Efficient Indole-Based Receptor for Cu²⁺ Ion

Huamei Geng, Na Liu, Xin Tian, Rong Li* and Jiantai Ma*

College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China

Received August 17, 2010: Revised July 16, 2011: Accepted September 05, 2011

Abstract: A new fluorescent sensor 1 was designed and synthesized through the condensation of indole-3-aldehyde and N-(2-hydroxyethyl)ethylenediamine. It exhibits good sensitivity and selectivity for the copper cation over other cations such as K^+ , Na^+ , Ca^{2+} , Cr^{2+} , Mg^{2+} , Zn^{2+} , Al^{3+} and Fe³⁺. The fluorescence intensity of the sensor was decreased with increasing the concentration of Cu²⁺. The analysis of the Benesi-Hildebrand equation indicated the formation 1:1 complex of 1 and Cu²⁺ with association constant K_{ass} =3.34×10⁵M.

Keywords: Indole-3-aldehyde, N-(2-hydroxyethyl)ethylenediamine, copper sensor.

INTRODUCTION

Cations play a fundamental and important role in a wide range of chemical, biological, medical and environmental processes. Design and development of efficient cation probes capable of sensing the targeted cations with highly selectively, have therefore attracted a great deal of attention [1]. Among all the cations, Cu^{2+} is one of the most important environmental pollutants and an essential trace element in various biological systems [2], therefore, designing an efficient sensor for Cu²⁺ is necessary. Due to high detection sensitivity and simplicity, fluorescence signaling is one of the first choices [3]. And designing fluorescence sensor for copper ion has drawn worldwide attention recently. Chen et al. reported a Cu²⁺ sensor based on gold nanoparticles with a detection limit of 3.6µM [4]. Huang and co-workers synthesized a colorimetric sensor for Cu2+ in aqueous solution based on metal ion-induced deprotonation [5]. Dr. Frigoli prepared a cascade FRET-mediated ratiometric sensor for Cu²⁺ ions based on dual fluorescent ligand-coated polymer nanoparticles [6].

Phenanthroline [7], dansyl [3a], anthracene [8] have been investigated as fluorescence molecular chemosensor for Cu^{2+} , they display good sensitivity and selectivity to Cu^{2+} . While, indole as fluorophoric group does not seem to be so widespread, though its biological ubiquity forming part of the amino acid tryptophane is of very high quantum yield [9]. Moreover, the indole ring-metal binding in biological systems has been recently identified [10], when combined with fluorescence spectroscopy, indole derivatives are potential fluorescent chemosensors [9]. In this letter, a simple fluorescence probe based on an indole derivative, chemosensor 1 was reported for the qualitative and quantitative detection of Cu^{2+} in ethanol solution. Fluorescence characterization showed that the chemosensor exhibited excellent selectivity and sensitivity to Cu^{2+} . This may be helpful for constructing new metal sensing chemical sensors.

*Address correspondence to these authors at the College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China; Tel: 86-931-8912577; Fax: 86-931-8912596;

EXPERIMENTAL

Synthesis of Sensor 1

Indole-3-carboxaldehyde (0.75 g, 5.1 mmol) dissolved in (50ml) was added dropwise to N-(2ethanol Hydroxyethyl)ethylenedramine (1.1 g, 5.0 mmol), after the mixture was stirred for 24 h. Then over 4-fold excess of $NaBH_4$ (0.76 g, 20.1 mmol) was added and the solution was stirred for 5 h. The residue was treated with 50 ml of water and extracted with CH₂Cl₂. The organic phase was dried with anhydrous sodium sulfate and the solvent evaporated to obtain a yellow oil, which was purified by silica gel column chromatography using ethyl acetate/MeOH (v/v: 4:1). Yield: 45%. ¹H-NMR (300 MHz, CDCl₃) δ(ppm): 9.99 (s, 1H, ArNH), 7.60 (d, 1H, J=7.8, ArCH), 6.93-7.28 (m, 4H, ArCH), 3.89 (s, 1H, OH), 3.53 (s, 2H, CH₂), 3.35(s, 2H, CH₂), 2.70 (d, 2H, J=4.2, CH₂), 2.62-2.59(m, 4H, CH₂) 2.07(s, 2H, NH); MS ESI([M+1]): 234.1, calcd for: C₁₃H₁₉N₃O.

All the reactions in the experimental procedure were carried out under nitrogen atmosphere at room temperature.

