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Regio- and Stereoselective Chlorocyanation of Alkynes 
Alejandro G. Barrado,[a] Adam Zieliński,[a]  Richard Goddard[b] and Manuel Alcarazo[a],* 
 
Abstract: The regio- and stereoselective conversion of alkynes into 
(Z)-3-chloroacrylonitriles was achieved by treatment of a variety of 
terminal as well as internal alkynes with BCl3 in the presence of 
stoichiometric amounts of imidazolium thiocyanates. These products 
can be easily functionalized into useful building blocks, 
demonstrating the synthetic value of the method. Preliminary 
mechanistic studies suggest initial activation of the cationic 
thiocyanate by the Lewis acid followed by electrophilic attack of the 
alkyne. syn-Addition of a chloride to the vinyl cation intermediate and 
final elimination of the thiourea unit afford the desired 
chloroacrylonitriles. 

Acrylonitrile is a key monomer for the manufacture of plastics, 
rubbers and fibres, and substituted acrylonitriles are highly 
valuable precursors for the synthesis of fine chemicals in 
pharmaceutical and agrochemical industry.[ 1 ] This justifies the 
enormous attention that has been paid to reactions involved in 
the preparation, functionalization and transformation of 
acrylonitrile and its derivatives.[2] Among the methods known to 
gain acrylonitrile derivatives depicting well-defined substitution 
patterns, those based on the stereoselective cyano-
functionalization of alkynes using X-CN type reagents are 
especially useful since two functionalities, the cyano and a 
second  group X  (which may be amenable to further 
transformation) are simultaneously installed in vicinal positions 
with ideal atom efficiency. This approach can be materialized in 
two different ways. In the majority of the cases an electron-rich 
late transition metal catalyst cleaves the X-CN bond forming 
intermediate A (Scheme 1a). This is followed by migratory 
insertion of the alkyne into the M-X bond B→C, and reductive 
elimination of the desired acrylonitrile from C. Transformations 
that are reported to follow this general mechanistic scheme 
include hydrocyanations,[3] carbocyanation,[4,5] cyanosilylation,[6] 
thiocyanation,[7] cyanostannations[8] and cyanoborations.[9] Most 
of the products thus obtained can be subsequently modified 
employing, for example, well-established coupling chemistry. 

Much less attention has been paid to a complementary 
route: the synthesis of substituted acrylonitriles exploiting the 
inherent nucleophilicity of alkynes. In analogy to the well-
documented addition of acids,[ 10 ] halogens or halogen 
derivatives,[11,12] reaction of alkynes with suitable CN+ synthons 
D generates highly electrophilic vinyl species E, which after 
trapping by an appropriate nucleophile, renders the desired 
functionalized acrylonitriles (Scheme 1b). Making use of this 
approach, the halocyanation of (mainly terminal) alkynes has 

been achieved in moderate to good yields. Note however, that 
the number of electrophilic reagents able to perform this 
transformation, as well as their substrate scope, remains quite 
limited. In fact, to proceed satisfactorily these routes require the 
use of unpleasant cyanogen halides as CN+ precursors. [13] 

Scheme 1. Synthesis of substituted acrylonitriles from alkynes. 

In the course of our investigation aimed at the development 
of new electrophilic reagents of synthetic interest, we recently 
demonstrated that imidazolium thiocyanates such as 1 act as 
efficient and easy to handle [CN]+ synthons for the metal-free 
cyanation of non-prefunctionalized (hetero)aromatics, activated 
methylenes, thiols and amines.[14, 15] Hence, we reasoned that if 
this inherent electrophilicity could be further enhanced, for 
example by Lewis acid activation, then the scope of 1 as 
electrophilic cyanating reagent might be further extended to 
intrinsically less reactive substrates such as alkynes. Note, that 
to materialize this hypothesis a nucleophile compatible with the 
Lewis acid needs to be present in the reaction mixture in order 
to trap the transient vinyl cation E formed after attack of the 
electrophilic cyanating reagent. For this reason, we envisioned 
that metal halides would be appropriate promoters for such 
reaction: they possess well-known Lewis acid character and 
simultaneously could behave as latent source of halogenides. 
Herein, we report the realization of such a transformation using 
BCl3 as an efficient promoter. The new chlorocyanation protocol 
is operationally simple, works with a variety of terminal as well 
as internal alkynes, and offers an exquisite route to fully 
substituted (Z)-3-chloroacrylonitriles in good yields and excellent 
regio- and stereoselectivities. 

