Addition of Trialkylalanes to Imines under Zirconium Catalysis

Clément Denhez, Jean-Luc Vasse, Jan Szymoniak*

Réactions Sélectives et Applications, CNRS and Université de Reims, 51687 Reims Cedex 2, France Fax +33(3)26913166; E-mail: jan.szymoniak@univ-reims.fr *Received 15 February 2005*

Abstract: Trialkylalanes, which are inert toward imines, undergo addition to them in the presence of a catalytic amount of dichlorodicyclopentadienylzirconium(IV) (Cp_2ZrCl_2). The reaction tolerates the presence of several functional groups in the starting imine such as halo, amide, nitrile, and hydroxy groups. A possible reaction pathway is proposed involving metallacyclic intermediates.

Key words: zirconium, catalysis, trialkylalanes, amine synthesis, imines

Recently, we¹ and others² reported that ketimines can undergo zirconium-catalyzed addition with ethylmagnesium reagents. This reaction has been demonstrated to be similar to the zirconium-catalyzed ethylmagnesation of alkenes³ from both a mechanistic and synthetic point of view. In fact, as in the case of alkenes, zirconacycles have also been shown to be intermediates in the reaction with imines.^{1a} The same synthetic limitation has been encountered in both reactions, i.e. alkylmagnesium halides higher than EtMgX appeared to be unreactive.⁴

Zirconium-catalyzed carboalumination of alkynes^{5,6} and alkenes^{5,7} has been shown to smoothly occur through multiple mechanistic pathways, depending upon the reaction conditions and substrates. Furthermore, in the absence of additives, trialkylalanes proved to be inert toward imines.⁸ Based on these literature data, we focused on the possibility of performing zirconium-catalyzed addition of trialkylalanes to imines. We thought that such reactions could broaden the scope of the alkyl groups added while offering mild reaction conditions and selectivity. The zirconium-catalyzed reactions might then be a prerequisite for developing a new catalytic asymmetric synthesis of amines.⁹

At the outset of our study, we examined the reaction of triethylalane (Et₃Al) with *N*-phenylbenzaldimine (**1**). The reactions were carried out in hexane or chlorinated hydrocarbon solvents (CH₂Cl₂, DCE) in the presence of 5–20 mol% of Cp₂ZrCl₂ at 0–20 °C. In all cases, amine **2a** was obtained after hydrolysis in good to excellent yields. In contrast, in the absence of the zirconium catalyst, no alkylation occurred after a long reaction period (24 h). A particularly clean alkylation reaction took place in the chlorinated solvents. Thus, treatment of imine **1** with Et₃Al (1.5 equiv) and Cp₂ZrCl₂ (5 mol%) in dichlo-

SYNTHESIS 2005, No. 12, pp 2075–2079 Advanced online publication: 14.07.2005 DOI: 10.1055/s-2005-870028; Art ID: C03905SS © Georg Thieme Verlag Stuttgart · New York

romethane at 20 °C for three hours produced, after hydrolysis, amine 2a in 91% isolated yield (Scheme 1).

In contrast to the catalytic ethylalumination of alkenes,⁷ no deuterium incorporation at the β -carbon atom was observed after deuterolysis with deuterium chloride–deuterium oxide (DCl–D₂O), irrespective of the conditions employed. This result indicates a different mechanism occurring with imines than those postulated with alkenes (see below).

Various imines underwent the zirconium-catalyzed addition with Et₃Al.¹⁰ The results are shown in Table 1.

