PRODUCTS

Koumine, Humantenine, and Yohimbane Alkaloids from *Gelsemium* elegans

You-Kai Xu,^{*,†} Lin Yang,[†] Shang-Gao Liao,[‡] Pei Cao,[§] Bin Wu,[§] Hua-Bin Hu,[†] Juan Guo,[†] and Ping Zhang[†]

[†]Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, People's Republic of China

[‡]Engineering Research Center for the Development and Application of Ethnic Medicines and TCM, School of Pharmacy, Guiyang Medical College, 9 Beijing Road, Guiyang, Guizhuo 550004, People's Republic of China

[§]State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, People's Republic of China

S Supporting Information

ABSTRACT: Nine new alkaloids of the koumine (1-4), humantenine (5-7), and yohimbane (8, 9) types as well as 12 known analogues were isolated from the leaves and vine stems of *Gelsemium elegans*. Compound 1 is the first *N*-4-demethyl alkaloid of the koumine type, compound 7 is the first *nor*-humantenine alkaloid, and compounds 8 and 9 are the first *N*-1-oxide and the first *seco*-E-ring alkaloids, respectively, of the yohimbane type. Compounds 1 and 7 exhibited moderate cytotoxicity against five human tumor cell lines with IC₅₀ values in the range 4.6–9.3 μ M.

The genus Gelsemium (Loganiaceae), which comprises three species in Asia (G. elegans) and North America (G. sempervirens and G. rankinii), has been recognized as a toxic plant and used as a folk medicine to treat migraines, neuralgia, sciatica, cancer, and various types of sores.¹ A large number of indole, bisindole, and monoterpenoid alkaloids have been isolated from the Gelsemium genus.¹⁻⁴ Pharmacological experiments showed that these Gelsemium alkaloids possessed cytotoxic, analgesic, anxiolytic, anti-inflammatory, and immunomodulating activities.^{1,5} During an earlier investigation, five monoterpenoid indole alkaloids and a new monoterpenoid alkaloid that selectively inhibited the growth of A-549 tumor cell lines were isolated from G. elegans.^{5,6} In the current investigation, nine new alkaloids, including four of the koumine type (1-4), three of the human tenine type (5-7), and two of the yohimbane type (8, 9), as well as 12 known alkaloids were isolated from the leaves and perennial vine stems of G. elegans. Among the known compounds, 4R-koumine N-oxide, 11methoxy-19-(R)-hydroxygelselegine, and epi-koumidine were isolated as natural products for the first time, and venoterpine was isolated from the Loganiaceae family for the first time. Evaluations of cytotoxicity and nitric oxide production inhibition revealed that compounds 1 and 7 exhibited moderate cytotoxic activity against five human tumor cell lines with IC₅₀ values in the range 4.6–9.3 μ M. This report describes the extraction, isolation, structure elucidation, cytotoxicity, and nitric oxide production inhibitory assays of these compounds.

RESULTS AND DISCUSSION

Compound 1 was obtained as a white, amorphous powder and was assigned the molecular formula $C_{19}H_{18}N_2O$ on the basis of its ¹³C NMR data and an HREIMS ion at m/z 290.1416 $[M]^+$ (calcd 290.1419), showing 16 mass units less than that of koumine (10)⁷, a major alkaloid also isolated during the investigation. The UV (λ_{max} 221.0 and 261.6 nm) and NMR (Tables 1 and 2) data indicated the presence of an indolenine chromophore. The ¹H and ¹³C NMR data (Tables 1 and 2) were similar to those of koumine,⁷ including signals assignable to four aromatic protons [$\delta_{\rm H}$ 7.54, dd, J = 7.5, 1.0 Hz (H-12); 7.38, td, *J* = 7.5, 1.0 Hz (H-11); 7.28, td, *J* = 7.5, 1.0 Hz (H-10); 7.09, dd, J = 7.5, 1.0 Hz (H-9)], one vinyl group [$\delta_{\rm H}$ 5.28, d, J =17.8 Hz (H-18); 5.09, d, J = 11.2 Hz (H-18); 4.84, dd, J = 17.8, 11.2 Hz (H-19)], and an oxymethine [$\delta_{\rm H}$ 4.99, br s (H-3)], two oxymethylene [$\delta_{\rm H}$ 4.31, dd, J = 12.0, 4.3 Hz (H-17a); 3.80, d, J = 12.0 Hz (H-17b)], and an aminomethine [$\delta_{\rm H}$ 4.49, br s, (H-5)] proton. The exceptions involved the presence of additional signals for an imino group [$\delta_{\rm H}$ 8.52 (s), $\delta_{\rm C}$ 175.0] and the absence of signals for an N-4-methyl group. These observations suggested that 1 was likely an N-4-demethly-21-dehydro derivative of koumine. HMBC correlations between H-21 $(\delta_{
m H}$ 8.52, s) and C-5 ($\delta_{\rm C}$ 61.0) and C-19 ($\delta_{\rm C}$ 136.6) further validated the deduction (Figure 1). The relative and absolute configurations of 1 were established, on the basis of ROESY

Received: December 1, 2014

correlation analysis (Figure 1) and by comparing its electronic circular dichroism (ECD) spectrum to that of koumine (10), respectively (Figure 3). The structure of 1 was thus established as N-4-demethyl-21-dehydrokoumine. Compound 1 is the first koumine-type alkaloid lacking an N-4 methyl group.