Initially, we tested the reaction of alkyne 2a with 
thioimidazolium salt 1 in the presence of a range of Lewis acids 
such as FeCl3, TiCl4, AlCl3 and BF3·OEt2. No reaction was 
observed in any case with exception of TiCl4, which was able to 
provide the desired product 4a, albeit with a poor 14% yield 
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(Table 1, Entries 1-4). Interestingly, when B(C5F6)3 was 
employed to activate 1, the product of thiocyanation 5 was 
obtained in high yield as a 80:20 Z-, E-mixture (Table 1, Entry 5). 
This superior performance of B(C5F6)3 made us speculate that 
BCl3 or BBr3 might promote the desired cynation event and avoid 
the undesired incorporation of the thiourea moiety to the product 
by providing nucleophilic halogenides to the medium. The 
product of bromocyanation 6 was unfortunately obtained in very 
low yield (Table 1, Entry 6); however, the chlorocyanation 
reaction was much more efficient and to our delight it proceeded 
with complete stereo- and regioselectivities (Table 1, Entry 7). 
Further optimization of the conditions (BCl3, 2 equiv., r.t.) 
allowed the complete conversion of 2a into 4a and the isolation 
of this product with excellent yield (Table 1, Entry 9).  

Table 1. Reaction optimization. 

Entry Lewis Acid Equiv. Temp. °C Yield [a] 

1 FeCl3 1.0 50 n.r.[b] 

2 TiCl4 1.0 50 14% 

3 BF3·OEt2 1.0 50 n.r. 

4 AlCl3 1.0 50 traces 

5 B(C6F5)3 1.0 50 90% of 5[c] 

6 BBr3 1.0 50 9% of 6 

7 BCl3 1.0 50 37% 

8 BCl3 1.5 r.t. 65% 

9 BCl3 2.0 r.t. 97% 
 

[a] Yields are of isolated 
products; [b] no 
reaction; [c] Obtained as 
a 80:20 mixture of the 
Z:E isomers 
respectively. 

 
Having identified the optimal conditions, the scope and 

limitations of the transformation were explored. Terminal as well 
as internal alkynes are suitable substrates and afford the desired 
chloroacrylonitriles in moderate to excellent yields (Figure 1). 
This includes 1,2-diaryl alkynes, which are reluctant to 
participate in similar transformations.[12] Aliphatic groups of 
different steric demand (4n-u), halogens (4c-f,s), silyl groups 
(4t), heterocycles (4l,m,u), as well as thioether substituents (4x) 
were also tolerated. The practicability of the reaction is also 
demonstrated through the gram scale synthesis of 4a. 
Unfortunately, 1,2-dialkyl alkynes did not react under the 
conditions developed; this still remains a limitation of the method.  

 

 

Figure 1. Substrate Scope of Alkyne Chlorocyanation. Reaction conditions: 2 
(0.5 mmol, 1.0 equiv.), 1 (0.6 mmol, 1.3 equiv.), BCl3 (1.0 M in DCM; 1.0 mmol, 
2 equiv.), 1,2-DCE (1 mL), rt, 1h.; yields are of isolated products; [a] Z:E ratios 
determined by 1H-NMR; only the Z-alkene is detected in all other cases; [b] 
Obtained as mixtures of regioisomers, but only Z-isomers; [c] Reaction 
conducted at 60 °C during 3h. 

The stereo- and regioselectivity observed are remarkable. 
The cyanide group is exclusively incorporated at the 
unsubstituted carbon in terminal alkynes, or at the alkyl-
substituted one in 1-aryl-2-alkyl alkynes (4n-w), following a 
regioselectivity that is typical for an electrophilic mechanism. In 
both cases only the Z-isomer is formed, suggesting a syn-
addition pathway for the reaction. When 1,2-bisarylalkynes are 
employed as substrates, again excellent Z-stereoselectivities are 
observed (4a-i); however, mixtures of  regioisomers appear in 
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detectable amounts when both aromatic rings are electronically 
very similar (4j,k). It worth noting that slow isomerization of all 
original Z-products to the E-isomers takes place in solution until 
the thermodynamic equilibrium is achieved. [16,17]  

To learn more about the mechanism governing the 
chlorocyanation reaction, a series of control experiments were 
performed (Scheme 2). We first turned our attention to the 
recently reported cyclization of 2i to the borylated benzofuran 7 
(Scheme 2A).[18] The authors propose that alkyne activation by 
BCl3 is followed by nucleophilic attack of the oxygen atom and 
formation of chloromethane. Interestingly, when BCl3 is added to 
a mixture of 1 and 2i, the only product detected is the one of 
chlorocyanation 4i. Moreover, if 1 is added to solutions of 7 
generated in situ, no cyanation is observed. Hence, 4i is not 
likely to be formed by addition of Cl2B-Cl to 2a, followed by 
BCl2/CN displacement. We also conclude from this experiment 
that BCl3 preferentially activates 1 (and not the alkyne). This is 
additionally supported by the isolation of the Lewis adduct 8 in 
crystalline form by cooling to -80 °C an equimolar solution of 1 
and B(C6F5)3 (Scheme 2B and the Supporting Information).[19] 