The reactions proceeded smoothly with aromatic imines bearing N-aryl or N-alkyl groups (Table 1, entries 1-4). Interestingly, using a chiral imine, amine 2e was isolated as a single diastereomer (Table 1, entry 5). To further explore the reaction, we next used a higher trialkylalane and noticed that, in contrast to the ethylmagnesation of imines,^{1,2} the alkylalumination reaction is not limited to the use of Et_3Al . Thus, treatment of imine 1 with 1.5 equivalents of tributylalane $(n-Bu_3Al)$ in the presence 5 mol% Cp₂ZrCl₂ gave amine 2f (Table 1, entry 6). Similar to the reaction with Et₃Al, no deuterium incorporation was observed in this reaction after deuterolysis with DCl- D_2O . Compound **2f** was accompanied by the reduction side product, i.e. N-benzylaniline (28%). Contrary to the zirconium-catalyzed hydroalumination of alkenes,^{5,7} the competing reduction of imine 1 by *n*-Bu₃Al proved to occur without adding Cp₂ZrCl₂. This side reaction could be slightly limited by lowering the reaction temperature to 10 °C (Table 1, entries 7 and 8). When using an imine derived from an aliphatic aldehyde, lower yields of the alkylation products 2h and 2i were obtained, probably due to a slower zirconium-mediated alkylalumination reaction with respect to the direct side reduction reaction (Table 1, entries 9 and 10).

The alkylation reactions involving main-group organometallics frequently exhibit poor chemoselectivity. In contrast, the described reaction was found to be compatible with the presence of several groups (Table 2). Thus, halo, amide, nitrile, and hydroxy groups can be present in the substrate and tolerated by the reaction conditions

 Table 1
 Zirconium-Catalyzed Alkylation of Aldimines by Trialkylalanes^a

N ^{-R²}	_	Cp ₂ Zr0 R ₃	Cl ₂ cat. Al	→	$HN - R^{2}$ $R^{1} - R$ $2a - i$
Entry	\mathbb{R}^1	\mathbb{R}^2	R	Time (h)	Product ^b (%)
1	Ph	Ph	Et	3	2a (91)
2	Ph	PMP	Et	3	2b (86)
3	Ph	Bn	Et	6	2c (88)
4	Ph	<i>n</i> -Pr	Et	8	2d (85)
5 ^{c,d}	Ph	R*	Et	3	2e (92) ^e
6	Ph	Ph	<i>n</i> -Bu	12	$2f (67)^{f}$
7	Ph	Ph	<i>n</i> -Bu	24	$2f(75)^{f}$
8	Ph	PMP	<i>n</i> -Bu	24	2g (71) ^f
9	Et	Ph	Et	24	2h (32) ^{f,g}
10	Et	Ph	<i>n</i> -Bu	24	2i (24) ^{f,g}

^a The reactions were run using Cp_2ZrCl_2 (5 mol%) and R_3Al (1.5 equiv) in CH_2Cl_2 at 20 °C, except for entries 7 and 8 (10 °C). ^b Isolated yields.

^c $R^* = (R)$ -2-hydroxy-1-phenylethyl.

^d 2.5 equivalents of Et_3Al .

^e de >95% determined by ¹H NMR on the crude product.

^f Accompanied by the reduction product: entry 6 (28%), entry 7

(20%), entry 8 (22%), entry 9 (65%), entry 10 (73%).

 g NMR yields.

(Table 2, entries 1–5). In addition, amines 3f and 3g were obtained both in 95% yield starting from 2- and 3-py-ridylimines (Table 2, entries 6 and 7). The wide chemose-lectivity of the reaction and the mild reaction conditions should be synthetically useful.

Surprisingly, the protocol employed for the zirconiumcatalyzed addition of trialkylalanes (R = Et, *n*-Bu) to imines appeared inefficient when using trimethylalane (Me₃Al). We found that the reaction of **1** with Me₃Al did not give the expected amine in detectable yields with either catalytic or stoichiometric amounts of Cp₂ZrCl₂. The use of hexane or chlorinated solvents, an excess of Me₃Al (>2 equiv), and a temperature increase up to 40 °C had no effect on the reaction. The imine was almost entirely recovered in these cases. Other imines from Table 1 also did not react with Me₃Al.

