# A Novel Entry to Spirofurooxindoles Involving Tandem Dearomatization of Furan Ring and Intramolecular Friedel– Crafts Reaction

Biao-Lin Yin,<sup>a,\*</sup> Jin-Qiang Lai,<sup>a</sup> Ze-Ren Zhang,<sup>a</sup> and Huan-Feng Jiang<sup>a</sup>

<sup>a</sup> School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China

Fax: (+86)-20-8711-3735; phone: (+86)-20-8711-3735; e-mail: blyin@scut.edu.cn

Received: January 14, 2011; Revised: April 19, 2011; Published online: August 11, 2011

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adcs.201100034.

Abstract: A copper sulfate pentahydrate-catalyzed intramolecular Friedel–Crafts reaction using an oxocarbenium species derived from a furan ring as the alkylating agent was developed for the first time. By using this protocol, spirofurooxindoles **9** with multi-reactive sites were synthesized simply and concisely. In addition, selective hydrogenation of the *endo*-cyclic double bond and full hydrogenation of the *endo* and *exo*-cyclic double bonds of spirofurooxindoles **9** provided spirofurooxindoles **11** and **12**, respectively.

**Keywords:** dearomatization; Friedel–Crafts reaction; selective hydrogenation; spirofurooxindoles

The heterocyclic spirooxindoles **1** with diverse B rings, of synthetic or natural origin, have attracted much attention due to their significant biological activities.<sup>[1]</sup> For example, spiro[pyrrolidine-3,3'-oxindoles] have recently been found to be a novel inhibitor of the MDM2-p53 interaction.<sup>[2]</sup> Gelsedine-type indole alkaloids showed strong cytotoxic effects

against the A431 human epidermoid carcinoma cell line.<sup>[3]</sup> Spiro[isoxazolidine-3,3'-oxindoles] were demonstrated to have significant cytostatic activity on the human breast cancer cell line, MCF-7.<sup>[4]</sup> Spiro[furo-2,3'-oxindoles] inhibited the growth of lung adenocarcinoma (A549) cells and hepatocellular carcinoma (HepG2) cells.<sup>[5]</sup> Presently, the development of efficient methods for the synthesis of novel heterocyclic spiro-oxindoles and investigation of their bioactivities are of great significance in organic and medicinal chemistry.

To date, most of the documented methods for the synthesis of heterocyclic spiro-oxindoles start with substituted indoles (**2a**) or isatins (**2b**) containing ring A, followed by the construction of the spiro-carbon and formation of ring B (Pathway a, Figure 1).<sup>[6,7]</sup> However, sometimes these methods suffer from inherent drawbacks such as functional group compatibility, harsh reaction conditions, multiple-step manipulation, and poor availability of the starting material to diversify the molecular structure. It is highly desirable to develop simple and complementary methods for the construction of the spiro-carbon of **1** and formation of ring A from readily available B-ring-containing amides **3** (Pathway b).<sup>[8]</sup>



<sup>∽</sup>ŃR<sup>1</sup> 2b Pathway a

R<sup>2[</sup>

Adv. Synth. Catal. 2011, 353, 1961-1965

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Pathway b

В



In our continuous efforts to search for bioactive spiro compounds, we have recently developed a general and concise method for the construction of a library of spiroacetals (Scheme 1).<sup>[9,10]</sup> The synthetic strategy involves: (i) the dearomatization of the fivemembered aromtic ring of 4, which generates a carbocation 5 when exposed to suitable acids; (ii) trapping of 5 with an intramolecular hydroxy group as a nucleophile to form spiroacetals; and (iii) further modification of multiple reaction sites of 6 for diversity-oriented synthesis (DOS). We envisaged that the diversification of the nucleophiles to trap carbocation 5 could produce a series of useful spiro-compounds with

structural novelty. In this paper we wish to report a reaction in which the carbocation 8, derived from 2-furancarboxamide 7, is trapped by an intramolecular electron-rich phenyl ring (Friedel-Crafts reaction). This protocol would allow easy access to spirofurooxindoles 9. To the best of our knowledge, such type of FriedelCrafts reaction using oxocarbenium adjacent to an electron-withdrawing carbonyl group as an alkylation agent has never been reported.

