Tetrahedron Letters 56 (2015) 4947-4949

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Total synthesis and stereochemical reassignment of maedamide

Department of Chemistry, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan

ARTICLE INFO

ABSTRACT

Article history: Received 29 May 2015 Revised 25 June 2015 Accepted 29 June 2015 Available online 2 July 2015 The first total synthesis of maedamide, an acyclic peptide isolated from a marine cyanobacterial assemblage of *Lyngbya* sp., was achieved. This synthesis led to reassignment of the *allo*-D-Ile of maedamide to be L-Ile, which was supported by ¹H and ¹³C NMR data.

© 2015 Elsevier Ltd. All rights reserved.

Keywords: Maedamide Total synthesis Marine natural products Marine cyanobacteria Lyngbya

In 2014, we isolated maedamide, an acyclic depsipeptide, from a marine cyanobacterial assemblage of *Lyngbya* sp.¹ Structurally, maedamide possesses some unusual amino acid residues, such as 4-amino-3-hydroxy-5-phenylpentanoic acid. Maedamide (**2**) inhibited the growth of HeLa and HL60 cells, with IC₅₀ values of 4.2 and 2.2 μ M, respectively. In addition, maedamide showed inhibitory activity against chymotrypsin, with an IC₅₀ value of 45 μ M. In this Letter, we describe the first total synthesis and structural reassignment of maedamide.

Originally Proposed Maedamide (1, *allo*-D-Ile)

Our retrosynthetic analysis of maedamide is shown in Scheme 1. Maedamide is formed by carboxylic acid **3** and hexapeptide **4**. Carboxylic acid **3** could be prepared by the condensation of L-valic acid and *allo*-D-isoleucic acid. Meanwhile, hexapeptide **4** could be synthesized by stepwise condensation of the corresponding amino acid moieties, starting with the C-terminal residue, O-Me-L-Pro.

First, we synthesized carboxylic acid **3** as shown in Scheme 2. Protection of a hydroxyl group of L-valic acid followed by condensation with *O*-Me-*allo*-D-isoleucic acid afforded ester **5**. Demethylation of methyl ester **5** using Lil gave **6**, and removal of the TBS group under acidic conditions provided carboxylic acid **3**.

The synthesis of hexapeptide **4a** commenced with the condensation of the known dipeptide 7^2 with *N*-Boc-glycine using standard procedures. The obtained tripeptide **8** was further condensed with *N*-Boc-*allo*-D-isoleucine to give tetrapeptide **9a**. Removal of the Boc group of **9a** with TFA and incorporation with known γ -amino acid **11**³ afforded pentapeptide **10a**. Compound

Tetrahedro

^{*} Corresponding author. Tel./fax: +81 45 566 1819. *E-mail address:* suenaga@chem.keio.ac.jp (K. Suenaga).

Scheme 1. Retrosynthetic analysis of maedamide.

Scheme 2. Synthesis of carboxylic acid **3.** Reagents and conditions: (a) TBSCl, imidazole, DMF, 40 °C, 22 h, quant; (b) oxalyl chloride, DMF, CH₂Cl₂, 0 °C to rt, 2.5 h; (c) *O*-Me-*allo*-*D*-isoleucic acid, pyridine, CH₂Cl₂, rt, 4 days, 40% in two steps; (d) LiI, pyridine, reflux, 6 h, quant; (e) 4 M HCl, 1,4-dioxane, rt, 4 days, quant.