Methylalumination of alkynes and alkenes with Me₃Al and Cp₂ZrCl₂ has been postulated to proceed by direct C—M bond addition via a four-centered concerted process involving bimetallic polarization (acyclic mechanism).⁷ In sharp contrast, zirconium-catalyzed carboalumination of alkynes with higher alanes involves a β -

 Table 2
 Chemoselective Zirconium-Catalyzed Alkylation of Aldimines by Triethylalane^a

R^{1}	Cp ₂ ZrC Et ₃	Cl₂ cat. Al ►	HN ^{-R²} R ¹ 3a-g
Entry	R ¹	R ²	Product ^b (%)
1	2-BrC ₆ H ₄	Ph	3a (89)
2	Ph	$2-IC_6H_4$	3b (88)
3	4-MeCONHC ₆ H ₄	Ph	3c (88)
4	$4-NCC_6H_4$	Ph	3d (88)
5	3-MeO-4-HOC ₆ H ₃	Ph	3e (89)
6	2-pyridyl	Ph	3f (95)
7	3-pyridyl	Ph	3g (95)

^a The reactions were run using Cp_2ZrCl_2 (5 mol%) and Et_3Al (1.5 equiv, except entries 3 and 5 where 2.5 equiv were used) in CH_2Cl_2 at 20 °C for 3 hours. ^b Isolated yields.

CH activation process and formation of metallacyclic intermediates (cyclic mechanism).^{6c}

Within this context, the lack of reactivity of Me_3Al toward imines together with the efficient catalyzed addition of higher alanes is mechanistically relevant. It indicates that a direct acyclic addition mechanism does not operate with Me_3Al and, accordingly, such a mechanism should also be ruled out with higher alanes. A cyclic mechanism could be envisaged in the latter case, irrespective of the conditions and solvent.¹¹ However, if a cyclic mechanism is invariably involved with imines, then no deuterium incorporation in the product might be questionable. To rationalize this, we tentatively assumed a cyclic mechanism in which a second β -CH activation would remove the metal (Zr) from the carbon (Scheme 2).

The catalytic process is initiated by the reaction of Cp_2ZrCl_2 with two equivalents of Et_3Al to afford the bimetallic complex **A**. The formation of **A** from Cp_2ZrCl_2 and two equivalents of Et_3Al has been reported¹² and is postulated to proceed via a bimetallic β -CH activation process.^{6c} Subsequent reaction of imine **1** with **A** gives azametallacycle **B**, which would exist as a chlorinebridged species. In the next step, Et_3Al reacts with **B** to produce the zirconium-ethylated complex **C**. The β -CH activation from **C** completes the catalytic cycle by regenerating **A** and by affording the final product in which no metal atom is attached to the β -carbon of the alkyl group.

In support of the mechanism proposed, we independently prepared a catalytic quantity (0.1 equiv) of the azazirconacyclopentane corresponding to complex **B** in Scheme 2,¹ and subjected it to 0.1 equivalents of diethylaluminum chloride (Et₂AlCl), imine **1** (1 equiv), and Et₃Al (1.5 equiv) (Scheme 3).

The intermediate thus formed was demonstrated to be catalytically active in these conditions, since 2a was obtained in 90% yield. Significantly, no deuterium incorporation in the product was observed in this case. The above results are in accordance with the mechanistic proposal in Scheme 2. Nevertheless, further studies are clearly desirable to fully elucidate the mechanism of the reaction.

In conclusion, we have described a new method for the alkylation of imines using trialkylalanes under zirconium catalysis. Further developments of this new reaction will be reported in due course.

All reactions were conducted under an atmosphere of argon using standard Schlenk techniques. Prior to use, tetrahydrofuran and heptane were distilled under argon from sodium benzophenone ketyl, CH₂Cl₂ was distilled under argon from CaH₂, Cp₂ZrCl₂ (Strem), Et₃Al, and Grignard reagents (Aldrich) were used as received. All imines were prepared according to known procedures¹² and gave satisfactory analysis. Unless otherwise stated, ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Brucker AC-250. Mass spectra were recorded on a Micromass Q-TOF micro MS spectrometer. Elemental analyses were carried out on a Perkin-Elmer 2400 CHN elemental analyzer.

