., Klebsiella pneumoniae*; *P. a., Pseudomonas aeruginosa.* ^a Extended-spectrum β-lactamase-producing.

In summary, a new synthetic route of 3-alkoxyimino-4-(methyl)aminopiperidine derivatives **11a-c** was developed in this study. A series of quinolone/naphthyridone derivatives containing these heterocyclic amines were synthesized and evaluated for their in vitro antibacterial activity, and a preliminary SAR was also explored. All of the target compounds 19a-c and 20 have considerable Gram-positive activity, although they are generally less active than the reference drugs against the Gram-negative strains with some exceptions. In especial, compounds 19a2, 19a4 and **19a5** were found to have strong activity (MICs: <0.008-0.5 µg/ mL) against all of the fifteen Gram-positive strains including MRSA, GMFX- and LVFX-resistant MRSE, and GMFX-, LVFX- and CPFXresistant MSSA.

Acknowledgments

This work was supported by the National S&T Major Special Project on Major New Drug Innovation (Number 2012ZX093010 02-001-017).

References and notes

- 1. Koga, H.; Itoh, A.; Murayama, S.; Suzue, S.; Irikura, T. J. Med. Chem. 1980, 23, 1358.
- 2. Feng, L. S.; Liu, M. L.; Wang, S.; Chai, Y.; Lv, K.; Shan, G. Z.; Cao, J.; Li, S. J.; Guo, H. Y. Tetrahedron 2011, 67, 8264.
- Wang, J. X.; Guo, Q.; Chai, Y.; Feng, L. S.; Guo, H. Y.; Liu, M. L. Chin. Chem. Lett. 3. 2010 21 55
- 4. Sharma, P. C.; Jain, A.; Jain, S.; Pahwa, R.; Yar, M. S. J. Enzyme Inhib. Med. Chem. 2010, 25, 577.
- Liu, M. L.; Guo, H. Y. World Notes Antibiot. 2006, 2, 69. 5
- 6. Chai, Y.; Liu, M. L.; Lv, K.; Feng, L. S.; Li, S. J.; Sun, L. Y.; Wang, S.; Guo, H. Y. Eur. J. Med. Chem. 2011, 46, 4267.
- 7. Hong, C. Y.; Kim, Y. K.; Chang, J. H.; Kim, S. H.; Choi, H.; Nam, D. H.; Kim, Y. Z.; Kwak, J. H. J. Med. Chem. 1997, 40, 3584.
- Kwon, A. R.; Min, Y. H.; Ryu, J. M.; Choi, D. R.; Shim, M. J.; Choi, E. C. J. 8 Antimicrob. Chemother. 2006, 58, 684.
- Choi, D. R.; Shin, J. H.; Yang, J.; Yoon, S. H.; Jung, Y. H. Bioorg. Med. Chem. Lett. 9 2004. 14. 1273.
- 10. Lv, K.; Sun, Y. X.; Sun, L. Y.; Wei, Z. Q.; Guo, H. Y.; Wu, J. W.; Liu, M. L. ChemMedChem **2012**, 7, 1230.
- Wang, X. Y.; Guo, Q.; Wang, Y. C.; Liu, B. Q.; Liu, M. L.; Sun, L. Y.; Guo, H. Y. Acta 11. Pharm. Sin. 2008, 43, 819.
- Wang, J. X.; Zhang, Y. B.; Liu, M. L.; Wang, B.; Chai, Y.; Li, S. J.; Guo, H. Y. Eur. J. 12. Med. Chem. 2011. 46. 2421.
- Dang, Z.; Yang, Y.; Ji, R.; Zhang, S. Bioorg. Med. Chem. Lett. 2007, 17, 4523.
 Bisai, A.; Chandrasekhar, M.; Singh, V. K. Tetrahedron Lett. 2002, 43, 8355.