Stock solutions (1 mM) of the perchlorate salts of K⁺, Na⁺, Ca²⁺, Cr²⁺, Mg²⁺, Zn²⁺, Al³⁺, Fe³⁺ and Cu²⁺ ions in water were prepared. Stock solutions of the sensor 1 (10 mM) were prepared in ethanol solution. Test solutions were prepared by placing 20 μ L of the probe stock solution in a test tube, adding an appropriate aliquot of each stock metal salt and diluting the resulting solution to 2 mL with ethanol solution. For all measurements, fluorescence spectra were obtained by excitation at 285 nm.

RESULTS AND DISCUSSION

Sensor 1 (Scheme 1) was synthesized by N-(2-hydroxyethyl)ethylenediamine and indole-3-aldehyde which was prepared by the literature method [11], followed by reduction with NaBH₄. The structure of compound 1 was characterized by ¹H NMR and MS.

Chemosensor 1 is soluble in ethanol solution. The perchlorate salts of K^+ , Na^+ , Ca^{2+} , Cr^{2+} , Mg^{2+} , Zn^{2+} , Al^{3+} , Fe³⁺ and Cu²⁺ ions were used to evaluate the selectivity of

E-mails: majiantai@lzu.edu.cn, liyirong@lzu.edu.cn

Scheme 1. Synthesis of sensor 1.

Fig. (1). Ralative fluorescence intensity of sensor 1 (10 μ M) in the presence of varions ions (10 μ M). λ_{ex} =285 nm. λ_{em} =349 nm.

either an electron transfer or an electronic energy transfer involving the transition metal and the excited fluorophore as observed in other Cu²⁺-recognition sensors [13]. In Fig. (3) and Table 2, the fluorescence intensity ratio F/F_0 shows a hyperbolic decrease with the concentration of Cu²⁺ (0-1 equiv) up to a mole ratio.

The sensor 1 associates with Cu^{2+} in 1:1 stoichiometry, this is confirmed by the Benesi-Hildebrand analysis. When assuming a 1:1 association between sensor 1 and Cu^{2+} , the Benesi-Hildebrand equation is given as follows [14]:

$$\frac{1}{F - F_0} = \frac{1}{F_{\infty} - F_0} [\frac{1}{K_{ass}[Cu^{2+}]} + 1]$$

 F_0 is the fluorescence intensity of 1, F_{∞} is the intensity measured with excess amount of Cu²⁺, F is the intensity

Table 1.Ralative Fluorescence Intensity of Sensor 1 (10 μ M) in the Presence of Varions Ions (10 μ M). λ_{ex} =285 nm, λ_{em} =349 nm

	Free	Ca ²⁺	Mg^{2+}	Zn ²⁺	Cr ²⁺	Al ³⁺	\mathbf{K}^{+}	Na^+	Fe ³⁺	Cu ²⁺
F/F ₀	1	0.77	0.87	1.18	0.85	1.1	0.91	0.87	0.69	0.33

metal ion binding properties of 1. As shown in Fig. (1) and Table 1, upon addition of 1 equiv of Zn^{2+} and Al^{3+} , the fluorescence intensity of 1 has increased. K⁺, Na⁺, Ca²⁺, Cr²⁺ and Mg²⁺ had no influence on the fluorescence intensity of 1. While the fluorescence was a little quenched with Fe³⁺, which also existed in most copper ion fluorescence probes. However, compared with other cations, Cu²⁺ has a significantly fluorescence quenching effect with sensor 1, the fluorescence intensity quenched to 33%, which indicated the selectivity and sensitivity of 1 to Cu²⁺ over other cations.

To evaluate the feasibility of a fluorescence sensor for Cu^{2+} , the sensitivity is one of the key elements. In fluorescence emission, free sensor 1 exhibits λ_{max} em at 349 nm upon excitation at 285 nm in ethanol solution (Fig. **2**). Upon addition of increasing Cu^{2+} , a remarkable 11 nm blueshift from 349 to 338 nm of fluorescence emission and obvious decrease in fluorescence intensity ratio F/F₀ changed from 1 to 0.11(Fig. **3**). The detection limit for Cu^{2+} is established at 10⁻⁷ M under current experimental conditions. The blue-shift attributes to the intra-ligand π - π * transitions of the indole groups [12]. The reason of fluorescence of

measured with Cu^{2+} , K_{ass} is the association constant (M⁻¹), and $[Cu^{2+}]$ is the concentration of Cu^{2+} added (M). As shown

Fig. (2). Fluorescence intensity of sensor 1(10 μ m) with increasing concentration of Cu²⁺ (0 μ M, 0.04 μ M, 0.18 μ M, 0.68 μ M, 1.18 μ M, 4.88 μ M, 8.88 μ M) in ethnol solution. λ_{ex} =285 nm, λ_{em} =349 nm.