Scheme 3. Synthesis of hexapeptide **4.** Reagents and conditions: (a) TFA, CH₂Cl₂, 0 °C, 2.5 h; (b) *N*-Boc-glycine, HATU, ¹pr₂NEt, DMF, 0 °C to rt, 14 h, 80% in two steps; (c) TFA, CH₂Cl₂, 0 °C; (d) *N*-Boc-*allo*-*b*-isoleucine (**9a**), *N*-Boc-*L*-isoleucine (**9b**), HATU, ¹pr₂NEt, DMF, 0 °C to rt, (**9a**) 76% in two steps; (9b) 63% in two steps; (e) TFA, CH₂Cl₂, 0 °C, 2 h; (f) **11**, HATU, ¹pr₂NEt, DMF, 0 °C to rt, 2 h, (**10a**) 54% in two steps; (g) Et₂NH, CH₃CN, rt, 3 h; (h) *N*-Fmoc-*L*-proline, HATU, ¹pr₂NEt, DMF, 0 °C to rt, 3 h, (**4a**) 48% in two steps, (**4b**) 45% in two steps.

Scheme 4. Synthesis of maedamide **1** and **2**. Reagents and conditions: (a) Et_2NH , CH_3CN , rt, 1 h; (b) **3**, HATU, HOAt, ${}^{i}Pr_2NEt$, DMF, 0 °C to rt, 1 h, (1) 34% in two steps, (**2**) 40% in two steps.

10a was converted to **4a** by condensation with *N*-Fmoc-L-Pro (Scheme 3).

Finally, the condensation of carboxylic acid **3** and hexapeptide **4a** was carried out (Scheme 4). Removal of an Fmoc group of **4a** with DEA in MeCN followed by coupling with carboxylic acid **3** gave the target compound 1^4 as a colorless oil (10 steps, 5.4% yield from **7**).

However, the NMR data of **1** were inconsistent with those reported for the natural product. A detailed comparison of the NMR data clarified that the ¹H NMR and ¹³C NMR signals assigned to *allo*-p-isoleucine of **1** were most different from the data reported for the natural product. In addition, the structurally related cyanobacterial peptide tasiamide⁵ possessed L-isoleucine at the corresponding position. Based on these data, we inferred that maedamide consisted of L-isoleucine rather than *allo*-p-isoleucine. To verify this hypothesis, we synthesized the epimer of **1** possessing L-isoleucine instead of *allo*-p-isoleucine (**2**).

N-Boc-L-isoleucine was condensed with tripeptide **8**, a common intermediate, to give tetrapeptide **9b**. Compound **9b** was converted to **4b** in a similar manner as for **1**. The condensation of **4b** with carboxylic acid **3** afforded the epimer 2^6 (10 steps, 6.6% yield from **7**). In a comparison of the spectroscopic data of **2** with those of the natural product, **2** corresponded to the natural product.

In conclusion, we have achieved the first total synthesis of maedamide and revised its structure. The revised structure (**2**) differs from the original (**1**) with respect to the absolute configuration of an lle residue: the correct stereochemistry of the lle residue is L rather than *allo*-D.

Acknowledgments

This work was supported in part by a Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (24310160) and Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research.

Supplementary data

Supplementary data (¹H and ¹³C NMR spectra for all compounds. Detailed experimental procedures) associated with this article can be found, in the online version, at http://dx.doi.org/10. 1016/j.tetlet.2015.06.090.

References and notes

- 1. Iwasaki, A.; Ohno, O.; Sumimoto, S.; Suda, S.; Suenaga, K. *Tetrahedron Lett.* **2014**, 55, 4126–4128.
- Ma, Z.; Song, N.; Li, C.; Zhang, W.; Wang, P.; Li, Y. J. Pept. Sci. 2008, 14, 1139– 1147.
- 3. Meloni, M. M.; Taddei, M. Org. Lett. 2001, 3, 337-340.
- 4. Compound 1: $[\alpha]_{27}^{27}$ -4.5 (c 4.0, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.31-7.15 (m, 10H), 5.58 (dd, J = 8.2, 8.2, 1H), 5.01 (d, J = 6.3, 1H), 4.46 (d, J = 5.1, 1H), 4.39-4.34 (m, 2H), 4.24 (m, 1H), 4.18 (d, J = 4.4, 1H), 4.16 (d, J = 17.4, 1H), 4.13 (m, 1H), 3.90 (d, J = 17.4, 1H), 3.86 (m, 1H), 3.71 (s, 3H), 3.58-3.39 (m, 3H), 3.21