Compounds 2 and 3 were obtained as an inseparable 1:2 mixture as determined by ¹H NMR peak integration. The compounds shared the same molecular formula of $C_{20}H_{22}N_2O_2$ as determined by their ¹³C NMR data and HRESIMS ions at m/z 323.1749 ($[M + H]^+$) These structurally similar koumine alkaloids were readily identified by two sets of peaks in the ¹H NMR data (Table 1) and by an HSQC experiment, in which the 1,2-disubstituted aromatic groups [$\delta_{\rm H}$ 7.65/7.94 (H-9, dd, J = 7.5/7.5, 1.1/1.1 Hz), 7.54/7.44 (H-12, dd, J = 7.5/7.5, 1.1/ 1.1 Hz), 7.42/7.32 (H-11, td, J = 7.5/7.5, 1.1/1.1 Hz), and $\delta_{\rm H}$ 7.37/7.25 (H-10, td, J = 7.5/7.5, 1.1/1.1 Hz)], two vinylic groups [$\delta_{\rm H}$ 4.96/4.90 (H_a-18), 4.73/4.83(H_b-18), and 4.79/ 4.84 (H-19)], and six oxymethine/methylene [$\delta_{\rm H}$ 4.84/4.84 (H-3), $\delta_{\rm H}$ 3.58/3.58 (H-17 α , d, J = 11.9/11.9 Hz), $\delta_{\rm H}$ 4.25/ 4.28 (H-17 β , dd, J = 11.9/11.9, 4.5/4.5 Hz)], two aminomethine $[\delta_{\rm H} 2.97/2.98 \text{ (H-5, br s/br s)}]$, and two methylene $[\delta_{\rm H} 1.93/1.93 \text{ (H-14}\alpha, \text{dd, br d, } J = 14.8/14.8 \text{ Hz}) \text{ and } \delta_{\rm H} 2.68/$ 2.63 (H-14 β , dt, J = 14.8/14.8, 3.7/3.7 Hz) protons were identified. The ¹H and ¹³C NMR data of 2/3 (Tables 1 and 2) are similar to those of koumine (10),⁷ with the distinct difference being the replacement of signals from a methylene $(\delta_{\rm H} 3.11, \text{ br d}, J = 14.2 \text{ Hz}; \delta_{\rm H} 3.17, \text{ br d}, J = 14.2 \text{ Hz}, \delta_{\rm C} 57.2)$ in koumine by those from an oxymethine ($\delta_{\rm H}$ 4.24/3.92, s; $\delta_{\rm C}$ 98.6/103.3) group. These observations suggested that 2 and 3 were likely two 21-hydroxy derivatives of koumine. HMBC and ROESY correlation analyses (Figure 1) as well as ECD spectroscopic comparison [Figure 3, with koumine (10)] further confirmed this conclusion. In particular, the presence of a 21-hydroxy group was confirmed by HMBC correlations (Figure 1) between H-21 and C-7 and C-15 and between H₃-N-Me and C-21 in both compounds. Moreover, the ROESY correlation of H-21/H-6 β indicated that the 21-OH group was

Table 1. ¹H NMR Spectroscopic Data for 1–4 (δ in ppm, J in Hz)

position	1 ^{<i>a</i>}	2^b	3^b	4 ^c
2	1 00 hr c	2 1 0 1 d	101d	- T
3	4.99, br s	4.84,	4.84,	4.97, Dr s
5	4.49, br s	2.97, br s	2.98, br s	4.28, d (5.2)
6	1.67, dt (13.6, 1.9)	2.23, dd (14.3, 3.2)	2.34, dt (13.7, 1.9)	2.43, d (17.1)
	2.63, dd (13.6, 3.0)	2.40, br d (14.3)	2.45, dd (13.7, 4.3)	2.86, dd (17.1, 3.7)
9	7.09, dd (7.5, 1.0)	7.65, dd (7.5, 1.1)	7.94, dd (7.5, 1.1)	7.40, d (7.4)
10	7.28, td (7.5, 1.0)	7.37, td (7.5, 1.1)	7.25, td (7.5, 1.1)	7.26, t (7.4)
11	7.38, td (7.5, 1.0)	7.42, td (7.5, 1.1)	7.32, td (7.5, 1.1)	7.36, t (7.4)
12	7.54, dd (7.5, 1.0)	7.54, dd (7.5, 1.1)	7.44, dd (7.5, 1.1)	7.57, d (7.4)
14	1.83, dt (15.0, 2.6)	1.93, br d (14.8)	1.93, br d (14.8)	1.57, d (15.0)
	2.72, dt (15.0, 3.9)	2.68, dt (14.8, 3.7)	2.63, dt (14.8, 3.7)	2.65, dt (15.0, 3.7)
15	2.02, br d (12.2)	2.81, br d (12.2)	2.31, br d (12.1)	2.49, br d (12.5)
16	2.28, br d (12.2)	2.73, ^d	2.89, br d (12.1)	3.50, ^d
17	3.80, d (12.0)	3.58, d (11.9)	3.58, d (11.9)	3.69, d (12.9)
	4.31, dd (12.0, 4.3)	4.25, dd (11.9, 4.5)	4.28, dd (11.9, 4.5)	4.25, dd (12.9, 5.2)
18	5.09, d (11.2)	4.73, dd (11.0, 7.1)	4.83, ^d	0.92, d (6.4)
	5.28, d (17.8)	4.96, dd (11.0, 1.9)	4.90, ^e	
19	4.84, dd (17.8, 11.2)	4.79, ^d	4.84, ^d	2.91, q (6.4)
21	8.52, s	4.24, s	3.92, s	3.87, d (14.8)
				4.16, d (14.8)
N_4 -Me		2.78, s	2.75, s	3.82, s

^{*a*}Recorded at 500 MHz in methanol- d_4 . ^{*b*}Recorded at 600 MHz in methanol- d_4 . ^{*c*}Recorded at 600 MHz in CDCl₃ (80%) + methanol- d_4 (20%) (v/v). ^{*d*}Overlapped by other signals. ^{*e*}Overlapped by solvent signals.

 α -oriented in 2 (Figure 1), whereas the ROESY correlation H-21/H-19 was consistent with a β -orientation of the 21-OH group in 3 (Figure 1). Compounds 2 and 3 were therefore determined to be 21 α - and 21 β -hydroxykoumine, respectively. Failure to separate the two compounds is attributed to the presence of a 21-aza-hemiacetal group in both compounds, which allows interconversion of the two epimers. Detection of a relatively weaker [M + H - H₂O]⁺ ion (*m*/*z* 305) but a stronger total ion current of its product ions in the LC-(+)-ESIMS chromatogram of the ethanolic extract suggested that compounds 2 and 3 were natural products (Supporting Information S2/3-9).