With the above-mentioned strategy in mind, we set out to synthesize precursor 7. As shown in Scheme 2, 7 was prepared from a keto ester  $10^{[11]}$  in middle to good overall yields over 4 steps including hydrolysis, acetyl chlorination, amidation and reduction. To optimize the reaction conditions for the cyclization of 7 into 8, 7aa was used as the substrate under the influence of various acids and the results were summarized in Table 1. Possibly due to the polymerization of the furan ring, strong Lewis acids such as TiCl<sub>4</sub>, SnCl<sub>4</sub> and

Table 1. Optimization of the reaction conditions for cyclization.<sup>[a]</sup>





| Entry | Acid                             | Solvent | Temp.<br>[°C] | Time<br>[h] | Yield<br>[%] <sup>[b]</sup> |
|-------|----------------------------------|---------|---------------|-------------|-----------------------------|
| 1     | TiCl <sub>4</sub> <sup>[c]</sup> | DCM     | -78           | 1           | ND                          |
| 2     | SnCl <sub>4</sub> <sup>[c]</sup> | DCM     | -78           | 1           | ND                          |
| 3     | $BF_3 \cdot Et_2O^{[c]}$         | THF     | -78           | 1           | ND                          |
| 4     | CSA <sup>[c]</sup>               | DCM     | r.t.          | 72          | 25                          |
| 5     | PTSA <sup>[c]</sup>              | toluene | r.t.          | 6           | 25                          |
| 6     | $Yb(OTf)_3^{[c]}$                | toluene | 60            | 2           | ND <sup>[e]</sup>           |
| 7     | CuSO <sub>4</sub> <sup>[d]</sup> | toluene | 110           | 12          | NR <sup>[f]</sup>           |
| 8     | $CuSO_4 \cdot 5H_2O^{[d]}$       | toluene | 100           | 18          | 62                          |
| 9     | $CuSO_4 \cdot 5H_2O^{[d]}$       | toluene | 100           | 5           | 85                          |
|       | and AcOH <sup>[c]</sup>          |         |               |             |                             |
| 10    | $CuSO_4 \cdot 5H_2O^{[d]}$       | toluene | 110           | 1.5         | 78                          |
|       | and AcOH <sup>[c]</sup>          |         |               |             |                             |

[a] All reactions were carried out on a 0.3 mmol scale.

[b] Isolated yield.

[c] 0.1 equiv. was used.

[d] 1.5 equiv. were used.

[e] ND: not detected.

[f] NR: no reaction.





rived from a five-membered aromatic ring.

1962 asc.wiley-vch.de © 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

BF<sub>3</sub>·Et<sub>2</sub>O led to very complicated reaction systems (entries 1-3), although they have been frequently used as catalysts for Friedel-Crafts reactions utilizing acetals as alkylating agents. Weaker protonic or Lewis acids such as CSA, PTSA, Yb(OTf)<sub>3</sub>, and CuSO<sub>4</sub> were also screened (entries 4-7). To our delight, the desired product 9aa was obtained in 62% yield when  $CuSO_4 \cdot 5H_2O$  (or  $CuSO_4$  with a small amount of  $H_2O$ ) as a catalyst (entry 8). The structure of 9aa was confirmed by single-crystal X-ray data analysis (Figure 2). Interestingly, under the same reaction conditions as in entry 8, addition of a catalytic amount of AcOH improved the yield remarkably to 85% (entry 9). Further increases of the reaction temperature to 110°C resulted in a lower yield (entry 10). Under the catalysis of CuSO<sub>4</sub>·5H<sub>2</sub>O, AcOH might react with the hydroxy group of 7, forming the corresponding acetate. The acetoxy group is a good leaving group which helps to form carbocation 8.