Preparation of Tributylalane¹³

To a refluxing suspension of Al (2.7 g, 100 mmol) and Mg (3.6 g, 150 mmol) in heptane (120 mL) was added *n*-BuI (55.2 g, 300 mmol) over 45 min. The mixture was stirred for 2 h under reflux. The reaction was cooled to r.t. and the solid was filtered off under an argon atmosphere. The solvent was removed by distillation, and the residue was distilled under vacuum to give *n*-Bu₃Al in 58% yield.

Preparation of Amines 2; General Procedure

In an oven-dried Schlenk tube and under an argon atmosphere, the trialkylalane (1.5 mmol) was added to a solution of imine (1 mmol) and Cp₂ZrCl₂ (14.5 mg, 0.05 mmol) in CH₂Cl₂ (5 mL). The mixture was stirred at 20 °C for the time specified in Tables 1 and 2 (deviations from the above conditions are listed in the Tables). The reaction was then quenched at 0 °C with 15% aq NaOH and the aqueous phase was extracted with CH₂Cl₂ (2 × 10 mL). The organic layers were combined, dried (MgSO₄), filtered, and concentrated under vacuum. The residue was purified by column chromatography (silica gel, petroleum ether–Et₂O, 20:1) as eluent to give the corresponding amine **2**.

Phenyl(1-phenylpropyl)amine (2a)¹⁴

Yellow oil; yield: 91%.

¹H NMR (250 MHz, CDCl₃): δ = 0.97 (t, *J* = 6.8 Hz, 3 H), 1.85 (m, 2 H), 4.07 (br s, 1 H), 4.24 (t, *J* = 6.8 Hz, 1 H), 6.52 (d, *J* = 7.7 Hz, 2 H), 6.64 (t, *J* = 7.4 Hz, 1 H), 7.04–7.11 (m, 2 H), 7.21–7.25 (m, 1 H), 7.30–7.35 (m, 4 H).

¹³C NMR (62.5 MHz, CDCl₃): δ = 11.0, 31.8, 59.9, 113.4, 117.3, 126.7, 127.0, 128.7, 129.2, 144.1, 147.7.

4-Methoxyphenyl(1-phenylpropyl)amine (2b)¹⁵ Yellow oil; yield: 86%.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.94$ (t, J = 7.4 Hz, 3 H), 1.80 (m, 2 H), 3.68 (s, 3 H), 3.81 (br s, 1 H), 4.15 (dd, J = 12.1, 6.3 Hz, 1 H), 6.47 (d, J = 8.8 Hz, 2 H), 6.68 (d, J = 8.8 Hz, 2 H), 7.32 (m, 5 H). ¹³C NMR (62.5 MHz, CDCl₃): $\delta = 11.0, 31.8, 55.9, 60.7, 114.6, 114.9, 126.7, 127.0, 128.6, 142.0, 144.3, 152.0.$

Benzyl(1-phenylpropyl)amine (2c)^{1a}

Yellow oil; yield: 88%.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.95$ (t, J = 7.4 Hz, 3 H), 1.67–1.95 (m, 2 H), 3.63 (dd, J = 7.5, 5.9 Hz, 1 H), 3.64 (d, J = 13.2 Hz, 1 H), 3.77 (d, J = 13.2 Hz, 1 H), 7.28–7.50 (m, 10 H).

¹³C NMR (62.5 MHz, CDCl₃): δ = 10.8, 11.7, 23.3, 30.9, 19.7, 65.1, 126.7, 127.3, 128.2, 144.3.

(1-Phenylpropyl)propylamine (2d)

Yellow oil; yield: 85%.