Compound 4 was obtained as a white, amorphous powder and was assigned the molecular formula $C_{20}H_{24}N_2O_3$ on the basis of ¹³C NMR data and the HREIMS ion at m/z 340.1792 [M]⁺ (calcd 340.1787), showing 16 mass units more than that of (19S)-hydroxydihydrokoumine,⁷ a known alkaloid that was also isolated during this investigation. Comparison of the NMR data (Tables 1 and 2) of 4 with those of (19S)hydroxydihydrokoumine⁷ revealed that their NMR signals were similar, the major differences being the deshielding of peaks for N-4-CH₃ (δ_H 3.82, s; δ_C 56.9), CH-5 (δ_H 4.28, d, J =5.2 Hz; δ_C 70.1), and CH₂-21 (δ_H 4.16, d, J = 14.8 Hz; 3.87, d, J= 14.8 Hz; δ_C 59.6) in 4. These observations suggested that the

Table 2. ¹³C NMR Spectroscopic Data for 1–4 (δ in ppm)

position	1^a	2^b	3^b	4 ^{<i>c</i>}
2	186.2, C	188.2, C	188.2, C	183.2, C
3	71.9, CH	72.2, CH	72.1, CH	70.4, CH
5	61.0, CH	59.2, CH	57.5, CH	70.1, CH
6	36.1, CH	29.4, CH	37.6, CH	30.4, CH
7	58.2, C	58.0, C	56.5, CH	55.7, CH
8	144.4, C	145.1, C	145.1, C	141.9, C
9	123.9, CH	124.7, CH	129.0, CH	124.2, CH
10	128.2, CH	127.9, CH	127.2, CH	126.7, CH
11	129.9, CH	129.6, CH	129.0, CH	129.2, CH
12	121.7, CH	121.7, CH	120.7, CH	121.6, CH
13	154.9, C	155.2, C	155.2, C	153.5, C
14	25.8, CH ₂	25.7, CH ₂	24.9, CH ₂	23.8, CH ₂
15	34.9, CH	25.4, CH	31.8, CH	26.3, CH
16	36.1, CH	41.1, CH	33.9, CH	32.3, CH
17	61.7, CH ₂	62.4, CH ₂	61.9, CH ₂	67.9, CH ₂
18	119.1, CH ₂	120.8, CH ₂	116.8, CH ₂	17.2, CH ₃
19	136.6, CH	135.4, CH	139.1, CH	65.7, CH
20	51.1, C	51.7, C	51.7, C	48.2, C
21	175.0, CH	98.6, CH	103.3, CH	59.6, CH ₂
N₄-Me		41.3. CH ₂	43.8. CH ₂	56.9, CH ₂

^{*a*}Recorded at 100 MHz in methanol- d_4 . ^{*b*}Recorded at 150 MHz in methanol- d_4 . ^{*c*}Recorded at 150 MHz in CDCl₃ (80%) + methanol- d_4 (20%) (v/v).

Figure 1. COSY (bold bond) and key HMBC and ROESY correlations of 1 and 2/3.

structural variation of this compound occurs around *N*-4. Considering 4 had an additional oxygen atom relative to (19S)-hydroxydihydrokoumine, compound 4 was proposed to be the *N*-4-oxide derivative of (19S)-hydroxydihydrokoumine. The deshielding of peaks for H-15 and H-16 was also consistent with the anisotropic effect of the *N*-4-oxide.⁸ Using ¹H–¹H COSY, HSQC, HMBC, ROESY (Supporting Information S4), and ECD (Figure 3) data, the structure of 4 was confirmed and the ¹H and ¹³C NMR data were assigned (Supporting Information S4). Thus, the structure of compound 4 was assigned as (19S)-hydroxydihydrokoumine *N*-4-oxide.

Compound **5** was obtained as a white, amorphous powder and was assigned the molecular formula $C_{20}H_{26}N_2O_5$ on the basis of its ¹³C NMR data and the HRESIMS ion at m/z375.1918 [M + H]⁺ (calcd 375.1920), i.e., 16 mass units higher than that of the known 20-hydroxydihydrorankinidine (**5a**).⁸ The ¹H and ¹³C NMR data of **5** (Tables 3 and 4) were similar to those reported for 20-hydroxydihydrorankinidine (**5a**). However, signals from the CH₂-14 (δ_H 2.13, 2.20; δ_C 24.2) have been replaced by those from an oxymethine (δ_H 4.46; δ_C

Figure 2. COSY (bold bond) and key HMBC and ROESY (5-7) correlations of compounds 5-9.

Figure 3. ECD spectra of compounds 1-7 and 10.

66.1), which suggested that **5** was the 14-hydroxy derivative of 20-hydroxydihydrorankinidine (**5a**). ¹H–¹H COSY correlations as well as HMBC correlations between H-3 ($\delta_{\rm H}$ 3.34) and the oxymethine carbon ($\delta_{\rm C}$ 66.1) and between the protons at $\delta_{\rm H}$ 4.46 and C-16 ($\delta_{\rm C}$ 39.3) and C-20 ($\delta_{\rm C}$ 69.3) (Figure 2) indicated that the hydroxy group was located at C-14. The ROESY correlations for H-14/H₂-19 suggested that H-14 and the 20-ethyl group occupied the same side of the two fused rings (Figure 2). H-14 was thus assigned to be α -oriented and the hydroxy group was β -oriented. H-14 attains a 90° dihedral angle with both H-3 and H-15, which is consistent with its ¹H NMR singlet resonance. The configuration of the C-7 spiro center was deduced to be *S* as in other *Gelsemium* alkaloids from the negative Cotton effect at ca. 260 nm⁹ in its ECD data

Table 3. ¹H NMR Spectroscopic Data for 5–9 and 11 (δ in ppm, J in Hz)