To understand the generality of this reaction, we subjected various 2-furylcarbinol amides 7 to provide the spirofurooxindoles (9aa-9ed) under the same reaction conditions as entry 9 in Table 1. The results are summarized in Table 2. As expected, the electron density of the phenyl ring of the anilines influenced the yields remarkably. Higher electron density generally led to higher yields (9aa > 9ab > 9ac > 9ad). The failure with 9af might result from the low electron density of its phenyl ring (entry 6). In entries 13-16 where the Ar group is 1-naphthyl, compounds 9ea-9ed were obtained as a mixture of two isomers with a ratio about 5:1. Products 9ea-9ed may be viewed as trans-1,2-diarylethylenes where rotational isomerism seems to exist.<sup>[12]</sup> Therefore, the isomers are probably the rotamers about the naphthyl-CH= linkage. On the basis of the ORTEP diagram of the major isomer of **9ed**,<sup>[15]</sup> the structures of the two isomers are proposed in Figure 3. It is worth noting that when the X group



Figure 2. ORTEP diagram of 9aa.<sup>[15]</sup>

Adv. Synth. Catal. 2011, 353, 1961–1965

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

Table 2. Synthesis of spirofurooxindoles.<sup>[a]</sup>



| Entry                                                 | Ar                                                                                                                                                                                                                                                                                                                                                                                                       | Х                                                                                                                               | Time<br>[h]                                   | 9 <sup>[b]</sup>                                                   | Yield <sup>[c]</sup><br>[%]                                                                                                            |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7                       | Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph                                                                                                                                                                                                                                                                                                                                                                   | 3,4,5-tri-MeO<br>3,5-di-MeO<br>3,4-di-MeO<br>3,5-di-Me<br>3-MeO<br>H<br>3,45-tri-MeO                                            | 5<br>0.5<br>1.5<br>6<br>1<br>16               | 9aa<br>9ab<br>9ac<br>9ad<br>9ae<br>9af<br>9ba                      | 85<br>83<br>66<br>46<br>57 (3/1) <sup>[d]</sup><br>0<br>92                                                                             |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | $\begin{array}{l} p\text{-}\text{Cl-C}_6\text{H}_4\\ p\text{-}\text{Cl-C}_6\text{H}_4\\ p\text{-}\text{Cl-C}_6\text{H}_4\\ p\text{-}\text{Cl-C}_6\text{H}_4\\ p\text{-}\text{NO}_2\text{-}\text{C}_6\text{H}_4\\ p\text{-}\text{MeO-C}_6\text{H}_4\\ 1\text{-}\text{naphthyl}\\ 1\text{-}\text{naphthyl}\\ 1\text{-}\text{naphthyl}\\ 1\text{-}\text{naphthyl}\\ 1\text{-}\text{naphthyl}\\ \end{array}$ | 3,4,5-tri-MeO<br>3,5-di-Me<br>3-MeO<br>3,4,5-tri-MeO<br>3,4,5-tri-MeO<br>3,4,5-tri-MeO<br>3,5-di-MeO<br>3,4-di-MeO<br>3,5-di-Me | 1<br>1<br>5<br>3<br>7<br>2<br>1.5<br>1.5<br>5 | 9ba<br>9bb<br>9bd<br>9be<br>9ca<br>9da<br>9ea<br>9eb<br>9ec<br>9ed | 92<br>89<br>60<br>64 (4/1) <sup>[d]</sup><br>85<br>33<br>87(5/1) <sup>[d]</sup><br>80 (4.8/1)<br>91 (3.7/1)<br>71 (3/1) <sup>[d]</sup> |

<sup>[a]</sup> All reactions were carried out on a 0.3 mmol scale.

<sup>[b]</sup> All compounds were fully characterized (see Supporting Information).

<sup>[c]</sup> Isolated yield.

<sup>[d]</sup> Based on <sup>1</sup>H NMR.



Figure 3. The structures of s-trans-9ed and s-cis-9ed.

was 3,4-dimethoxy, the cyclization occurred exclusively at the 6-position of the phenyl ring (entries 3, 15). In contrast, when the X group was 3-methoxy, the cyclization occurred predominately at the 6-position, leading to two regioisomers, (entries 5 and 10).