- To a stirring solution of 1 (13.55 g, 50 mmol) in ethanol (50 mL) was added 15. potassium borohydride (1.10 g, 20 mmol) at room temperature. The reaction mixture was stirred for 2 h at the same temperature, quenched with distilled water (100 mL), and extracted with ethyl acetate. The combined extracts were washed successively with water and saturated saline solution, dried over anhydrous MgSO4, and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography eluted with petroleum ether and ethyl acetate (V:V = 2:1) to afford $\mathbf{2}$ (12.28 g, 90.2%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ_{ppm} , 4.21–4.00 (5H, m), 2.97 (1H, d, J = 13 Hz), 2.88–2.81 (1H, m), 2.53 (1H, d, J = 11 Hz), 2.06–2.03 (1H, m), 1.73 (1H, dd, J_1 = 13 Hz, J_2 = 2 Hz), 1.45 (9H, s) ,1.27 (3H, t, J = 7 Hz). MS-ESI (m/z): 274 (M+H)⁺, 296 (M+Na)⁺. To a stirring solution of 2 (81.90 g, 300 mmol) in 25% ammonia solution (250 mL) was added dimethyl formamide (25 mL) at room temperature. The reaction mixture was stirred for 36 h at the same temperature, then cooled to 0 °C. The precipitate was filtered, washed with distilled water, and dried in vacuo to afford 3 (23.42 g, 32.5%) as a white solid, mp:133–135 °C. ¹H NMR (400 MHz, CDCl₃) δ_{ppm} : 5.63 (2H, s), 4.16–4.09 (3H, m), 2.94–2.81 (2H, m), 2.41 (1H, d, *J* = 11 Hz), 2.07 (1H, qd, *J*₁ = 12 Hz, *J*₂ = 3 Hz), 1.75–1.72 (1H, m), 1.46 (9H, s). MS-ESI (m/z): 245 (M+H)⁺, 267 (M+Na)⁺. To a stirring suspension of 3 (29.28 g, 120 mmol) in distilled water (300 mL) was added dropwise 10% sodium hypobromite solution (300 mL) at 5 °C for 1 h. The reaction mixture was stirred for 3 h at room temperature, and then 4 h at 80 °C. A solution of (Boc)2O (30.52 g, 140 mmol) in ethanol (50 mL) was added to the reaction mixture over a period of 30 min at 50 °C. The reaction mixture was stirred for 3 h at the same temperature. The precipitate was filtered, washed with distilled water, and dried in vacuo to afford 4 (9.5 g, 30.8%) as a white solid, mp: 133–136 °C. ¹H NMR (400 MHz, CDCl₃) δ_{ppm} : 4.96 (1H, s), 4.16 (1H, d, *J* = 14 Hz), 4.01 (1H, d, *J* = 14 Hz), 3.88 (1H, br s), 3.65 (1H, br s), 2.97 (1H, d, J) = 14 Hz = 14 Hz), 2.86–2.79 (1H, m), 1.97 (1H, br s), 1.72–1.65 (2H, m) ,1.45 (18H, s). J = 14 Hz), 2.86–2.79 (1H, III), 1.97 (1H, Or 3), 1.72 1.05 (20), 0.71 13 C NMR (100 MHz, CDCl₃) δ_{ppm} : 155.86, 155.43, 80.06, 79.47, 67.09, 50.61, 42.97, 28.33, 26.53. MS-ESI (m/z): 339 $(M+Na)^+$. The filtrate was extracted with ethyl acetate. The combined extracts were dried over anhydrous MgSO4 and

filtered. The filtrate was concentrated under reduced pressure. The residue was purified by chromatography eluted with petroleum ether and ethyl acetate (V:V = 3:1) to afford **5** as a white solid, mp: 169–171 °C. ¹H NMR (600 MHz, DMSO-d₆) δ_{ppm}: 7.50 (1H, s), 4.70-4.62 (1H, m), 3.96-3.94 (1H, m), 3.78-3.76 (1H, m), 3.25–3.13 (3H, m), 1.87–1.81 (1H, m), 1.59–1.56 (1H, m), 1.38 (9H, s). ^{13}C NMR (100 MHz, DMSO- d_6) δ_{ppm} : 158.62, 155.22, 79.29, 73.47, 47.81, 42.30, 37.68, 28.54, 25.59. MS-ESI (m/z): 260 (M+NH₄)⁺. To a stirring solution