position	5 ^{<i>a</i>}	6 ^{<i>a</i>}	7^a	8 ^b	9 ^{<i>a</i>}	11^a
3	3.34, ^c	3.57, ^d	3.62, br d (6.6)			
5	3.55, br d (9.4, 2.9)	3.56, ^d	4.12, m	8.04, d (4.0)	8.98, d (6.9)	8.57, d (6.1)
6	1.96, br d (15.7, 2.3)	2.22, ^d	2.03, dd (15.1, 6.9)	8.09, d (4.0)	8.81, d (6.9)	8.35, d (6.6)
	2.34, ^d	2.32, ^d	2.18, dd (15.1, 4.3)			
9	7.47, d (7.6)	7.40, d (8.3)	7.38, d (8.3)	8.06, d (8.2)	8.43, d (8.0)	8.17, d (7.7)
10	7.15, t (7.6)	6.68, dd (8.3, 2.4)	6.67, dd (8.3, 2.4)	7.29, br t (8.2)	7.53, br t (8.0)	7.38, t (7.7)
11	7.35, t (7.6)			7.62, br t (8.26)	7.78, br t (8.0)	7.62, t (7.7)
12	7.05, d (7.6)	6.65, d (2.4)	6.62, d (2.4)	7.91, d (8.2)	7.85, d (8.0)	7.67, d (7.7)
14	4.46, s	1.87, dd (15.9, 8.3)	2.17, dd (15.1, 7.2)	9.75, s	9.23, s	8.38, s
		2.33, dd (15.9, 7.9)	2.50, ddd (15.1, 11.8, 6.7)			
15	2.18, br d (5.9)	2.22, ^d	3.01, m			
16	2.34, ^d	2.55, m	2.23, dd, (8.6, 4.1)	3.11 (2H), m	3.54 (2H), t (7.5)	3.18 (2H), br s
17	4.39 (2H), br s	3.92, dd (10.8, 5.5)	4.20, dd (11.0, 4.1)	1.93 (2H), m	2.88 (2H), t (7.5)	1.98 (2H), br s
		4.28, d (10.8)	4.35, d (11.0)			
18	1.12, t (7.4)	1.20, d (6.5)		1.90 (2H), m		1.98 (2H) br s
19	2.00, dq (14.2, 7.4)	3.77, q (6.5)	8.78, s	2.83 (2H), m		3.01 (2H), br s
	2.05, dq (14.2, 7.4)					
21	3.44, d (11.5)	2.50, d (14.7)	7.36, s	8.55, s	9.42, s	8.86, s
	3.50, d (11.5)	3.22, d (14.7)				
1'					4.14 (2H), q (7.1)	
2'					1.24 (3H), t (7.1)	
N_1 -OMe	4.01 (3H), s	3.96 (3H), s	3.93 (3H), s			
C-11-OMe		3.83 (3H), s	3.83 (3H), s			
^a Recorded at	600 MHz in methanol	-d ₄ . ^b Recorded at 500	MHz in methanol- d_4 . ^c Over	lapped by solvent s	ignals. ^d Overlapped b	y other signals.

Table 4. ¹³C NMR Spectroscopic Data for 5–9 and 11 (in Methanol- d_{4y} δ in ppm)

position	5 ^{<i>a</i>}	6 ^{<i>a</i>}	7^a	8^b	9 ^{<i>a</i>}	11^a
2	176.4, C	177.0, C	175.1, C	126.2, C	133.1, C	131.1, C
3	83.1, CH	74.2, CH	74.6, CH	132.7, C	132.2, C	132.3, C
5	59.5, CH	55.0, CH	55.1, CH	122.5, CH	128.2, CH	127.3, CH
6	35.0, CH	25.4, CH	36.1, CH	116.4, CH	119.3, CH	117.1, CH
7	56.9, C	56.5, C	56.3, C	114.3, C	126.1, C	123.2, C
8	132.7, C	122.5, C	122.6, C	116.6, C	122.3, C	122.4, C
9	126.9, CH	128.2, CH	127.8, CH	121.6, CH	123.2, CH	122.6, CH
10	125.1, CH	109.1, CH	109.1, CH	121.4, CH	123.5, CH	123.1, CH
11	129.8, CH	162.0, C	162.1, C	128.2, CH	131.5, CH	130.4, CH
12	108.7, CH	95.8, CH	95.7, CH	111.8, CH	113.9, CH	113.8, CH
13	139.3, C	141.3, C	141.1, C	141.5, C	143.7, C	142.6, C
14	66.1, CH	31.8, CH ₂	30.5, CH ₂	122.0, CH	138.4, CH	120.7, CH
15	47.6, CH	35.0, CH	24.7, CH	147.7, C	135.3, C	151.5, C
16	39.3, CH	35.5, CH	35.7, CH	30.4, CH ₂	27.8, CH ₂	30.6, CH ₂
17	64.1, CH ₂	68.5, CH ₂	66.8, CH ₂	23.0, CH ₂	35.3, CH ₂	22.9, CH ₂
18	9.5, CH ₃	17.0, CH ₃		23.0, CH ₂	173.9, C	22.9, CH ₂
19	24.6, CH ₂	69.2, CH	188.7, CH	27.3, CH ₂	167.1, C	27.5, CH ₂
20	69.3, C	74.7, C	118.7, C	133.6, C	135.3, C	135.2, C
21	64.1, CH ₂	43.3, CH ₂	155.9, CH	134.6, CH	124.8, CH	136.0, CH
1'					61.8, CH ₂	
2'					14.5, CH ₃	
N_1 -OMe	64.3, CH ₃	64.2, CH ₃	64.2, CH ₃			
C-110Me		56.2, CH ₃	56.2, CH ₃			
Recorded at 150 I	MHz. ^b Recorded at 1	00 MHz.				

(Figure 3). Compound 5 was therefore defined as 14β , 20α -dihydroxydihydrorankinidine.

Compound 6 was obtained as an amorphous powder and was assigned the molecular formula $C_{21}H_{28}N_2O_6$ on the basis of its ¹³C NMR data and the HRESIMS ion at m/z 405.2025 [M + H]⁺ (calcd 405.2026), i.e., 30 mass units higher than that of compound 5. The ¹H and ¹³C NMR spectra (Tables 3 and 4)

of **6** bore a resemblance to those of **5**. The spin pattern of the aromatic protons indicated the presence of the aromatic methoxy group ($\delta_{\rm H}$ 7.40, d, J = 8.3 Hz; $\delta_{\rm H}$ 6.68, dd, J = 8.3, 2.4 Hz; $\delta_{\rm H}$ 6.65, d, J = 2.4 Hz) at either C-10 or C-11. Moreover, distinctive coupling patterns and chemical shifts for the oxymethine proton ($\delta_{\rm H}$ 4.46, s, in **5** and $\delta_{\rm H}$ 3.77, q, in **6**) suggested that the two compounds had different oxygenation

sites. The coupling patterns of the oxymethine proton ($\delta_{\rm H}$ 3.77, q, J = 6.5 Hz) and the methyl group ($\delta_{\rm H}$ 1.20, d, J = 6.5 Hz) indicated that the hydroxy group was at C-19, and HMBC correlations between H₃-18/C-19, H₃-18/C-20, H-19/C-20, and H-19/C-15 verified the deduction. The relative configuration of 6 was assigned by a ROESY experiment (Figure 2), in which the ROESY correlations of H-5/H-6 α , H-5/H-16, and H-16/H-17 α showed their α -orientations. Compound 6 had an ECD curve similar to that of compound 5 (Figure 3), indicating that they have the same absolute configuration. Compound 6 was therefore defined as 11-methoxy-19,20 α -dihydroxydihydrorankinidin. However, the configuration of C-19 remains undetermined.