To diversify the spirofurooxindoles scaffold, we modified the *endo* and *exo*-cyclic double bonds of **9** (Scheme 3, Table 3). Selective hydrogenation of the *endo*-cyclic double bond was achieved by reduction of **9** with NaBH<sub>4</sub> (10 equiv.) in the presence of NiCl<sub>2</sub> (1.5 equiv.) in DME-MeOH, yielding **11** with moderate to good yields (60–75%). The substituted 2-meth-ylenetetrahydrofuran ring of **11** is likely to adopt two different conformations (the bent and twisted forms) which may have a high barrier to pseudorotation.<sup>[13]</sup>



Scheme 3. Synthesis of spirofurooxindoles 12.

 Table 3. Synthesis of spirofurooxindoles 11.<sup>[a]</sup>



| Entry | 9             | Major product | Ratio <sup>[b]</sup> | Yield <sup>[c]</sup> [%] |
|-------|---------------|---------------|----------------------|--------------------------|
| 1     | 9aa           | <b>11aa</b>   | 1/0.35               | 70                       |
| 2     | 9ab           | 11ab          | 1/0.37               | 60                       |
| 3     | 9ad           | 11ad          | 1/0.43               | 65                       |
| 4     | 9ba           | 11ba          | 1/0.31               | 71                       |
| 5     | 9bb           | 11bb          | 1/0.71               | 63                       |
| 6     | 9bd           | 11bd          | 1/0.85               | 75                       |
| 7     | 9ea           | 11ea          | 1/0.35               | 70                       |
| 8     | <i>Z</i> -9eb | 11eb          | 1/0.41               | 68                       |

<sup>[a]</sup> All reactions were carried out on a 0.3 mmol scale.

<sup>[b]</sup> The ratio of two conformational isomers is based on <sup>1</sup>H NMR.

<sup>[c]</sup> Isolated yield.

In the <sup>1</sup>H NMR spectrum of **11**, some proton signals, such as the enol ether proton, are divided into two parts. This is consistent with the existence of two conformations. The X-ray crystal structure of **11ea** indicates the non-coplanarity of the its naphthyl ring with the enol ether (Figure 4).<sup>[14]</sup> A mixture of fully reduced products **12** was obtained upon palladium-catalyzed hydrogenation, in favor of the *cis* isomer (benzyl *cis* to carbonyl). The realative configuration of **12aa** was verified by NOESY experiments and single-crystal X-ray data analysis (see Supporting Information).<sup>[15]</sup>

In summary, three kinds of novel spirofurooxindoles (9, 11, 12) with structural diversity were prepared using readily available furan derivatives as starting material in a concise and effective way. The key step involves an intramolecular Friedel–Crafts reaction of the tethered electron-rich anilide with the oxocarbenium derived from the furan ring. This protocol represents a potential and novel strategy for the synthesis of new heterocyclic spirooxindoles. Further studies on the trapping of 5, derived from the dearomatization of the corresponding thiophene and pyr-



Figure 4. ORTEP diagram of 11ea.<sup>[15]</sup>

role rings, to achieve molecular diversity of spirooxindoles and investigation of their bioactivities are under way, and the results will be disclosed in due course.

## **Experimental Section**

### **General Procedure for the Synthesis of Spirooxindole** 9 from 7

The mixture of **7** (0.3 mmol),  $\text{CuSO}_4.5\text{H}_2\text{O}$  (112.5 mg, 0.45 mmol), acetic acid (1.7  $\mu$ L) and toluene (5 mL) was stirred at 100 °C until the disappearance of **7** according to the TLC. The mixture then was cooled to room temperature and the solid was filtered off. The removal of the organic solvent provided the crude product which was purified by flash chromatography to give **9**.

# General Procedure for the Synthesis of Spirooxindole 11 from 9

To a solution of **9** (0.2 mmol) in DME (2 mL) and anhydrous methanol (2 mL) was added NaBH<sub>4</sub> (76.0 mg, 2 mmol), NiCl<sub>2</sub> (38.1 mg, 0.3 mmol) in portions. The mixture was stirred for 20 min until the starting material had disappeared according to the TLC. The organic solvents were removed under reduced pressure, and then water (20 mL) was added. The resulting mixture was extracted with ethyl acetate (10 mL×3). The combined organic layers were washed with saturated brine (20 mL), dried over sodium sulfate, and concentrated under reduced pressure to provide the crude product. The crude mixture was purified using silica gel flash chromatography to give the product **11**.