of 5 10 mmol) in dichloromethane (80 mL) was pumped dried (2.42 g. hydrochloride gas at room temperature for 30 min. The reaction mixture was stirred for 3 h at the same temperature, and then filtered. The precipitate was washed with dichloromethane, and dried in vacuo to yield **6** (1.01 g, 47.0%) as a white solid, mp: 232–234 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ_{ppm} : 9.55 (1H, br s), 8.87 (1H, br s), 7.89 (1H, s), 4.74-4.71 (1H, m), 3.93-3.89 (1H, m), 3.40-3.37 (1H, m), 3.25-3.28 (1H, m), 3.03-2.95 (2H, m), 2.05-1.98 (1H, m), 1.64-1.57 (1H, m). MS-ESI (m/z): 143 $(M+H)^+$. To a stirring solution of DMSO (23.40 g, 300 mmol) in anhydrous dichloromethane (150 mL) was added dropwise phenyl dichlorophosphate (38.00 g, 180 mmol) at -25 °C over a period of 30 min. The mixture was stirred for 1 h at the same temperature. Triethylamine (30.30 g, 300 mmol) was added dropwise to the reaction mixture at -20 to -25 °C over a period of 2 h, and then the mixture was stirred for 3 h at the same temperature. A solution of 4 (19.01 g, 60 mmol) in dichloromethane (400 mL) was added dropwise to the reaction mixture over a period of 3 h at -20 to -25 °C, and then was stirred at room temperature for 10 h to produce a mixture containing 7. To the above mixture were added hydroxylamine hydrochloride (5.56, 80 mmol) and pyridine (12.66 g, 160 mmol) at room temperature. The reaction mixture was stirred for 5 h at the same temperature, and concentrated under reduced pressure. The residue was treated with ethyl acetate, washed successively with water and saturated saline solution, dried over anhydrous MgSO4, and filtered. The filtrate was concentrated under reduced pressure. The residue was treated with petroleum ether to afford 8 (8.49 g, 43.8%) as a white solid, mp: 124-126 °C. ¹H NMR (400 MHz, CDCl₃) δ_{ppm} ; 7.26 (1H, br s), 5.35 (1H, br s), 5.21 (1H, d, *J* = 16 Hz), 4.33 (1H, br s), 3.98 (1H, br s), 3.59–3.57 (1H, m), 3.20 (1H, br s), 2.44-2.42 (1H, br s), 1.60–1.51 (19H, m). MS-ESI (m/z): 330 (M+H)⁺. To a stirring solution of 8 (9.87 g, 30 mmol) in DMF was added potassium carbonate (16.58 g, 120 mmol) and methyl iodide (12.77 g, 90 mmol) at room temperature. The reaction mixture was stirred at the same temperature for 5 h, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel) eluted with petro ether and ethyl acetate (V:V = 2:1) to give 9a as a light yellow oil (75.4%). ¹H NMR (400 MHz, CDCl₃) δ_{pm} : 5.39 (1H, br s), 5.01 (1H, d, J = 16 Hz), 4.20 (1H, m), 3.85 (4H, m), 3.49 (1H, d, J = 16 Hz), 3.15–3.09 (1H, m), 2.38 (1H, d, I = 12 Hz), 1.58–1.47 (18H, m). MS-ESI (m/z): 366 (M+Na)⁺. The compound 9b was obtained from ethyl iodide as a colorless oil (70.0%) in a similar manner as for the preparation of **9a**. Compound **9b**, ¹H NMR (500 MHz, $CDCl_3$) δ_{nnm} : 5.40 (1H, br s), 5.04 (1H, br s), 4.22 (1H, br s), 4.13 (2H, q, J = 7 Hz), 3.98 (1H, br s), 3.53 (1H, br s), 3.17 (1H, br s), 2.48 (1H, br s), 1.60 (1H, br s), 1.48 (18H, s), 1.33 (3H, t, J = 7 Hz). MS-ESI (m/z): 358 (M+H)⁺. To a solution of 9a (5.49 g, 16 mmol) in acetonitrile (50 mL) was