Also very informative is the formation of cyanated 
phenanthrene 9 when the biphenyl decorated substrate 2y is 
made react with a solution of in situ prepared 8 (Scheme 2C). In 
this case, the electrophilic cyanation and subsequent cyclisation 
takes place without the participation of any chloride, excluding 
cyanogen chloride as the actual cyanating reagent. Product 9 is 
also obtained when BCl3 is used as promotor, indicating that 
intramolecular trapping of the vinyl cation intermediate by the 
hanging phenyl ring is faster than the attack of the chloride. 

We also analyzed the very insoluble orange powder that is 
formed during the chlorocyanation reaction,10. 1H and 13C NMR 
spectra pointed to the formation of a bis(imidazolium)disulphide, 
presumably formed by oxidation of the thiourea byproduct. 
However, the key information could only be obtained from X-ray 
diffraction (See Scheme 2D and the Supporting Information). 
This analysis indicated that one of the two counteranions of 10 
corresponds to a tetrachloroantimonate [SbCl4]- unit. Hence, the 
hexafluoroantimonate anions from 1 do not remain innocent; 
they participate in fluoride/chloride exchange with BCl3 and act 
as oxidants transforming the urea side-product into disulphide 
10. This additionally hinders the adventitious formation of 5. 

Intrigued by this result we cooled to -80 °C the complex 
mixture formed after mixing 1 and BCl3 obtaining some 
colourless plates, which were analysed by X-ray diffraction (See 
Scheme 2E and the Supporting Information). Although by no 
mean representative of the reaction bulk, the dimeric structure of 
11 well serves to illustrate the different processes involved in the 
chlorocyanation reaction; namely, halogen exchange between 
BCl3 and [SbF6]-, activation of 1 by Lewis acids, and addition of 
chloride to electrophilic carbon centres.  

On the basis of literature precedents[ 20 ] and our own 
investigation, we preliminarily propose the following mechanism 
for the chlorocyanation reaction (Scheme 2F). First, activation of 
the cyanating reagent 1 takes place by formation of Lewis 
adduct A, which could be already partially fluorinated at boron. 
This is followed by regioselective attack of the corresponding 

alkyne 2a-x and concomitant generation of vinyl cation B. syn-
Transfer of one chloride from boron to the carbocationic center 
affords iminoborane C, which generates the desired 
chlorocyanated products 4a-x by elimination of the imidazolium-
thioborane fragment D. [21] Finally, a redox process transforms D 
into disulfide 10.[22]  

Scheme 2. Control experiments and proposed mechanism. 
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prepared into more complex products using 4a as model 
substrate. Suzuki coupling with aryl boronic acids affords the  
corresponding triaryl substituted acrylonitriles 12 and 13 with 
high stereocontrol.[23] Not less interesting is the reaction of 4a 
with hydrazine to produce pyrazole 14, which could be further 
transformed into the corresponding pyrazolo[1,5-a]pyrimidine 
15 by condensation with acetylacetone. A similar synthetic 
procedure renders thiophene 16 in only two steps. [24]  

Scheme 3. Further transformations of 4a. Reaction conditions: a) p-(F)C6H4 
B(OH)2 (1.0 equiv.), Pd2(dba)3 (5 mol%), (tBu)3P (20 mol%), THF:H2O (9:1), 
60 °C, 92%, Z:E = 30:1; b) 2-furylboronic acid (1.0 equiv.), Pd2(dba)3 (5 
mol%), (tBu)3P (20 mol%), THF:H2O (9:1), 60 °C, 68%, Z:E = 12:1); c) NH2-
NH2, EtOH reflux, 12h, 90%; d) acetylacetone (3.0 equiv.), piperidine (2 
equiv), EtOH, 85°C, 80 min., 81%; e) Na2S·9H2O, DMF, 50 min. and then, 
ClCH2CN (1 equiv.), NaOEt (1 equiv.) 23%.  

In conclusion, we disclose here the use of 1/BCl3 mixtures 
for the chlorocyanation of alkynes, thereby providing a 
straightforward access to synthetically useful 3-
chloroacrylonitriles of very different substitution patterns. 
Reactions proceed at room temperature, are scalable and 
occur with excellent regio- and stereoselectivities. The 
extension of the newly developed method to other substrates is 
currently under investigation in our research group. 
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