IR (film): 3421, 2963, 1582, 1459, 764, 701 cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 0.81 (t, *J* = 7.7 Hz, 3 H), 0.87 (t, *J* = 7.2 Hz, 3 H), 1.39–1.84 (m, 4 H), 2.31–2.50 (m, 2 H), 3.48 (dd, *J* = 8.0, 5.7 Hz, 1 H), 7.20–7.40 (m, 5 H).

¹³C NMR (62.5 MHz, CDCl₃): δ = 10.7, 31.0, 51.4, 64.1, 126.7, 126.8, 127.4, 128.0, 128.2, 140.6, 143.9.

HRMS-ESI: $m/z [M + H]^+$ calcd for $C_{12}H_{20}N$: 178.1596; found: 178.1600.

Anal. Calcd for $C_{12}H_{19}$ N·HCl: C, 67.73; N, 6.55; H, 9.43. Found: C, 67.57; N, 6.55; H, 9.66.

(2*R*)-2-(1-Phenylpropylamino)-2-phenylethanol (2e)¹⁶

Yellow oil; yield: 92%.

 $[\alpha]_{\rm D}{}^{24}-37.5 \; (c \; 0.8, \, {\rm CHCl}_3).$

¹H NMR (250 MHz, CDCl₃): $\delta = 0.76$ (t, J = 7.4 Hz, 3 H), 1.66 (m, 1 H), 1.86 (m, 1 H), 1.92 (br s, 1 H), 3.51 (dd, J = 10.7, 7.2 Hz, 1 H), 3.54 (dd, J = 8.3, 5.1 Hz, 1 H), 3.74 (dd, J = 10.7, 4.6 Hz, 1 H), 3.82 (dd, J = 7.0, 4.6 Hz, 1 H), 7.17–7.30 (m, 10 H).

¹³C NMR (62.5 MHz, CDCl₃): δ = 10.4, 29.4, 61.2, 61.6, 65.5, 127.1, 127.2, 127.4, 128.4, 128.5, 141.3, 143.9.

Phenyl(1-phenylpentyl)amine (2f)^{17a,b}

Yellow oil; yield: 75%.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.89$ (t, J = 8.1 Hz, 3 H), 1.26–1.40 (m, 4 H), 1.79 (m, 2 H), 3.82 (br s, 1 H), 4.20 (t, J = 6.5 Hz, 1 H), 6.51 (dd, J = 8.2, 1.0 Hz, 2 H), 6.51 (td, J = 7.3, 1.0 Hz, 1 H), 7.06 (dd, J = 8.2, 7.3 Hz, 2 H), 7.05–7.33 (m, 5 H).

¹³C NMR (62.5 MHz, CDCl₃): δ = 13.9, 22.6, 28.5, 38.7, 58.2, 113.2, 117.1, 126.4, 126.8, 128.5, 129.1, 144.4, 147.5.

4-Methoxyphenyl(1-phenylpentyl)amine (2g)

Yellow oil; yield: 71%.

IR (film): 3406, 2950, 2853, 1506, 1235 cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.9 Hz, 3 H), 1.24–1.37 (m, 4 H), 1.76 (m, 2 H), 3.68 (s, 3 H), 4.21 (t, J = 6.6 Hz, 1 H), 4.28 (br s, 1 H), 6.46 (d, J = 8.7 Hz, 2 H), 6.67 (d, J = 8.7 Hz, 2 H), 7.15–7.32 (m, 5 H).

¹³C NMR (62.5 MHz, CDCl₃): δ = 14.0, 22.6, 28.5, 38.7, 55.7, 59.0, 114.4, 114.7, 126.4, 126.7, 128.4, 141.8, 144.5, 151.7.

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₈H₂₄NO: 270.1858; found: 270.1861.

Pentan-3-yl(phenyl)amine (2h)¹⁸

Pale yellow oil; yield: 32%.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.90$ (t, J = 6.9 Hz, 6 H), 1.30–1.80 (m, 4 H), 3.05–3.50 (m, 2 H), 6.50–6.80 (m, 3 H), 7.0–7.30 (m, 2 H).