#### General Procedure for the Synthesis of Spirooxindole 12 from Spirooxindole 9 or 11

To a round-bottom flask (50 mL) was added spirooxindole **9** or **11** (0.2 mmol), ethanol (15 mL) and Pd/C (10%, 42.6 mg). Then the flask was purged with hydrogen (1 atm). The resulting solution was stirred vigorously at room temperature for 2 h. The reaction mixture was filtered through a short silica gel column. The organic solvent was removed under

Advanced Synthesis & Catalysis

reduced pressure providing the crude product which was purified by flash chromatography to give the product **12**.

### Acknowledgements

This work was support by Doctoral Fund of Ministry of Education of China (200805611041), Fundamental Research Funds for the Central Universities (2009M0241), the National Natural Science Foundation of China (No. 21072062), and the Natural Science Foundation of Guangdong Province, China (10351064101000000). The authors are greatly indebted to Professor Yu-Lin Wu, Shanghai Institute of organic Chemistry, the Chinese Academy of Sciences, and Professor Fayang Qiu, Guangzhou Institute of Biomedicine & Health, The Chinese Academy of Sciences, for their helpful discussions about the stereochemistry.

### References

- For reviews, see: a) C. Marti, E. M. Carreira, *Eur. J. Org. Chem.* **2003**, 2209–2219; b) R. M. Williams, R. J. Cox, *Acc. Chem. Res.* **2003**, *36*, 127–139; c) J. F. M. Da Silva, S. J. Garden, A. C. Pinto, *J. Braz. Chem. Soc.* **2001**, *12*, 273–324.
- [2] a) K. Ding, Y. Lu, Z. Nikolovska-Koleska, S. Qiu, Y. Ding, W. Gao, J. Stuckey, P. P. Roller, Y. Tomita, J. R. Deschamps, S. Wang, J. Am. Chem. Soc. 2005, 127, 10130–10131; b) K. Ding, Y. Lu, Z. Nikolovska-Coleska, G. Wang, S. Qiu, S. Shangary, W. Gao, D. Qin, J. Stuckey, K. Krajewski, P. P. Roller, S. Wang, J. Med. Chem. 2006, 49, 3432–3435.
- [3] M. Kitajima, T. Nakamura, N. Kogure, M. Ogawa, Y. Mitsuno, K. Ono, S. Yano, N. Aimi, H. Takayama, J. Nat. Prod. 2006, 69, 715–718.
- [4] S. R. Yong, A. T. Ung, G. S. Pyne, B. W. Skeltonb, A. H. White, *Tetrahedron* 2007, 63, 1191–1199.
- [5] A. K. Franz, P. D. Dreyfuss, S. L. Schreiber J. Am. Chem. Soc. 2007, 129, 1020–1021.
- [6] For examples concerning using 2a as starting material:
  a) K. S. Feldman, A. G. Karatjas, Org. Lett. 2004, 6, 2849–2852;
  b) K. S. Feldman, D. B. Vidulova, A. G. Karatias, J. Org. Chem. 2005, 70, 6429–6440;
  c) P. López-Alvarado, J. Steinhoff, S. Miranda, C. Avendaño, J. C. Menéndez, Tetrahedron 2009, 65, 1660–1672.
- [7] For examples concerning using 2b as starting material:
  a) B. Alcaide, P. Almendros, R. Rodríguez-Acebes, *Chem. Eur. J.* 2005, *11*, 5708-5712; b) B. Alcaide, P. Almendros, T. M. Campo, M. T. Quirós, *Chem. Eur. J.* 2009, *15*, 3344-3346; c) L. Wang, Y. Zhang, H.-Y. Hu, H. K. Fun, J.-H. Xu, *J. Org. Chem.* 2005, *70*, 3850-3858; d) S. Muthusamy, C. Gunanathan, M. Nethaji, *J. Org. Chem.* 2004, *69*, 5631-5637; e) B. Alcaide, P. Almendros, R. Rodríguez-Acebes, *J. Org. Chem.* 2006, *71*, 2346-2351; f) D. Basavaiah, K. M. Reddy, *Org. Lett.* 2007, *9*, 57-60.

