Tetrahedron Letters 56 (2015) 4947-4949

Contents lists available at ScienceDirect Tetrahedron

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Total synthesis and stereochemical reassignment of maedamide @ CroseMark

Ayano Takayanagi, Arihiro Iwasaki, Kiyotake Suenaga *

Department of Chemistry, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan

ARTICLE INFO ABSTRACT
Article history: The first total synthesis of maedamide, an acyclic peptide isolated from a marine cyanobacterial assem-
Received 29 May 2015 blage of Lyngbya sp., was achieved. This synthesis led to reassignment of the allo-p-Ile of maedamide to be

Revised 25 June 2015
Accepted 29 June 2015
Available online 2 July 2015

1-Ile, which was supported by 'H and '*C NMR data.
© 2015 Elsevier Ltd. All rights reserved.

Keywords:

Maedamide

Total synthesis

Marine natural products
Marine cyanobacteria
Lyngbya

In 2014, we isolated maedamide, an acyclic depsipeptide, from
a marine cyanobacterial assemblage of Lyngbya sp.! Structurally,
maedamide possesses some unusual amino acid residues, such as
4-amino-3-hydroxy-5-phenylpentanoic acid. Maedamide (2)

inhibited the growth of HeLa and HL60 cells, with ICso values of K/\g/
4.2 and 2.2 pM, respectively. In addition, maedamide showed inhi- /\Jf

uu-

o....

bitory activity against chymotrypsin, with an ICsq value of 45 uM.
In this Letter, we describe the first total synthesis and structural

reassignment of maedamide. Maedamide
(2, L-lle)

Our retrosynthetic analysis of maedamide is shown in
OMe Scheme 1. Maedamide is formed by carboxylic acid 3 and hexapep-
tide 4. Carboxylic acid 3 could be prepared by the condensation of
/\g/ L-valic acid and allo-p-isoleucic acid. Meanwhile, hexapeptide 4
could be synthesized by stepwise condensation of the correspond-
ing amino acid moieties, starting with the C-terminal residue, O-
Me-L-Pro.

First, we synthesized carboxylic acid 3 as shown in Scheme 2.
Protection of a hydroxyl group of r-valic acid followed by conden-
sation with O-Me-allo-p-isoleucic acid afforded ester 5.
Demethylation of methyl ester 5 using Lil gave 6, and removal of
the TBS group under acidic conditions provided carboxylic acid 3.

The synthesis of hexapeptide 4a commenced with the conden-
sation of the known dipeptide 7 with N-Boc-glycine using stan-
dard procedures. The obtained tripeptide 8 was further
condensed with N-Boc-allo-p-isoleucine to give tetrapeptide 9a.
Removal of the Boc group of 9a with TFA and incorporation with
known y-amino acid 11° afforded pentapeptide 10a. Compound

Originally Proposed Maedamide
(1, allo-D-lle)
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Scheme 1. Retrosynthetic analysis of maedamide.
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Scheme 2. Synthesis of carboxylic acid 3. Reagents and conditions: (a) TBSCI,
imidazole, DMF, 40 °C, 22 h, quant; (b) oxalyl chloride, DMF, CHxCly, 0 °C to rt, 2.5 h;
(c) O-Me-allo-p-isoleucic acid, pyridine, CH,Cl,, rt, 4 days, 40% in two steps; (d) Lil,
pyridine, reflux, 6 h, quant.; (e) 4 M HCl, 1,4-dioxane, rt, 4 days, quant.
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Scheme 3. Synthesis of hexapeptide 4. Reagents and conditions: (a) TFA, CH,Cl,
0°C, 2.5 h; (b) N-Boc-glycine, HATU, ‘Pr,NEt, DMF, 0 °C to rt, 14 h, 80% in two steps;
(c) TFA, CH,Cl, 0°C; (d) N-Boc-allo-p-isoleucine (9a), N-Boc-i-isoleucine (9b),
HATU, ‘ProNEt, DMF, 0 °C to rt, (9a) 76% in two steps, (9b) 63% in two steps; (e) TFA,
CH,Cl,, 0 °C, 2 h; (f) 11, HATU, ‘Pr,NEt, DMF, 0 °C to rt, 2 h, (10a) 54% in two steps,
(10b) 73% in two steps; (g) Et;NH, CH5CN, rt, 3 h; (h) N-Fmoc-L-proline, HATU,
Pr,NEt, DMF, 0 °C to rt, 3 h, (4a) 48% in two steps, (4b) 45% in two steps.
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Scheme 4. Synthesis of maedamide 1 and 2. Reagents and conditions: (a) Et,NH,
CH3CN, rt, 1 h; (b) 3, HATU, HOAt, 'Pr,NEt, DMF, 0 °C to rt, 1 h, (1) 34% in two steps,
(2) 40% in two steps.

10a was converted to 4a by condensation with N-Fmoc-L-Pro
(Scheme 3).

Finally, the condensation of carboxylic acid 3 and hexapeptide
4a was carried out (Scheme 4). Removal of an Fmoc group of 4a
with DEA in MeCN followed by coupling with carboxylic acid 3
gave the target compound 1* as a colorless oil (10 steps, 5.4% yield
from 7).

However, the NMR data of 1 were inconsistent with those
reported for the natural product. A detailed comparison of the
NMR data clarified that the "H NMR and 3C NMR signals assigned
to allo-p-isoleucine of 1 were most different from the data reported
for the natural product. In addition, the structurally related
cyanobacterial peptide tasiamide® possessed L-isoleucine at the
corresponding position. Based on these data, we inferred that mae-
damide consisted of L-isoleucine rather than allo-p-isoleucine. To
verify this hypothesis, we synthesized the epimer of 1 possessing
L-isoleucine instead of allo-p-isoleucine (2).

N-Boc-1-isoleucine was condensed with tripeptide 8, a common
intermediate, to give tetrapeptide 9b. Compound 9b was converted
to 4b in a similar manner as for 1. The condensation of 4b with car-
boxylic acid 3 afforded the epimer 2° (10 steps, 6.6% yield from 7).
In a comparison of the spectroscopic data of 2 with those of the
natural product, 2 corresponded to the natural product.

In conclusion, we have achieved the first total synthesis of mae-
damide and revised its structure. The revised structure (2) differs
from the original (1) with respect to the absolute configuration
of an Ile residue: the correct stereochemistry of the Ile residue is
L rather than allo-p.
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