The molecular formula of compound 7 was established by its 13 C NMR data and the HREIMS ion at m/z 370.1542 [M]⁺ (calcd for $C_{20}H_{22}N_2O_5$, 370.1529). The ¹H and ¹³C NMR data (Tables 3 and 4) of 7 resembled those of 6. The distinct difference was the replacement of signals from the C-18-C-21 subunits in 6 by those from an $\alpha_{\beta}\beta$ -unsaturated formyl functionality (CHO: $\delta_{\rm H}$ 8.78, s, $\delta_{\rm C}$ 188.7; C: $\delta_{\rm C}$ 118.7; CH: $\delta_{\rm H}$ 7.36, s, $\delta_{\rm C}$ 155.9). ¹H-¹H COSY, HSQC, and HMBC (Figure 2) correlation analyses facilitated the structure elucidation of compound 7. In particular, HMBC correlations between H-19 and C-20 and C-21 were consistent with an $\alpha_{\beta}\beta_{\beta}$ unsaturated formyl moiety, and HMBC correlations between H-5/C-21 and H-15/C-20 suggested the connection of this group to C-5 (via N) and C-15, respectively. The ROESY correlations (Figure 2) and similar ECD spectra in the 195-240 nm range indicated that 7 and 6 shared the same configuration in their common structural units. The structure of 7 was thus established as depicted and named norhumantenine A. This is the first report of a 19-nor-humantenine-type alkaloid.

Compound 8 was obtained as a yellow powder and was assigned the molecular formula C₁₉H₁₆N₂O on the basis of its 13 C NMR data and the HREIMS ion at m/z 288.1280 [M]⁺ (calcd for 288.1263), showing an extra oxygen atom relative to sempervirine (11),¹⁰ which was also isolated during this investigation (Tables 3 and 4 and Supporting Information S11). The major differences in the ¹H NMR data of 8 and 11 were the shielded signals for H-5 ($\Delta\delta_{\rm H}$ –0.53), H-6 ($\Delta\delta_{\rm H}$ -0.26), H-9 ($\Delta\delta_{\rm H}$ -0.11), H-10 ($\Delta\delta_{\rm H}$ -0.09), H₂-19 ($\Delta\delta_{\rm H}$ -0.18), and H-21 ($\Delta \delta_{\rm H}$ -0.31) and deshielded signals for H-12 $(\Delta \delta_{\rm H} 0.24)$ and H-14 $(\Delta \delta_{\rm H} 1.37)$, with the most significant shifts occurring at H-5, H-6, H-21, and H-14. These observations suggested that the shielding-related structural variation occurs around N-4 and the deshielding-related one occurs near C-12 and C-14. Considering the presence of a conjugated π -electron system between N₄ and N₁ in 11, it is likely that such a resonance system disappears in 8 and that the additional O is located at N_1 to form an $N \rightarrow O$ dative covalent bond, the presence of which disfavors formation of a conjugated system between N4 and N1 and is consistent with the above NMR data. Reduction of compound 8 to 11 suggested it to be the N-1-oxide of sempervirine (11), and it was named sempervirinoxide. This is the first N-1-oxide alkaloid of the yohimbane type.

Compound 9 was assigned the molecular formula $C_{21}H_{18}N_2O_4$ on the basis of its ¹³C NMR data and the HREIMS ion at m/z 362.1262 [M]⁺ (calcd 362.1267). The ¹H and ¹³C NMR data (Tables 3 and 4) resembled those of sempervirine (11); differences included replacement of the signals from ring E [δ_H 3.18 (2H), br s, δ_C 30.6 (CH₂-16); δ_H 1.98 (4H), br s, δ_C 22.9 (CH₂-17 and CH₂-18); δ_H 3.01 (2H),

br s, $\delta_{\rm C}$ 27.5 (CH₂-19)] in 11 (Tables 3 and 4, S11) by those from two carboxylic/ester carbons ($\delta_{\rm C}$ 167.1, C-19; $\delta_{\rm C}$ 173.9, C-18), an ethoxy group [$\delta_{\rm H}$ 1.24 (3H), t, J = 7.1 Hz, $\delta_{\rm C}$ 14.5, $(CH_3-2'); \delta_H 4.14 (2H), q, J = 7.1 Hz, \delta_C 61.8, (CH_2-1')], and$ two contiguous methylene groups [$\delta_{\rm H}$ 3.54 (2H), t, J = 7.5 Hz, $\delta_{\rm C}$ 27.8 (CH₂-16); $\delta_{\rm H}$ 2.88 (2H), t, J = 7.5 Hz, $\delta_{\rm C}$ 35.3 (CH₂-17)]. These observations suggested that ring E in 11 was opened in 9/9a. 2D NMR spectroscopic analysis (Figure 2) not only confirmed the above inference but also established the remaining substructure for 9. In particular, the ¹H-¹H COSY correlations between H-16/H-17 and H-1'/H-2' and HMBC correlations between H-16 and both C-18 and the carbon at $\delta_{\rm C}$ 173.9 suggested the connection of $-CH_2(16)-CH_2(17)-$ and $-O-CH_2(1')-CH_3(2')$ via ester carbonyl carbon C-18. HMBC correlations between H-16 and C-14 and C-20 located the C-16-C-17-C-18-O-C-1'-C-2' substructure at C-15. Moreover, HMBC correlation between H-21 and C-19 indicated the remaining carbon ($\delta_{\rm C}$ 167.1) as C-20 and suggested this carbon to be part of a carboxylic group on the basis of elemental constitution analysis. Thus, the structure of 9 was elucidated as depicted, and this compound was named secosemperviroic acid. Compound 9 is the first known yohimbanetype E-seco alkaloid.

Although the structure of *seco*-sempervirinic acid (9) is of great interest, the presence of an ethoxy group in 9 also emphasizes whether 9 is a natural product or an artifact. Thus, the methanol crude extract was chemically analyzed by LC-ESIMS, and the absence of 9 in the extract suggested that it was an artifact.