[1-(2-Bromophenyl)propyl]phenylamine (3a)

Yellow oil; yield: 89%.

IR (film): 3410, 1567, 1495, 759, 693 cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 0.95 (t, *J* = 7.4 Hz, 3 H), 1.83 (m, 2 H), 4.14 (d, *J* = 5.1 Hz, 1 H), 4.22 (dd, *J* = 6.4, 12.5 Hz, 1 H), 6.46 (d, *J* = 8.5 Hz, 2 H), 6.63 (t, *J* = 7.3 Hz, 1 H), 7.09 (t, *J* = 7.9 Hz, 2 H), 7.23 (d, *J* = 8.2 Hz, 1 H), 7.37 (m, 2 H), 7.55 (d, *J* = 7.9 Hz, 1 H).

¹³C NMR (62.5 MHz, CDCl₃): δ = 10.2, 27.2, 68.0, 124.6, 129.4, 129.9, 130.7, 131.2, 132.5, 134.7, 140.3, 145.1.

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₅H₁₇NBr: 290.0544; found: 290.0546.

2-Iodophenyl(1-phenylpropyl)amine (3b)

Pale-yellow oil; yield: 88%.

IR (film): 3397, 2961, 1589, 1505, 742 cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 1.00 (t, *J* = 7.3 Hz, 3 H), 1.85 (m, 2 H), 4.26 (q, *J* = 6.0 Hz, 1 H), 4.64 (br, 1 H), 6.29 (d, *J* = 8.2 Hz, 1 H), 6.37 (t, *J* = 7.6 Hz, 1 H), 7.00 (t, *J* = 7.9 Hz, 1 H), 7.30 (m, 5 H), 7.64 (d, *J* = 6.3 Hz, 1 H).

¹³C NMR (62.5 MHz, CDCl₃): δ = 10.8, 31.85, 60.0, 81.1, 111.7, 118.4, 124.8, 126.2, 126.9, 128.5, 129.1, 138.7, 143.2, 147.3.

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₅H₁₇NI: 338.0406; found: 338.0398.

N-{4-[(1-Phenylamino)propyl]phenyl}acetamide (3c) Red solid; yield: 88%.

IR (KBr): 3321, 2965, 1661, 1604, 749 cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 0.93 (t, *J* = 7.4 Hz, 3 H), 1.79 (m, 2 H), 2.14 (s, 3 H), 4.18 (t, *J* = 6.6 Hz, 1 H), 4.24 (br s, 1 H), 6.50 (d, *J* = 8.1 Hz, 2 H), 6.63 (t, *J* = 7.3 Hz, 1 H), 7.07 (t, *J* = 7.8 Hz, 2 H), 7.27 (d, *J* = 8.2 Hz, 2 H), 7.33 (br s, 1 H), 7.43 (d, *J* = 8.4 Hz, 2 H).

¹³C NMR (62.5 MHz, CDCl₃): δ = 10.7, 24.5, 31.4, 59.4, 113.4, 120.0, 127.0, 129.0, 133.5, 136.5, 139.6, 172.2.

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₇H₂₁N₂O: 269.1654; found: 269.1660.

4-(1-Phenylaminopropyl)benzonitrile (3d)^{8b}

Pale-green oil; yield: 88%.

¹H NMR (250 MHz, CDCl₃): δ = 0.97 (t, *J* = 7.4 Hz, 3 H), 1.81 (m, 2 H), 4.10 (d, *J* = 4.5 Hz, 1 H), 4.27 (dd, *J* = 11.6, 6.4 Hz, 1 H), 6.44 (d, *J* = 7.8 Hz, 2 H), 6.66 (t, *J* = 7.3 Hz, 1 H), 7.08 (t, *J* = 7.9 Hz, 2 H), 7.46 (d, *J* = 8.2 Hz, 2 H), 7.60 (d, *J* = 8.2 Hz, 2 H).