added 60% sodium hydride (1.92 g, 48 mmol) and methyl iodide (6.81 g, 48 mmol) at room temperature. The reaction mixture was stirred for 4 h at the same temperature, quenched with distilled water (3 mL), and concentrated under reduced pressure. The residue was treated with ethyl acetate, washed successively with water and saturated saline solution, dried over anhydrous MgSO₄, and filtered. The filtrate was concentrated under reduced pressure. The residue was treated with petroleum ether at -20 °C. The precipitate was filtered, and washed with petroleum ether to afford **10a** as a light yellow solid (47.5%), mp: 108–110 °C. The NMR (400 MHz, CDCl₃) δ_{ppm} : 4.99 (1H, d, J = 16 Hz), 4.82 (1H, br s), 4.01 (1H, m), 3.82 (3H, s), 3.56 (1H, d, J = 16 Hz), 3.09–3.04 (1H, m), 2.75 (3H, s), 2.00–1.80 (2H, m), 1.45 (18H, s). ¹³C NMR (100 MHz, CDCl₃) δ_{ppm} : 156.15, 154.58, 149.93, 80.24, 79.80, 62.06, 54.50, 42.07, 37.58, 28.44, 22.66. MS-ESI (*m*/z): 375 (M+NH₄)⁺, 380 (M+Na)⁺. The compound **10b** was obtained from **9b** as a light (MFN14), 500 (MFRa) - The compound 100 rate between the preparation of **10a**. Compound **10b**, mp: 95–97 °C. ¹H NMR (600 MHz, CDCl₃) δ_{ppm} : 5.02 (1H, d, J = 16 Hz), 4.95 (1H, br s), 4.06 (2H, 7 Hz), 4.02 (1H, br s), 3.74 (1H, br s), 3.07 (1H, br s), 2.75 (3H, s), 2.00–1.82 (2H, m), 1.45 (18H, s), 1.23 (3H, t, *J* = 7 Hz). MS-ESI (m/z): 372 (M+H)⁺, 389 (M+NH₄)⁺, 394 (M+Na)⁺. To a stirring solution of 10a (0.50 g, 1.4 mmol) in dichloromethane (10 mL) was pumped dried hydrochloride gas at 0–5 $^{\circ}\text{C}$ for 30 min. The reaction mixture was stirred for another 1 h at room temperature, and concentrated under reduced pressure. The residue was treated with ethyl acetate. The precipitate was collected by suction, and dried in vacuo to give 11a as a white solid (0.15 g, 66.5%), mp: 76-78 °C. ¹H NMR (500 MHz, DMSO- d_6) δ_{ppm} : 9.60 (4H, br s), 4.35 (1H, d, J = 15 Hz), 4.10–4.08 (1H, m), 3.92 (3H, s), 3.82 (1H, d, J = 15 Hz), 3.51–3.47 (1H, m), 3.20– 3.15 (1H, m), 2.55 (3H, s), 2.42-2.38 (1H, m), 2.13-2.11 (1H, m). ¹³C NMR (100 MHz, DMSO-d₆) δ_{ppm}: 145.06, 62.57, 53.79, 46.58, 37.35, 30.50, 24.17. MS-ESI (m/z): 158 $(M+H)^+$. The compounds **11b** and **11c** were obtained in a similar manner as for the preparation of 11a. Compound 11b, yield: 47.0% (from 10b), white solid. mp: 80–82 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_{ppm} : 9.75 (4H, br s), 4.46 (1H, d, J = 15 Hz), 4.17 (2H, q, J = 7 Hz), 4.15-4.05 (1H, m), 3.85 (1H, d, J = 15 Hz), 3.40–3.10 (2H, m), 2.53 (3H, s), 2.49–2.48 (1H, m), 2.22–2.12 (1H, m), 2.53 (2H, s), 2.49–2.48 (1H, m), 2.22–2.12 (1H, m), 2.53 (2H, s), 2.49–2.48 (1H, m), 2.22–2.12 (1H, m), 2.53 (2H, s), 2.49–2.48 (1H, m), 2.22–2.12 (1H, m), 2.53 (2H, s), 2.49–2.48 (1H, m), 2.22–2.12 (1H, m), 2.53 (2H, s), 2.49–2.48 (1H, m), 2.52–2.12 (1H, s), 2.54 (2H, s), 2 m), 1.24 (3H, t, J = 7 Hz). MS-ESI (m/z): 172 (M+H)⁺. Compound **11c**, yield: 39.7% (from 9a), off-white solid easily absorbing moisture.

- 16. Wan, Z. L.; Chai, Y.; Liu, M. L.; Guo, H. Y.; Sun, L. Y. Acta Pharm. Sin. 2010, 45, 860.