Eleven known indole monoterpenoid alkaloids, koumine (10),⁷ (19*R*)-hydroxydihydrokoumine,⁷ (19*S*)-hydroxydihydrokoumine,⁷ (19*S*)-hydroxydihydrokoumine,⁷ (19*R*)-hydroxydihydrokoumine,⁷ (4*R*)-koumine *N*-oxide,¹¹ (4*S*)-koumine *N*-oxide,¹¹ *N*-demethoxyhumantenine,⁸ 11-methoxy-(19*R*)-hydroxygelselegine,¹² sempervirine (11),¹⁰ koumidine,¹³ *epi*-koumidine,¹⁴ and gelsemine,¹⁵ and a monoterpenoid alkaloid, venoterpine,¹⁶ were also isolated. Their structures were determined by comparison of their experimental and reported NMR and MS data. Among the known compounds, (4*R*)-koumine *N*-oxide, 11-methoxy-(19*R*)-hydroxygelselegine, and *epi*-koumidine were obtained as natural products for the first time, and venoterpine was isolated from the Loganiaceae family for the first time.

The new compounds 1–7 and 9 (8 was not tested due to its poor solubility) were evaluated for their cytotoxic activity against human myeloid leukemia HL-60, hepatocellular carcinoma SMMC-7721, lung cancer A-549, breast cancer MCF-7, colon cancer SW480, and human bronchial epithelial BEAS-2B cell lines. Compounds 1 and 7 exhibited moderate cytotoxicity against the five human tumor cell lines, with IC₅₀ values in the range 4.6–9.3 μ M (Table 5). Compounds 1–7 and 9 were also tested against nitric oxide production in LPS-activated RAW264.7 macrophages, but none of the tested compounds exhibited significant inhibitory activity (IC₅₀ >25 μ M).

Table 5. Cytotoxic Activity $(IC_{50} \mu M)$ of Selected Compounds against Cancer Cell Lines

compound	HL-60	SMMC-7721	A-549	MCF-7	SW480	BEAS-2B
1	4.6	5.3	4.9	9.3	7.3	8.6
7	8.5	7.3	9.3	>10	>10	>10
cisplatin	2.0	5.2	8.6	>10	>10	>10

EXPERIMENTAL SECTION

General Experimental Procedures. Optical rotations were obtained with a JASCO P-1020 polarimeter equipped with a 1 dm path length cell. UV spectra were measured with a Shimadzu UV-2401A equipped with a 1 cm path length cell. ECD spectra were recorded on a JASCO 810 spectrometer. IR spectra (KBr) were determined on a Bruker Tensor-27 infrared spectrophotometer. 1D and 2D NMR spectra were recorded on Bruker AM-400, Bruker DRX-500, and Bruker Avance III 600 spectrometers with TMS as an internal standard. EIMS and HREIMS spectra were recorded on an AutoSpec Premier P776 instrument; ESIMS and HRESIMS were measured with a Finnigan MAT 90 mass spectrometer; LC-ESIMS was done on an ACQUITY UPLC SYNAPT G2MS (Waters Corp., USA), equipped with a BEH C₁₈ column (1.7 μ m, 2.1 × 50 mm; Waters Corporation). The mobile phase included (A) pure H₂O and (B) MeOH. The concentration of eluent B was changed from 20% to 95% within 10 min (linear gradient). The flow rate of the eluent was 0.4 mL min⁻¹ the injection volume of the extract was 1 μ L, and the column oven was set at 30 °C. Identification of compounds 2 and 3 as natural products in G. elegans was analyzed by LC-PDA-(+)-ESIMS/MS (Supporting Information S2/3-9). Semipreparative HPLC was carried out using a Waters system consisting of a 600 pump and a 2996 photodiode array detector. Silica gel (200-300 mesh, Qingdao Marine Chemical Factory, Qingdao, China), Sephadex LH-20 gel (40-70 μ m, Amersham Pharmacia Biotech AB, Uppsala, Sweden), and MCI gel (CHP20/P120, 75-150 µm, Mitsubishi Chemical Corporation, Japan) were used for column chromatography.

Plant Material. The leaves and perennial vine stems of *G. elegans* were collected from Xishuangbanna Tropical Botanical Garden (XTBG), Chinese Academy of Science (CAS), Mengla County, Yunnan Province, People's Republic of China, in October 2009 and were identified by one of the authors (Y.-K.X.). A voucher specimen (No. GE-2009-1012) was deposited in the herbarium of XTBG.

Extraction and Isolation. The air-dried, powdered plant material (6.0 kg) was extracted three times (5 days each) with $EtOH/H_2O$ (90/10, v/v, 50 L) at room temperature. Removal of the solvent from the combined extracts in vacuum afforded a crude residue (600 g). The aqueous EtOH extract was dissolved in H_2O (3.0 L) to form a suspension, which was acidified with 10% H₂SO₄ to a pH ca. 3. The acidic suspension was partitioned with EtOAc to remove the neutral compounds, and the aqueous phase was basified with Na₂CO₃ to a pH ca. 10 and extracted with CHCl₃ to yield a crude alkaloid extract (105 g). The crude alkaloid mixture was applied to an MCI gel column $(MeOH/H_2O \text{ from } 2/8 \text{ to } 5/1, v/v)$ to yield five major fractions (Frs. 1-5). Fr. 1 (15 g) was subjected to column chromatography (CC) over silica gel (CHCl₃/MeOH, 5/1 to 1/1, v/v) to yield four major fractions (1a-1d). Frs. 1a-1d were purified first by Sephadex LH-20 CC (MeOH/H₂O, 2/3 to 4/1, v/v) and then by semipreparative HPLC (MeOH/H₂O from 3/7 to 6/1, v/v) to yield 2/3 (10 mg), 11methoxy-(19R)-hydroxygelselegine (5 mg), 5 (5 mg), and (19S)hydroxydihydrokoumine (50 mg), respectively. Fr. 2 (10 g) was enriched by Sephadex LH-20 CC (MeOH/H₂O, from 1/1 to 4/1, v/ v) and separated on silica gel CC (CHCl₃/MeOH, from 10/1 to 3/1, v/v) to give four subfractions, purification of which by semipreparative HPLC (MeOH/H₂O, from 1/1 to 5/1, v/v) yielded (4S)-koumine Noxide (15 mg), (4R)-koumine N-oxide (3 mg), 7 (5 mg), and (19R)hydroxydihydrokoumine (8 mg). Fr. 3 (12 g) was applied to a silica gel column eluted with petroleum ether/EtOAC (from 3/1 to 1/5, v/v) to give seven fractions (3a-3g). Purification of Frs. 3a-3g by HPLC (MeOH/H₂OH, from 3/2 to 5/1, v/v) yielded N-demethoxyhumantenine (5 mg), sempervirine (11) (100 mg), gelsemine (50 mg), 8 (10 mg), 9 (5 mg), koumidine (50 mg), and venoterpine (10 mg). Fr. 4 (17 g) was applied to a silica gel column eluted with petroleum ether/ EtOAC (from 4/1 to 1/5, v/v) to yield three major fractions (4a-4c). Fr. 4a (6 g) was subjected to silica gel CC (CHCl₃/MeOH, from 1/0 to 4/2, v/v) to yield koumine (10) (1500 mg), 4 (4 mg), and epikoumidine (15 mg). Fr. 4b (3 g) was enriched by MCI CC (MeOH/ H_2O_1 , from 3/2 to 5/1, v/v) and separated by semipreparative HPLC $(MeOH/H_2O, 3/2 \text{ to } 5/1, v/v)$ to afford 1 (12 mg) and 6 (15 mg). *N*-4-Demethyl-21-dehydrokoumine (1): amorphous powder; [α]²⁵_D -203 (*c* 0.01, MeOH); UV (MeOH), λ_{max} (log ε) 221 (4.12), 261 (3.59) nm; ECD (*c* 4.13 × 10⁻¹ mol/L, MeOH, 20 °C) λ_{max} (Δ ε) 255 (-18.55), 225 (45.56), 199 (46.5); IR (KBr) ν_{max} 3442, 2923, 2852, 1630, 1384, 1075 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HREIMS *m*/*z* 290.1416 [M]⁺ (calcd for C₁₉H₁₈N₂O, 290.1419).

