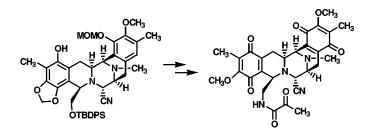
LETTERS 1999 Vol. 1, No. 1 75–77

ORGANIC

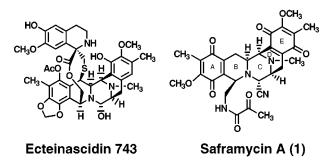
Enantioselective Synthesis of Saframycin A and Evaluation of Antitumor Activity Relative to Ecteinascidin/Saframycin Hybrids


Eduardo J. Martinez and E. J. Corey*

Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138

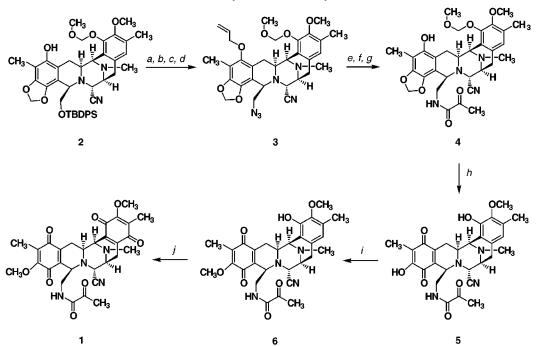
corey @ chemistry. harvard. edu

Received April 1, 1999


ABSTRACT

A short synthesis of saframycin A is described which begins with a readily available intermediate previously utilized for the total synthesis of ecteinascidin 743. A key step in this synthesis is the use of 1-fluoro-3,5-dichloropyridinium triflate to oxidize a phenolic ring to a 1,4-benzoquinone unit while simultaneously cleaving a methoxymethyl ether of a different phenolic ring to the corresponding phenol ($4 \rightarrow 5$). The common intermediate (2) for the synthesis of saframycin A (1) and ecteinascidin 743 also allowed the synthesis of two hybrids of these structures (6 and 7). Whole cell bioassays for antitumor activity using lung, colon, melanoma, and prostate-derived tumor cell lines allowed a clear correlation of structure with biological activity in this series.

Ecteinascidin 743,¹ an exceedingly potent antitumor agent which is currently undergoing phase II clinical trials, has recently been synthesized by a process² that is being applied for the preparation of clinical material. This paper describes a short synthesis of the structurally related antitumor agent saframycin A $(1)^3$ from an intermediate which was utilized


10.1021/ol990553i CCC: \$18.00 Published on Web 05/17/1999 in the synthesis of ecteinascidin 743, thus making available a common route for producing both saframycin- and ecteinascidin-type compounds. Syntheses of both racemic and natural forms of saframycin A have previously been reported.⁴ In addition, we describe herein the synthesis of two structural hybrids of ecteinascidins and saframycins and the evaluation of antitumor activity for these substances relative to ecteinascidin 743 (Et 743) and saframycin A.

 ^{(1) (}a) Rinehart, K. L.; Holt, T. G.; Fregeau, N. L.; Keifer, P. A.; Wilson, G. R.; Perun, T. J., Jr.; Sakai, R.; Thompson, A. G.; Stroh, J. G.; Shield, L. S.; Seigler, D. S.; Li, L. H.; Martin, D. G.; Grimmelikhuijzen, C. J. P.; Gäde, G. J. Nat. Prod. 1990, 53, 771. (b) Rinehart, K. L.; Sakai, R.; Holt, T. G.; Fregeau, N. L.; Perun, T. J., Jr.; Seigler, D. S.; Wilson, G. R.; Shield, L. S. Pure Appl. Chem. 1990, 62, 1277. (c) Rinehart, K. L.; Holt, T. G.; Fregeau, N. L.; Stroh, J. G.; Keifer, P. A.; Sun, F.; Li, L. H.; Martin, D. G. J. Org. Chem. 1990, 55, 4512. (d) Wright, A. E.; Forleo, D. A.; Gunawardana, P. G.; Gunasekera, S. P.; Koehn, F. E.; McConnell, O. J. J. Org. Chem. 1990, 55, 4508. (e) Sakai, R.; Rinehart, K. L.; Guan, Y.; Wang, A. H.-J. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 11456. (f) Sakai, R.; Jares-Erijman, E. A.; Manzanares, I.; Elipe, M. V. S.; Rinehart, K. L. J. Am. Chem. Soc. 1996, 118, 9017.

⁽²⁾ Corey, E. J.; Gin, D. Y.; Kania, R. S. J. Am. Chem. Soc. 1996, 118, 9202.