- 17 To a solution of **11a** (0.23 g, 1 mmol) and triethylamine (0.42 mL, 3 mmol) in anhydrous acetonitrile (10 mL) was added 12 (0.23 g, 0.8 mmol) at room

temperature. The reaction mixture was stirred for 5 h at 50 °C, and concentrated under reduced pressure. The residue was dissolved in 20% acetic acid (10 mL), stirred for 0.5 h at 50 °C, and filtered. The filtrate was adjusted to pH 6.5-7.5 by 15% sodium hydroxide and extracted by dichloromethane. The combined extracts were dried over anhydrous MgSO4 and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel), eluting with dichloromethane and methanol (V:V = 10:1) to afford the target compound 19a1 as a off-white solid. ¹H NMR (500 MHz, DMSO- d_6) δ_{ppm} : 8.63 (1H, s), 8.13 (1H, d, J = 13 Hz), 5.12 (1H, d, J = 14 Hz), 4.57 (1H, d, J = 16 Hz), 4.25-4.22 (1H, m), 4.07 (1H, br s), 3.87 (3H, s), 3.82-3.79 (1H, m), 3.70 (1H, m), 2.49 (3H, s), 1.12 (1H, br s), 1.99-1.97 (1H, m), 1.20–1.19 (2H, m), 1.13–1.11 (2H, m). MS-ESI (m/z): 404 (M+H)⁺. HRMS-ESI (*m/z*): Calcd for C₁₉H₂₃O₄N₅F (M+H)⁺: 404.1728; Found 404.1732. The other target compounds 19a5, 19a6, 19b1, 19c1 and 20 were obtained as off-white or light yellow solids in a similar manner as for the preparation of **19a1**. Compound **19a5** (from **11a** and **13**), ¹H NMR (600 MHz, CDCl₃) δ_{ppm} : 8.67 (1H, s), 8.11 (1H, d, J = 13 Hz), 7.43-7.37 (1H, m), 7.11-7.06 (2H, m), 4.41 (1H, d, J = 14 Hz), 4.12-4.08 (1H, m), 3.97 (1H, d, J = 14 Hz), 3.86 (1H, br s), 3.81 (3H, s), 3.62-3.55 (1H, m), 2.36 (3H, s), 1.90-1.86 (1H, m), 1.78-1.70 (1H, m). ¹³C NMR (150 MHz, CDCl₃) δ_{ppm}: 177.65, 166.32, 157.09 (d, J = 250 Hz), 153.72, 149.99, 147.19 (d, J = 258 Hz), 147.09, 145.85, 129.96, 123.98, 119.05 (d, J = 22 Hz), 112.92, 112.27, 110.11, 105.36 (d, J = 21 Hz), 61.85, 50.29, 46.64, 42.67, 33.98, 29.14. MS-ESI (*m/z*): 476 (M+H)*. HRMS-ESI (*m/z*): Calcd for C₂₂H₂₁O₄N₅F₃ (M+H)⁺: 476.1540; Found 476.1552. Compound **19a6** (from **11a** 222 (21), 11 H M/R (400 MHz, CDCl₃) δ_{ppm} : 8.66 (1H, s), 8.38 (1H, d, *J* = 9 Hz), 6.86 (1H, d, *J* = 9 Hz), 4.80–4.67 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.67 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.67 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.67 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.67 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.67 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.67 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.87 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.87 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.87 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.87 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.87 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.87 (2H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.87 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.87 (2H, m), 3.98–3.86 (5H, m), 3.62 (1H, br s), 3.46 (1H, d, J = 9 Hz), 4.80–4.87 (2H, m), 3.98–3.86 (2H, m), 3.62 (2H, m), 3.68 (2H, m), 