21α-Hydroxylkoumine (2) and 21β-hydroxylkoumine (3): amorphous powder; $[\alpha]^{21}{}_{\rm D}$ –232 (*c* 0.1, MeOH); UV (MeOH), $\lambda_{\rm max}$ (log ε) 220.6 (4.27), 263.4 (3.69) nm; ECD (*c* 5.65 × 10⁻¹ mol/L, MeOH, 20 °C) $\lambda_{\rm max}$ ($\Delta \varepsilon$) 267 (–24.01), 225 (29.85), 207 (–15.75); IR (KBr) $\nu_{\rm max}$ 3422, 2927, 2866, 1636, 1447, 1085 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HRESIMS *m*/*z* 323.1749 [M + H]⁺ (calcd for C₂₀H₂₃N₂O₂, 323.1760).

(195)-Hydroxydihydrokoumine N-4-oxide (4): amorphous powder; $[\alpha]^{25}_{D}$ –73 (c 0.1, MeOH); UV (MeOH), λ_{max} (log ε) 222.2 (3.70), 262.2 (3.11) nm; ECD (c 2.45 × 10⁻¹ mol/L, MeOH, 20 °C) λ_{max} ($\Delta \varepsilon$) 263 (-9.29), 228 (9.92), 205 (-13.56), 195 (-3.53); IR (KBr) ν_{max} 3441, 2957, 2923, 1630, 1454, 1040 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HREIMS m/z 340.1792 [M]⁺ (calcd for C₂₀H₂₄N₂O₃, 340.1787).

1β,20α-Dihydroxydihydrorankinidine (5): white, amorphous powder, $[\alpha]^{26.5}_{D}$ –211 (*c* 0.1, MeOH); UV (MeOH), λ_{max} (log ε) 201.6 (2.81), 251.4 (1.69) nm; ECD (*c* 3.21 × 10⁻¹ mol/L, MeOH, 20 °C) λ_{max} ($\Delta \varepsilon$) 261 (–12.08), 228 (26.52), 210 (–45.63); IR (KBr) ν_{max} 3422, 2926, 1704, 1618, 65, 1042, 750 cm⁻¹; ¹H and ¹³C NMR data, see Tables 3 and 4; HRESIMS *m/z* 375.1918 [M + H]⁺ (calcd for C₂₀H₂₇N₂O₅, 375.1920).

11-Methoxy-19,20α-dihydroxydihydrorankinidin (6): white, amorphous powder; $[\alpha]^{24}_D$ –93 (c 0.1, MeOH); UV (MeOH), λ_{max} nm (log ε) 258 (3.44), 213 (4.31) nm; ECD (c 5.98 × 10⁻¹ mol/L, MeOH, 20 °C) λ_{max} (Δε) 266 (-5.89), 236 (22.02), 215 (-40.93), 196 (16.22); IR (KBr) ν_{max} 3427, 2934, 1719, 1630, 1499, 1456, 1384, 1217, 1119, 1063, 963, 804 cm⁻¹; ¹H and ¹³C NMR data, see Tables 3 and 4; HRESIMS m/z 405.2025 [M + H]⁺ (calcd for C₂₁H₂₉N₂O₆, 405.2026).

Norhumantenine A (7): white, amorphous powder; $[\alpha]^{21}{}_{D} - 307$ (*c* 0.03, MeOH); UV (MeOH), λ_{max} (log ε) 212 (3.31), and 291 (3.02) nm; ECD (*c* 3.53 × 10⁻¹ mol/L, MeOH, 20 °C) λ_{max} ($\Delta \varepsilon$) 290 (-25.6), 237 (10.5), 217 (-28.3), 199 (14.3); IR (KBr) ν_{max} 3448, 2921, 1716, 1631, 1583, 1499, 1384 cm⁻¹; ¹H and ¹³C NMR data, see Tables 3 and 4; HREIMS *m*/*z* 370.1542 [M]⁺ (calcd for C₂₀H₂₂N₂O₅, 370.1529).

Sempervirinoxide (8): yellow powder; UV (MeOH) λ_{max} nm (log ε) 471 (3.35), 355 (4.25), 300 (4.10), 245.5 (4.33), 197.5 (4.11) nm; IR (KBr) ν_{max} 3440, 2924, 2853, 1640, 1469, 1403, 1347, 1037, 745 cm⁻¹; ¹H and ¹³C NMR data, see Tables 3 and 4; HREIMS *m/z* 288.1280 [M]⁺ (calcd for C₁₉H₁₆N₂O, 288.1263).

seco-Semperviroic acid (9): white, amorphous powder; UV (MeOH), λ_{max} nm (log ε) 390 (3.52), 353 (3.55), 282 (3.66), 248 (3.92), 218 (4.12), 204 (4.12) nm; IR (KBr) ν_{max} 3440, 2920, 1725, 1633, 1114 cm⁻¹; ¹H and ¹³C NMR data, see Tables 3 and 4; HREIMS m/z 362.1262 [M]⁺ (calcd for C₂₁H₁₈N₂O₄, 362.1267).