Fig. (3). Ralative fluorescence intensity of sensor 1(10 μ m) at different concentration of Cu²⁺. λ_{ex} =285 nm, λ_{em} =349 nm.

in Fig. (4), plot of 1/ (F-F₀) against 1/ $[Cu^{2+}]$ shows a liner relationship, indicating that 1 actually associates with Cu^{2+} in 1:1 stoichiometry. The association constant K_{ass}, between 1 and one Cu^{2+} , is determined from the ratio of intercept/slope to be 3.34×10^5 M (r²=0.998).

The association of sensor 1 and Cu^{2+} ion makes the formation of the host-guest complex through the interaction between the N atoms of sensor 1 and Cu^{2+} . As it is well known, Cu^{2+} ion is a paramagnetic ion with an empty d shell, it always desires a square planar geometry when it is

Fig. (4). Benesi-Hilderbrand plot of sensor 1 with Cu²⁺. λ_{ex} =285 nm, λ_{em} =349 nm.

of the interfering metal ions. As a result, the sensor 1 shows a high selectivity to Cu^{2+} ion.

In conclusion, we developed a highly selective fluorescent sensor 1 for Cu²⁺ using the indole group as the receptors. The sensor forms a stable 1:1 complex with Cu²⁺ and has high association constant (K_{ass}). Therefore, it shows much better selectivity over some other metal ions and responds to Cu²⁺ by quenching fluorescence intensity in the 1×10^{-7} to 1×10^{-5} M range. We expect that sensor 1 will possesses practical applications in cellular Cu²⁺ imaging and other Cu²⁺ detection field.

Cu ²⁺	0	0.02	0.04	0.06	0.08	0.18	0.28	0.48	0.68
F/F ₀	1	0.96	0.93	0.91	0.87	0.85	0.82	0.79	0.79
Cu ²⁺	0.88	1.88	4.88	5.88	8.88	9.88	10.88	20.88	
F/F ₀	0.77	0.65	0.38	0.34	0.21	0.19	0.17	0.11	

Table 2. Ralative Fluorescence Intensity of Sensor 1(10 μ m) at Different Concentration of Cu²⁺. λ_{ex} =285 nm, λ_{em} =349 nm

coordinated [15]. So, the fluorescence intensity decreased suggesting that Cu^{2+} formed a complex with the three nitrogen atoms and one oxygen of the sensor 1 and strongly quenched the emission intensity.

To explore practical applicability of 1 as a Cu^{2+} -selective fluorescent chemosensor, competition experiments were also performed in the presence of Cu^{2+} at 10 μ M mixed with 10 μ M background metal cations such as K⁺, Na⁺, Ca²⁺, Cr²⁺, Mg²⁺, Zn²⁺, Fe³⁺(Fig. **5**). The fluorescence intensity ratio F/F₀ of solution containing both background metal cations and Cu²⁺ showed no obvious variation comparing with that only containing Cu²⁺ (Table **3**). The strong formation constant of Cu²⁺ ion determines the selectivity, and thus the strong coordination of Cu²⁺ ion in the square planar environment with sensor 1 is not perturbed by the presence

Fig. (5). Ralative fluorescence intensity of sensor 1(10 μ M) containing Cu²⁺ (1 equiv) and the background ions (1 equiv). λ_{ex} =285 nm, λ_{em} =349 nm.

Table 3.Ralative Fluorescence Intensity of Sensor 1(10 μ M) Containing Cu²⁺ (1 equiv) and the Background Ions (1 equiv). λ_{ex} =285 nm, λ_{em} =349 nm

	Ca ²⁺ +Cu ²⁺	$Zn^{2+}+Cu^{2+}$	$Cr^{2+}+Cu^{2+}$	K^++Cu^{2+}	Na ⁺ +Cu ²⁺	Fe ³⁺ +Cu ²⁺	Cu ²⁺ +mix	Cu ²⁺
F/F ₀	0.41	0.25	0.43	0.4	0.41	0.37	0.41	0.33