¹³C NMR (62.5 MHz, CDCl₃): δ = 10.6, 31.5, 59.4, 113.1, 117.7, 118.9, 127.2, 129.1, 132.4, 132.8, 146.7, 149.8.

2-Methoxy-4-(1-phenylaminopropyl)phenol (3e) Red oil; yield: 89%.

IR (film): 3505, 3407, 2964, 1603, 750 cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 0.93 (t, *J* = 7.4 Hz, 3 H), 1.80 (m, 2 H), 3.85 (s, 3 H), 3.95 (m, 1 H), 4.12 (t, *J* = 6.7 Hz, 1 H), 5.53 (br s, 1 H), 6.50 (d, *J* = 7.6 Hz, 2 H), 6.63 (t, *J* = 7.3 Hz, 1 H), 6.84 (m, 3 H), 7.08 (t, *J* = 7.3 Hz, 2 H).

¹³C NMR (62.5 MHz, CDCl₃): δ = 11.2, 32.1, 56.3, 60.2, 109.1, 113.7, 114.6, 117.5, 119.7, 129.4, 135.1, 144.8, 148.7.

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₆H₂₀NO₂: 258.1494; found: 258.1493.

Phenyl[1-(2-pyridyl)propyl]amine (3f)^{8b}

Pale green oil; yield: 95%.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.95$ (t, J = 7.5 Hz, 3 H), 1.85–1.96 (m, 2 H), 4.43 (t, J = 7.5 Hz, 1 H), 4.24 (br s, 1 H), 6.57 (d, J = 8.0 Hz, 2 H), 6.64 (t, J = 2.0 Hz, 1 H), 7.11 (m, 3 H), 7.30 (d, J = 8.0 Hz, 1 H), 7.59 (t, J = 2 Hz, 1 H), 8.58 (d, J = 2 Hz, 1 H).

¹³C NMR (62.5 MHz, CDCl₃): δ = 10.6, 25.2, 55.9, 108.6, 112.7, 116.5, 117.2, 124.4, 131.8, 142.7, 144.6, 158.1.

Phenyl[1-(3-pyridyl)propyl]amine (3g)

Pale green oil; yield: 95%.

IR (film): 3251, 3109, 2930, 2875, 1603 cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.97$ (t, J = 7.4 Hz, 3 H), 1.83 (m, 2 H), 4.09 (d, J = 4.6 Hz, 1 H), 4.28 (dd, J = 6.5, 12.1 Hz, 1 H), 6.49 (d, J = 8.3 Hz, 2 H), 6.65 (t, J = 7.3 Hz, 1 H), 7.09 (t, J = 7.9 Hz, 2 H), 7.23 (dd, J = 5.2, 8.2 Hz, 1 H), 7.65 (d, J = 7.9 Hz, 1 H), 8.48 (dd, J = 4.7, 1.4 Hz, 1 H), 8.61 (d, J = 2.0 Hz, 1 H).

¹³C NMR (62.5 MHz, CDCl₃): δ = 10.6, 31.52, 57.4, 113.2, 117.5, 123.5, 129.1, 133.8, 139.1, 146.8, 148.4, 148.7.

HRMS-ESI: $m/z \ [M + H]^+$ calcd for $C_{14}H_{17}N_2$: 213.1392; found: 213.1395.

Acknowledgment

We thank the CNRS and the Ministère de l'Education Nationale for their financial support.