3. br s), 2.50 (3H, s), 2.21 (1H, br s), 2.04 (1H, br s), 1.28-1.25 (2H, m), 1.08-1.03 (2H, m). ^{13}C NMR (150 MHz, CDCl₃) δ_{ppm} : 177.36, 167.25, 158.76, 152.43, 151.31, 146.87, 136.38, 111.82, 108.78, 106.97, 62.18, 56.82, 41.19, 40.27, 34.41, 33.71, 29.03, 7.43, 7.35. MS-ESI (m/z): 386 (M+H)*. HRMS-ESI (m/z): Calcd for C₁₉H₂₄O₄N₅ (M+H)⁺: 386.1723; Found 386.1771. Compound **19b1** (from 11b and 12), ¹H NMR (600 MHz, CDCl₃) δ_{ppm} ; 8.73 (H, s), 8.08 (H, d, J = 13 Hz), 4.90 (1H, d, J = 16 Hz), 4.75 (1H, d, J = 16 Hz), 4.16–4.14 (3H, m), 3.96–3.93 (1H, m), 3.64–3.60 (1H, m), 3.49–3.46 (1H, m), 2.48 (3H, s), 2.28 2.26 (1H, m), 1.98-1.97 (1H, m), 1.34-1.26 (5H, m), 1.18-1.14 (2H, m). ¹³C MR (100 MHz, CDCI₃) δ_{ppm} : 177.05, 166.83, 151.97, 150.06, 149.97, 147.35 (d, J = 258 Hz), 146.65, 119.89, 113.40, 108.86, 69.88, 57.20, 43.63, 42.31, 34.74, 33.70, 30.26, 14.51, 7.42. MS-ESI (m/z): 418 (M+H)⁺. HRMS-ESI (m/z): Calcd for C₂₀H₂₅O₄N₅F (M+H)⁺: 418.1885; Found 418.1893. Compound **19c1** (from **11c** and **12**). ¹H NMR (500 MHz, DMSO- d_6) δ_{ppm} : 8.74 (1H, s), 8.09 (1H, d, J = 13 Hz), 5.24 (1H, d, J = 16 Hz), 4.33 (1H, d, J = 16 Hz), 4.32–4.30 (1H, m), 3.88 (3H, s), 3.78-3.72 (2H, m), 3.66-3.63 (1H, m), 2.28-2.25 (1H, m), 1.83-1.78 (1H, m), 1.31-1.29 (2H, m), 1.10-1.07 (2H, m). ¹³C NMR (100 MHz, DMSO-d₆) δ_{ppm}: 176.41, 165.64, 154.84, 149.46, 147.22, 146.62 (d, J = 254 Hz), 146.49, 119.50 (d, J = 22 Hz), 112.50, 107.66, 61.49, 48.83, 43.67, 41.81, 34.95, 31.87, 6.88. MS-ESI (*m*/*z*): 390 (M+H)⁺. HRMS-ESI (*m*/*z*): Calcd for C₁₈H₂₁O₄N₅F (M+H)⁺: 390.1572; Found 390.1563. Compound **20** (from **6** and **12**), ¹H NMR (400 MHz, DMSO- d_6) δ_{ppm} : 15.24 (1H, s), 8.58 (1H, s), 8.04 (1H, d, J = 16 Hz), 7.72 (1H, s), 4.94 (1H, d, J = 9 Hz), 4.46 (1H, d, J = 15 Hz), 4.16–4.12 (2H, m), 3.82-3.67 (2H, m), 2.15-2.06 (1H, m), 1.82-1.77 (1H, m), 1.22-1.07 (4H, m). 13 C NMR (100 MHz, DMSO-d₆) δ_{ppm} : 176.84, 166.23, 158.53, 150.74, 147.49, 147.15, 146.80 (d, *J* = 250 Hz), 119.40 (d, *J* = 22 Hz), 73.50, 47.74, 44.18, 41.47, 35.93, 25.93, 7.34, 7.25. MS-ESI (*m*/*z*): 387 (M–H)⁻. HRMS-ESI (*m*/*z*): Calcd for $C_{18}H_{16}O_5N_4F(M-H)^-$: 387.1099; Found 387.1100. To a solution of **11a** (0.23 g, 1 mmol) and triethylamine (0.42 mL, 3 mmol) in acetonitrile (10 mL) was added 15 (0.34 g, 0.8 mmol) at room temperature. The reaction mixture was stirred overnight at 50 °C, and concentrated under reduced pressure. The residue was dissolved in a solution of 5% sodium hydroxide solution (8 mL) and stirred for 1 h at 50 °C. After cooling to room temperature, the mixture was adjusted to pH 7.0-7.5 with 5% acetic acid, and extracted with dichloromethane. The combined extracts were concentrated under reduced pressure. The residue was dissolved in 20% acetic acid (10 mL), stirred for 0.5 h at 50 °C, and filtered. The filtrate was adjusted to pH 6.5-7.5 by 15% sodium hydroxide and extracted by dichloromethane. The combined extracts were dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel), eluting with dichloromethane and methanol (V:V = 10:1) to afford the target compound **19a2** as a light yellow solid. ¹H NMR (600 MHz, CDCl₃) δ_{ppm} : 8.82 (1H, s), 7.88 (1H, d, J = 13 Hz), 4.37 (1H, d, J = 15 Hz), 4.10 (1H, d, J = 15 Hz), 4.05-4.02 (1H, m), 3.87 (3H, s), 3.76 (3H, s), 3.70-3.63 (1H, m), 3.40-3.37 (2H, m), 2.50 (3H, s), 2.33–2.27 (1H, m), 1.90–1.86 (1H, m), 1.24–1.19 (2H, m), 1.03–1.00 (2H, m). 