(d, *J* = 14.2, 8.2, 1H), 3.03 (s, 3H), 3.00–2.92 (m, 2H), 2.83 (dd, *J* = 14.2, 7.3, 1H), 2.44–2.30 (m, 2H), 2.23–2.11 (m, 2H), 2.06–1.82 (m, 6H), 1.77 (m, 1H), 1.63 (m, 1H), 1.51–1.40 (m, 2H), 1.36–1.22 (m, 3H), 1.07 (d, *J* = 7.0, 3H), 1.05 (d, *J* = 6.7, 3H), 1.01–0.91 (m, 12H); ¹³C NMR (100 MHz, CD₃OD) δ 177.4, 174.6, 174.3, 174.0, 173.1, 171.4, 170.4, 170.1, 140.0, 138.6, 130.5, 130.4, 129.44, 129.37, 127.6, 127.5, 77.7, 76.3, 71.5, 62.4, 60.6, 58.2, 57.8, 56.3, 52.7, 42.0, 41.5, 37.8, 37.7, 37.2, 35.7, 33.4, 30.6, 30.3, 29.9, 27.3, 26.4, 26.0, 24.7, 19.3, 17.3, 15.0, 14.9, 12.1, 12.0; HR (ESI) *m*/*z* 963.5447, calcd for C₅₁H₇₅N₆O₁₂ [M+H]* 963.5443.

- Williams, P. G.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J. J. Nat. Prod. 2002, 65, 1336–1339.
- 6. Compound **2**: $[\alpha]_{D}^{29}$ +17 (c 0.1, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.29–7.16 (m, 10H), 5.55 (dd, *J* = 8.3, 7.8, 1H), 5.01 (d, *J* = 6.2, 1H), 4.36 (m, 1H), 4.35 (m, 1H), 4.28 (d, *J* = 6.5, 1H), 4.20 (m, 1H), 4.17 (d, *J* = 4.4, 1H), 4.13 (m, 1H), 4.39 (d, *J* = 17.5, 1H), 3.84 (m, 1H), 3.71 (s, 3H), 3.53 (m, 1H), 3.38 (m, 1H), 3.37 (m, 1H), 3.20 (dd, *J* = 14.2, 8.3, 1H), 3.03 (s, 3H), 2.98 (m, 1H), 2.16 (m, 1H), 1.97–1.80 (m, 6H), 1.76 (m, 1H), 1.64 (m, 1H), 1.54 (m, 1H), 1.46 (m, 1H), 1.97–1.80 (m, 6H), 1.76 (m, 1H), 1.64 (m, 1H), 1.54 (m, 1H), 1.46 (m, 1H), 1.61–1.31 (m, 2H), 1.21 (m, 1H), 107 (d, *J* = 7.0, 3H), 1.05 (d, *J* = 6.7, 3H), 0.97–0.95 (m, 9H), 0.91 (t, *J* = 7.5, 3H);¹³C NMR (100 MHz, CD₃OD) δ 177.2, 174.1, 174.00, 173.95, 173.3, 171.3, 170.3, 170.2, 140.1, 138.6, 130.5, 130.4, 129.40, 129.36, 127.6, 127.5, 77.6, 76.3, 71.1, 62.4, 60.6, 59.7, 57.8, 56.0, 52.7, 41.9, 41.2, 37.8, 37.9, 37.2, 35.7, 33.2, 30.6, 30.4, 29.9, 26.4, 26.0, 25.7, 24.8, 19.3, 17.1, 16.1, 14.9, 12.0, 11.9; HR (ESI) *m*/*z* 985.5224, calcd for C₅₁H₇₄N₆O₁₂Na [M+Na]* 985.5262.