References

- (a) Gandon, V.; Bertus, P.; Szymoniak, J. *Eur. J. Org. Chem.* 2001, 3677. (b) Gandon, V.; Bertus, P.; Szymoniak, J. *Synthesis* 2002, 1115.
- (2) Takahashi, T.; Liu, Y.; Xi, C.; Huo, S. Chem. Commun. 2001, 31.
- (3) (a) Dzhemilev, U. M.; Vostrikova, O. S.; Sultanov, R. M. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1983**, 218. (b) Takahashi, T.; Seki, T.; Nitto, Y.; Saburi, M.; Rousset, C. I.; Negishi, E. *J. Am. Chem. Soc.* **1991**, *113*, 6266. (c) Lewis, D. P.; Muller, P. M.; Whitby, R. J.; Jones, R. V. H. *Tetrahedron Lett.* **1991**, *32*, 6797.
- (4) Higher Grignard reagents react with alkenes only in the presence of an internal Lewis base, see: (a) Hoveyda, A. H.; Morken, J. P.; Houri, A. F.; Xu, Z. J. Am. Chem. Soc. 1992, 114, 6692. (b) Heron, N. M.; Adams, J. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1997, 119, 6205.
- (5) Negishi, E.; Huo, S. In *Titanium and Zirconium in Organic Synthesis*; Marek, I., Ed.; Wiley-VCH: Weinheim, 2002, Chap. 1.
- (6) (a) Van Horn, D. E.; Negishi, E. J. Am. Chem. Soc. 1978, 100, 2252. (b) Negishi, E.; Van Horn, D. E.; Yoshida, T. J. Am. Chem. Soc. 1985, 107, 6639. (c) Negishi, E.; Kondakov, D. Y.; Choueiry, D.; Kasai, K.; Takahashi, T. J. Am. Chem. Soc. 1996, 118, 957.

- (7) (a) Kondakov, D. Y.; Negishi, E. J. Am. Chem. Soc. 1995, 117, 10771. (b) Kondakov, D. Y.; Negishi, E. J. Am. Chem. Soc. 1996, 118, 1577. (c) Negishi E.; Chem.–Eur. J.; 1999, 5: 411.
- (8) (a) Alberola, A.; Cermeño, F. A.; Anton, A. An. Quim. 1977, 73, 886. Lanthanide-catalyzed addition of Et₃Al to aromatic Schiff bases has recently been reported, see:
 (b) Tsvelikhovsky, D.; Gelman, D.; Molander, G. A.; Blum, J. Org. Lett. 2004, 6, 1995.
- (9) These reactions mainly involve the addition of organolithium and organozinc reagents to imines under Lewis base, acid, or transition-metal catalysis, for reviews, see: (a) Denmark, S. E.; Nicaise, O. J.-C. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, **1999**, 923.
 (b) Kobayashi, S.; Ishitani, H. *Chem. Rev.* **1999**, *99*, 1069.
- (10) Ketimines proved to be inert toward Et₃Al in these conditions.
- (11) In the case of the carboalumination ($R \neq Me$) of alkenes, a mechanism switch from cyclic to acyclic was noticed by changing from nonpolar to chlorinated solvents, see ref. 7.
- (12) Gridd, R.; McMeekin, P.; Sridharan, V. *Tetrahedron* **1995**, *51*, 13331.
- (13) Ziegler, K.; Nagel, K. US 2744127, 1956.
- (14) Samec, J. S. M.; Bäckvall, J.-E. *Chem.–Eur. J.* **2002**, *8*, 2955.
- (15) Chi, Y.; Zhou, Y.-G.; Zhang, X. J. Org. Chem. 2003, 68, 4120.
- (16) Wu, M.-J.; Pridgen, L. N. J. Org. Chem. 1991, 56, 1340.
- (17) (a) Motoyama, Y.; Mikami, H.; Kawakami, H.; Aoki, K.; Nishiyama, H. *Organometallics* 1999, *18*, 3584.
 (b) Nakagawa, M.; Kaware, T.; Kakikawa, T.; Yamada, H.; Matsui, T.; Hino, T. *Tetrahedron* 1993, *49*, 1739.
- (18) Micovic, I. V.; Ivanovic, M. D.; Piatak, D. M.; Bojic, V. D. Synthesis **1991**, 1043.