Chemical Transformation of Compound 8 to Compound 11. To a stirred suspension of compound 8 (1 mg, 0.0035 mmol) and an equal weight of 5% Pd/C (1 mg, 0.00047 mmol Pd) in dry MeOH (0.5 mL) was added anhydrous ammonium formate (31.5 mg, 0.5 mmol) in a single portion under a nitrogen atmosphere. The mixture was stirred at room temperature, and the progress was monitored by TLC. After 48 h, the catalyst and the ammonium salt were removed by filtration through a Celite pad, using a CHCl₃/MeOH (15/1) solvent mixture (ca. 3 mL) as the eluent. The combined organic filtrate upon evaporation under reduced pressure afforded the target compound 11.

Analysis of Synthetic and Natural Sempervirine (11). Components 8 and 11 were indistinguishable by R_f values on silica gel 60 F254 precoated plates. However, when the samples were dissolved in MeOH in identical concentrations (approximately 1 mg/ mL), 8 appeared dark brown on TLC under visible light, whereas 11 was only pale yellow or nearly colorless. The ¹H NMR (methanol- d_a , 500 MHz) spectroscopic data of synthetic **11** are consistent with those of the natural sample previously isolated (S11-6).

Cytotoxicity Assays.¹⁷ Inhibition of NO Production Assays. The assay was performed according to a published method.¹⁸ Each compound was dissolved in DMSO and further diluted in the medium to produce different concentrations with a maximum concentration of $25 \,\mu$ M. The absorbance was measured at 570 nm with a 2104 Envision multilabel plate reader (PerkinElmer Life Sciences, Inc., Boston, MA, USA). Cytotoxicity was determined with the MTT assay. MG-132 (Sigma-Aldrich, Foster City, CA, USA) was used as the positive control.

None of the eight (1-7, 9) compounds exhibited significant inhibitory activities against nitric oxide production in LPS-activated RAW264.7 macrophages.

ASSOCIATED CONTENT

S Supporting Information

1D and 2D NMR, HRESIMS/HREIMS, IR, and UV spectra of compounds 1-9 and 11 (1D and 2D), LC-ESIMS/MS analysis of compounds 2 and 3 in the EtOH crude extracts of *G. elegans*, and the ¹H NMR spectrum of sempervirine (11). The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/np5009619.

AUTHOR INFORMATION

Corresponding Author

*Tel: +86-691-8713169. Fax: +86-691-8713061. E-mail: xyk@ xtbg.ac.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by a grant (U1302222) from the National Natural Science Foundation of China, 135 Program (XTBG-F02) from Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, and Ethnobotanical Investigation of Plants for Industrialization in Southwest China (SQ2012FY4910027).

REFERENCES

(1) Jin, G. L.; Su, Y. P.; Liu, M.; Xu, Y.; Yang, J.; Liao, K. J.; Yu, C. X. J. Ethnopharmacol. **2014**, *152*, 33–52.

(2) Zhang, Z.; Zhang, Y.; Wang, Y. H.; Zhang, Q.; Yan, X. H.; Di, Y. T.; He, H. P.; Hao, X. J. *Fitoterapia* **2012**, *83*, 704–708.

(3) Liang, S.; He, C. Y.; Szabó, L. F.; Feng, Y.; Lin, X.; Wang, Y. Tetrahedron Lett. 2013, 54, 887–890.

(4) Qu, J.; Fang, L.; Ren, X. D.; Liu, Y. B.; Yu, S. S.; Li, L.; Bao, X. Q.; Zhang, D.; Li, Y.; Ma, S. G. J. Nat. Prod. **2013**, 76, 2203–2209.

(5) Xu, Y. K.; Liao, S. G.; Na, Z.; Hu, H. B.; Li, Y.; Luo, H. R. Fitoterapia 2012, 83, 1120-1124.

(6) Xu, Y. K.; Yang, S. P.; Liao, S. G.; Zhang, H.; Lin, L. P.; Ding, J.; Yue, J. M. J. Nat. Prod. **2006**, 69, 1347–1350.

(7) Lin, L. Z.; Cordell, G. A.; Ni, C. Z.; Clardy, J. Phytochemistry 1990, 29, 965-968.

(8) Lin, L. Z.; Cordell, G. A.; Ni, C. Z.; Clardy, G. Phytochemistry 1991, 30, 1311–1315.

(9) Yamada, Y.; Kitajima, M.; Kogure, N.; Wongseripipatana, S.; Takayama, H. Chem.-Asian J. 2011, 6, 166-173.

(10) Gribble, G. W.; Barden, T. C.; Johnson, D. A. Tetrahedron 1988, 44, 3195-3202.

(11) Ponglux, D.; Wongseripipatana, S.; Subhadhirasakul, S.; Takayama, H.; Yokota, M.; Ogata, K.; Phisalaphong, C.; Aimi, N.; Sakai, S. *Tetrahedron* **1988**, *44*, 5075–5094.

(12) Takayama, H.; Kitajima, M.; Sakai, S. I. *Tetrahedron* **1994**, *50*, 11813–11820.

(13) Yeh, S.; Cordell, G. A. Phytochemistry 1987, 26, 2875-2876.

(14) Kitajima, M.; Takayama, H.; Sakai, S. I. J. Chem. Soc., Perkin Trans. 1 1991, 8, 1773–1779.

(15) Lin, L. Z.; Yeh, S.; Cordell, G. A.; Ni, C. Z.; Clardy, J. *Phytochemstry* **1991**, *30*, 679–683.

(16) Ravao, T.; Richaro, B.; Zeches, M.; Massiot, T.; Le Men-Olivier, L. *Tetrahedron Lett.* **1985**, *26*, 837–838.

(17) Ji, K. L.; Zhang, P.; Hu, H. B.; Hua, S.; Liao, S. G.; Xu, Y. K. J. Nat. Prod. **2014**, 77, 1764–1769.

(18) Ahmad, V. U.; Uddin, G. S.; Bano, S. J. Nat. Prod. 1990, 53, 1193–1197.