- [8] Only a few examples are known using N-phenylamides as starting material to construct the spiro-carbon atom:
  a) K. Jones, J. Wilkinson, J. Chem. Soc. Chem. Commun. 1992, 1767–1769;
  b) L. E. Overman, M. D. Rosen, Angew. Chem. 2000, 112, 4768–4771; Angew. Chem. Int. Ed. 2000, 39, 4596–4599;
  c) A. S. Kyei, K. Tchabanenko, J. E. Baldwin, R. M. Adlington, Tetrahedron Lett. 2004, 45, 8931–8934;
  d) S. Jaegli, J. Dufour, H.-L. Wei, T. Piou, X.-H. Duan, J.-P. Vors, L. Neuville, J. P. Zhu, Org. Lett. 2010, 12, 4498–4450.
- [9] a) Y. Gao, W.-L. Wu, B. Ye, R. Zhou, Y.-L Wu, Tetrahedron Lett. 1996, 37, 893-896; b) Y. Gao, W.-L. Wu, Y.-L. Wu, B. Ye, R. Zhou, Tetrahedron 1998, 54, 12523-12528; c) B.-L. Yin, Z.-M. Yang, T.-S. Hu, Y.-L. Wu, Synthesis 2003, 1995-2000; d) B.-L. Yin, T.-S. Hu, H.-J. Yue, Y. Gao, W.-M. Wu, Y.-L. Wu, Synlett 2004, 306-310; e) L. Chen, H.-H. Xu, B.-L. Yin, C. Xiao, T.-S. Hu, Y.-L. Wu, J. Agric. Food Chem. 2004, 52, 6719-6723; f) B.-L. Yin, T.-S. Hu, Y.-L. Wu, Tetrahedron Lett. 2004, 45, 2017-2020; g) B.-L. Yin, J.-F. Fan, Y. Gao, Y.-L. Wu, Synlett 2003, 399-401; h) B.-L. Yin, Y. Wu, Y.-L. Wu, J. Chem. Soc. Perkin Trans. 1 2002, 1746-1747; i) B.-L. Yin, Y.-L. Wu, J.-Q. Lai, Eur. J. Org. Chem. 2009, 2695-2699; j) H. Sun, Y. Lin, Y. Wu, Y. Wu, Chin. J. Chem. 2009, 27, 16-18; k) B. Yin, J. Lai, Y. Wu, Chin. J. Chem. 2010, 28, 2335-2338.
- [10] Robertson also reported the selective oxidation of the endo-cyclic double bond of 6, see: J. Robertson, S. Naud, Org. Lett. 2008, 10, 5445-5448.
- [11] J. A. Blanchette, E. V. Brown, J. Am. Chem. Soc. 1952, 74, 2098–2099.
- [12] More examples about rotational isomerism in *trans*-1,2diarylethylene-type derivatives, see: a) U. Mazzucato, F. MoMichioli, *Chem. Rev.* 1991, 91, 1679–1719; b) S. Toyota, *Chem. Rev.* 2010, 110, 5398–5424.
- [13] The conformations of substituted cyclopenanones have been well studied. The conformation of the 2-meth-ylenetetrahydrofuran ring of 11 is similar to that of cyclopenanone to some extent. For related references, see: a) K. Tamagawa, R. L. Hilderbrandt, Q. Shen, J. Am. Chem. Soc. 1987, 109, 1380–1383; b) K. S. Pitzer, W. E. Donath; J. Am. Chem. Soc. 1959, 81, 3213–3218. R. L. Hilderbandt, Q. Shen, J. Phy. Chem. 1982, 86, 587.
- [14] We also checked the <sup>1</sup>H NMR spectrum of the crystal in CDCl<sub>3</sub>, which was exactly the same as that before crystallization.
- [15] Crystallographic data for the structures of **9aa**, *s*-trans-**9ed**, **11ea** and **12ea** have been deposited with the Cambridge Crystallographic Data Center as supplementary publications number CCDC 822029, CCDC 822031, CCDC 822030, and CCDC 822032, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data\_request/cif or on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(0)-1223-336033 or e-mail: deposit@ccdc. cam.ac.uk.