REFERENCES

- Shiraishi, Y.; Maehara, H.; Hirai, T., Indole-azadiene conjugate as a colorimetric and fluorometric probe forselective fluoride ion sensing. Org. & Bio. Chem., 2009, 7, 2072-2076.
- [2] Yang, H.; Liu, Z.-Q.; Zhou, Z.-G.; Shi, E.-X.; Li, F.-Y.; Du, Y.-K.; Yi, T.; Huang, C.-H., Highly selective ratiometric fluorescent sensor for Cu(II) with two urea groups. *Tetrahedron Lett.* 2006, 47 (17), 2911-2914.
- [3] (a) Bhalla, V.; Kumar, R.; Kumar, M.; Dhir, A., Bifunctional fluorescent thiacalix[4]arene based chemosensor for Cu²⁺ and Fions. *Tetrahedron* 2007, 63 (45), 11153-11159; (b) Kumar, R.; Bhalla, V.; Kumar, M., Cu²⁺ and CN--selective fluorogenic sensors based on pyrene-appended thiacalix[4]arenes. *Tetrahedron* 2008, 64 (35), 8095-8101.
- [4] Chen, W.; Tu, X.; Guo, X., Fluorescent gold nanoparticles-based fluorescence sensor for Cu²⁺ ions. *Chem Commun (Camb)* 2009, (13), 1736-1738.
- [5] Huang, J.; Xu, Y.; Qian, X., A colorimetric sensor for Cu²⁺ in aqueous solution based on metal ion-induced deprotonation: deprotonation/protonation mediated by Cu²⁺-ligand interactions. *Dalton Trans* **2009**, (10), 1761-1766.
- [6] Frigoli, M.; Ouadahi, K.; Larpent, C., A cascade FRET-mediated ratiometric sensor for Cu²⁺ ions based on dual fluorescent ligandcoated polymer nanoparticles. *Chemistry* **2009**, *15* (33), 8319-30.
- [7] Wu, J.-S.; Wang, P.-F.; Zhang, X.-H.; Wu, S.-K., An efficient chloride-selective fluorescent chemosensor based on 2,9-bis(4'hydroxyphenyl)phenanthroline Cu(II) complex. Spectrochimica Acta Part A: Mol and Biomol. Spectroscopy 2007, 67 (2), 281-286.

- [8] Varazo, K.; Xie, F.; Gulledge, D.; Wang, Q., Synthesis of triazolyl anthracene as a selective fluorescent chemosensor for the Cu(II) ion. *Tetrahedron Lett.* 2008, 49 (36), 5293-5296.
- [9] Ricardo Aucejo, J. A., Conxa Soriano, M. Carmen Guillem, Enrique García-España and Francisco Torres, New sensing devices part 1: indole-containing polyamines supported in nanosized boehmite particles. J. Mat. Chem. 2005, 15, 2920 - 2927.
- [10] Xue, Y.; Davis, A. V.; Balakrishnan, G.; Stasser, J. P.; Staehlin, B. M.; Focia, P.; Spiro, T. G.; Penner-Hahn, J. E.; O'Halloran, T. V., Cu(I) recognition *via* cation-[pi] and methionine interactions in CusF. *Nat Chem. Biol.* **2008**, *4* (2), 107-109.
- [11] (a) James, P. N.; Snyder, H. R., Indole-3-carboxaldehyde. Org.Synth 1959, 39; (b) James, P. N.; Snyder, H. R., Indole-3carboxaldehyde. Org. Synth. Coll. Voll 1963, 4.
- [12] Zhou, Q.; Yang, P., Crystal structure and DNA-binding studies of a new Cu(II) complex involving benzimidazole. *Inorganica Chimica Acta.* 2006, 359 (4), 1200-1206.
- [13] (a) Zong, G.; Lu, G., A molecular half-subtractor based on a fluorescence and absorption dual-modal sensor for copper ions. *Tetrahedron Lett.* 2008, 49 (39), 5676-5679; (b) Wu, J.-S.; Wang, P.-F.; Zhang, X.-H.; Wu, S.-K., Novel fluorescent sensor for detection of Cu(II) in aqueous solution. *Spectrochimica Acta Part* A: Mol. and Biomol. Spectroscopy 2006, 65 (3-4), 749-752.
- [14] Shiraishi, Y.; Sumiya, S.; Kohno, Y.; Hirai, T., A Rhodamine-Cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(II). J. Org. Chem. 2008, 73 (21), 8571–8574.
- [15] Dong, Z.; Jin, J.; Zhao, W.; Geng, H.; Zhao, P.; Li, R.; Ma, J., Quinoline group grafted carbon nanotube fluorescent sensor for detection of Cu²⁺ ion. *App. Sur. Sci.* **2009**, *255* (23), 9526-9530.