13 C NMR (100 MHz, CDCl₃) δ_{ppm} : 177.03, 166.69, 164.93, 156.60

(d, J = 250 Hz), 149.96, 138.68, 133.70, 122.53, 108.10, 107.83, 62.17, 61.89, 57.80, 47.90, 45.62, 40.61, 33.77, 31.99, 9.53, 9.47. MS-ESI (m/z): 433 (M+H)⁺ HRMS-ESI (m/z): Calcd for C₂₁H₂₆O₅N₄F (M+H)⁺: 433.1881; Found 433.1892. The other target compounds 19a3, 19a4, 19a7, 19b2-4, 19c2 and 19c3 were obtained as light yellow solids in a similar manner as for the preparation of **19a2**. Compound **19a3** (from **11a** and **16**), ¹H NMR (600 MHz, CDCl₃) δ_{ppm}: 8.61 (1H, s), 7.74 (1H, d, J = 12 Hz), 4.47-4.33 (2H, m), 4.36-4.27 (2H, m), 4.07 (1H, d, J = 16 Hz), 3.87 (3H, s), 3.60-3.53 (1H, m), 3.37–3.30 (2H, m), 2.47 (3H, s), 2.23–2.20 (1H, m), 1.90–1.88 (1H, m), 1.61 (3H, s). 13 C NMR (100 MHz, CDCl₃) δ_{ppm} : 177.05, 167.14, 156.24 (d, J = 246 Hz), 153.79, 144.80, 140.07, 132.11, 124.59, 121.16, 107.99, 105.12 (d, J = 24 Hz), 68.24, 61.81, 57.41, 55.44, 47.74, 46.34, 33.80, 31.21, 18.31. MS-ESI (m/z): 419 (M+H)⁺. HRMS-ESI (m/z): Calcd for C₂₀H₂₄O₅N₄F (M+H)^{*}: 419.1725; Found 419.1734. Compound **19a4** (from **11a** and **17**), ¹H NMR (600 MHz, C₅D₅N) δ_{ppm} : 8.91 (1H, s), 8.04 (1H, d, J = 12 Hz), 4.82 (1H, d, J = 15 Hz), 4.25 (1H, d, J = 15 Hz), 4.18–4.16 (1H, m), 3.89 (3H, s), 3.87 (1H, br s), 3.82–3.79 (1H, m), 3.42–3.39 (1H, m), 2.82 (3H, s), 2.77–2.73 (1H, m), 2.35–2.30 (1H, m), 1.10–1.07 (2H, m), 1.03–1.01 (2H, m). ¹³C NMR (100 MHz, DMSO- d_6) δ_{ppm} : 175.82, 165.30, 153.28 (d, J = 253 Hz), 150.24, 149.53, 146.33 (d, J = 248 Hz), 132.54, 126.33, 121.08, 107.45, 106.78, 62.08, 55.37, 47.78, 45.91, 30.78, 28.27, 8.43. MS-ESI (m/z): 421 (M+H)⁺. HRMS-ESI (*m*/*z*): Calcd for C₁₉H₂₃O₄N₄F₂ (M+H)⁺: 421.1681; Found 421.1690. Compound **19a7** (from **11a** and **18**), ¹H NMR (600 MHz, CDCl₃) δ_{ppm}: 8.61 (1H, s), 7.98 (1H, d, J = 12 Hz), 4.49–4.45 (2H, m), 4.36 (1H, d, J = 15 Hz), 4.16 (1H, d, J = 15 Hz), 3.89 (3H, s), 3.67-3.64 (1H, m), 3.45-3.43 (1H, m), 3.38-3.34 (1H, m), 2.52 (3H, s), 2.32 (1H, m), 1.98–1.94 (1H, m), 1.57 (3H, t, J = 7 Hz). ¹³C NMR (100 MHz, CDCl₃) δ_{ppm} : 176.20, 166.57, 154.25 (d, J = 251 Hz), 152.47, 150.06, 146.25 (d, J = 254 Hz), 133.88, 127.05, 121.98, 108.34 (d, J = 24 Hz), 108.16, 61.93, 57.30, 54.68, 47.86, 45.99, 33.56, 31.36, 16.33. MS-ESI (*m*/*z*): 409 (M+H)⁺. HRMS-ESI (m/z): Calcd for C₁₉H₂₃O₄N₄F₂ (M+H)⁺: 409.1681; Found 409.1690. Compound **19b2** (from **11b** and **15**), ¹H NMR (400 MHz, CDCl₃) δ_{ppm}: 8.81 (1H, s), 7.87 (1H, d, J = 12 Hz), 4.45 (1H, d, J = 15 Hz), 4.17–4.11 (3H, m), 4.06–4.02 (1H, m), 3.77 (3H, s), 3.72 (1H, br s), 3.50 (1H, br s), 3.45-3.40 (1H, m), 2.57 (2H, s), 2.35-2.32 (1H, m), 2.05–2.03 (1H, m), 1.27–1.21 (5H, m), 1.07–0.99 (2H, m). ¹³C NMR (100 MHz, CDCl₃) δ_{ppm} : 177.00, 166.66, 156.42 (d, J = 251 Hz), 149.99, 146.50, 138.42, 133.70, 122.49, 108.10 (d, J = 23 Hz), 107.84, 69.86, 62.23, 57.73, 47.76, 45.83, 40.60, 33.25, 31.47, 14.54, 9.56, 9.48. MS-ESI (m/z): 447 (M+H)⁺. HRMS-ESI (*m/z*): Calcd for $C_{22}H_{28}O_5N_4F$ (M+H)*: 447.2038; Found 447.2046. Compound **19b3** (from **11b** and **16**), ¹H NMR (400 MHz, CDCl₃) δ_{ppm} : 8.64 (1H, s), 7.71 (1H, d, J = 12 Hz), 4.52–4.30 (4H, m), 4.18–4.10 (3H, m), 3.62–3.57 (1H, m), 3.43–3.32 (2H, m), 2.52 (3H, s), 2.28–2.24 (1H, m), 2.01–1.98 (1H, m), 1.61 (3H, d, J = 6 Hz), 1.25 (3H, t, J = 7 Hz). ¹³C NMR (100 MHz, CDCl₃) δ_{ppm} : 177.13, 167.04, 157.61, 153.83 (d, J = 259 Hz), 144.65, 140.11, 132.19 (d, J = 14 Hz), 124.60, 121.24, 108.01, 105.23 (d, J = 24 Hz), 69.70, 68.28, 57.55, F_{1} (16), F_{2} (16), F_{2} (16), F_{2} (16), F_{2} (16), F_{2} (17), F_{2} (17), Compound **19b4** (from **11b** and **17**), ¹H NMR (400 MHz, CDCl₃) δ_{ppm} : 8.79 (1H, s), 7.93 (1H, d, / = 12 Hz), 4.35 (1H, d, / = 15 Hz), 4.19 (1H, d, / = 15 Hz), 4.13 (2H, q, J = 7 Hz), 4.00–3.98 (1H, m), 3.67–3.62 (1H, m), 3.47–3.41 (2H, m), 2.49 (3H, (1, 1), (1, 2), (1, 2), (1, 1), (1, 1), (1, 1), (1, 2), (1, 1), (1, 2), (1, 1), (1, 2), (1, 61.83, 43.63, 42.31, 34.74, 33.70, 30.26, 14.51, 7.42. MS-ESI (m/z): 435 (M+H)⁺ HRMS-ESI (*m*/*z*): Calcd for $C_{21}H_{25}O_4N_4F_2$ (M+H)⁺: 435.1838; Found 455.1846. Compound **19c2** (from **11c** and **15**), ¹H NMR (400 MHz, CDCl₃) δ_{ppm} : 8.82 (1H, s), 7.88 (1H, d, J = 12 Hz), 4.68 (1H, d, J = 15 Hz), 4.04–3.98 (1H, m), 3.89 (3H, s), 2.34 (1H, m), 1.99–1.90 (1H, m), 1.24–1.19 (2H, m), 1.06–1.01 (2H, m). ¹³C NMR $(100 \text{ MHz}, \text{CDC}_3) \delta_{\text{ppm}}$: 177.07, 166.58, 158.37, 155.91 (d, *J* = 250 Hz), 150.08, 146.38, 138.39, 133.66, 121.65, 108.13 (d, *J* = 23 Hz), 107.90, 62.35, 62.19, 140.38, 138.39, 133.60, 121.65, 108.13 (d, J = 23 Hz), 107.90, 62.35, 62.19, 50.22, 46.49, 40.58, 33.29, 32.53, 9.46, 9.40. MS-ESI (m/z): 419 (M+H)⁺): HRMS-ESI (m/z): Calcd for C₂₀H₂₄O₅N₄F (M+H)⁺: 419.1725; Found 419.1732. Compound **19c3** (from **11c** and **16**), ¹H NMR (400 MHz, CDCl₃) δ_{ppm} : 8.63 (1H, s), 7.77 (1H, d, J = 12 Hz), 4.53–4.40 (4H, m), 3.87 (3H, s), 3.80–2.93 (4H, m), 2.40–2.01 (2H, m), 1.62 (3H, d, J = 6 Hz). ¹³C NMR (100 MHz, CDCl₃) δ_{ppm} : 176.48, 166.35, 155.48 (d, J = 248 Hz), 152.68, 144.20, 139.47, 134.09, 128.64, 124.20, 109.15, 107.00, 65.57, 49, 477, 475.44, 64.44, 64.42, 67.20, 67.47, 134.69, 128.64, 124.24, 129.45, 145.45 121.29, 108.15, 107.90, 69.58, 57.48, 47.87, 46.01, 40.14, 33.92, 31.77, 14.54. MS-ESI (m/z): 404 $(M+H)^*$. HRMS-ESI (m/z): Calcd for $C_{19}H_{22}O_5N_4F$ $(M+H)^*$: 405.1574; Found 405.1576.

 Performance standards for antimicrobial susceptibility testing: 17th informational supplement, Clinical and Laboratory Standards Institute, Wayne, PA, 2007, M100eS17.