Scheme 1. Synthesis of Saframycin A (1)

(a) Cs_2CO_3 (3.0 equiv), allyl bromide (4.0 equiv), DMF, 23 °C, 1.5 h, 85%. (b) TBAF (3.9 equiv), THF, 23 °C, 45 min, 99%. (c) TsOTs (3.5 equiv), iPr_2NEt (2.0 equiv), DMAP (3.0 equiv), CH_2Cl_2 , 23 °C, 13 hr, 69%. (d) LiN₃ (8.0 equiv), DMF, 70 °C, 20 min, 73%; (e) DTT (10.5 equiv), Et₈N (10.2 equiv), MeOH, 23 °C, 17 hr, 59%. (f) pyruvyl chloride (7.3 equiv), DMAP (4.9 equiv), CH_2Cl_2 , 23 °C, 20 min, 87%. (g) PdCl₂(PPh₃)₂ (0.05 equiv), Bu₅SnH (2.7 equiv), AcOH (10.0 equiv), CH_2Cl_2 , 23 °C, 10 min, 80%. (h) 1-fluoro-3,5-dichloropyridinium triflate (2.5 equiv), CH_2Cl_2 , 0 °C, 2 h, 69%; (i) TMSCHN₂ (4.6 equiv), methanol-benzene (2:7), 23 °C, 20 min, 99%. (j) salcomine (0.16 equiv), O₂ (3 bar), THF, 23 °C, 26 h, 63%.

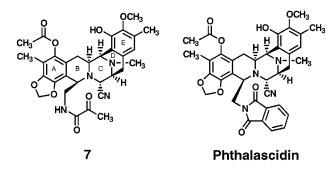
The pathway to saframycin A from the Et 743 intermediate **2** is outlined in Scheme 1. The phenolic function of **2** was protected as the allyl ether, and the *tert*-butyldiphenylsilyl group was cleaved with tetra-*n*-butylammonium fluoride to generate a primary alcohol which was converted via the corresponding tosylate (toluenesulfonic anhydride, diisopropylethylamine, and 4-(dimethylamino)pyridine) to the azide **3** by displacement using LiN₃ as nucleophile in dimethylformamide at 70 °C. The azide **3** was transformed into the phenolic pyruvamide **4** by the sequence (1) reduction of azide to primary amine with dithiothreitol and triethylamine in methanol at 23 °C,^{5,6} (2) *N*-acylation with pyruvyl chloride and 4-(dimethylamino)pyridine in CH₂Cl₂, and (3) deallylation by treatment with tri-*n*-butyltin hydride and acetic acid

(5) (a) Staros, J. V.; Bayley, H.; Standring, D. N.; Knowles, J. R. *Biochem. Biophysic. Res. Commun.* **1978**, *80*, 568. (b) Bayley, H.; Standring, D. N.; Knowles, J. R. *Tetrahedron Lett.* **1978**, *39*, 3633. in methylene chloride in the presence of a catalytic amount of $PdCl_2(PPh_3)_2$. A novel oxidation was used to convert the phenol **4** to the corresponding 1,4-benzoquinone. Although 1-fluoro-3,5-dichloropyridinium triflate is generally used as a reagent for electrophilic fluorination,⁷ it can serve also as an electron acceptor and as such effects the oxidation of phenol **4** to 1,4-benzoquinone and the concomitant cleavage of the methoxymethyl (MOM) protecting group to form **6** in a single step under mild conditions (CH₂Cl₂ solution at 0 °C for 2 h). One possible explanation of the facile MOM protecting group cleavage which is consistent with the isolation of phenol **5** rather than its further oxidation product-(s) is the occurrence of the sequence:

(a) $ROCH_2OCH_3 \rightarrow ROCHFOCH_3$ (b) $ROCHFOCH_3 + H_2O \rightarrow ROH + HCOOCH_3$

Such a pathway implies that 1-fluoro-3,5-dichloropyridinium triflate might be a generally useful reagent for the selective cleavage of MOM ethers. This point is under investigation and will be reported separately.

^{(3) (}a) Arai, T.; Takahashi, K.; Kubo, A. J. Antibiot. 1977, 30, 1015.
(b) Arai, T.; Takahashi, K.; Nakahara, S.; Kubo, A. Experientia 1980, 36, 1025. For reviews on the saframycins, see: (a) Arai, T.; Kubo, A. In The Alkaloids Chemistry and Pharmacology; Brossi, A., Ed.; Academic Press: New York, 1983; Vol. 21, Chapter 3. (b) Remers, W. A. In The Chemistry of Antitumor Antibiotics; Wiley: New York, 1988; Vol. 2, Chapter 3.


^{(4) (}a) Fukuyama, T.; Yang, L.; Ajeck, K. L.; Sachleben, R. A. J. Am. Chem. Soc. **1990**, *112*, 3712. (b) Myers, A. G.; Kung, D. Book of Abstracts, 216th National Meeting of the American Chemical Society, Boston, MA; American Chemical Society, Washington, DC, 1998; Abstract ORGN0501.

⁽⁶⁾ Hydrogen sulfide in pyridine was less effective for the azide \rightarrow amine reduction, see: Adachi, T.; Yamada, Y.; Inoue, I. *Synthesis* **1977**, 45.

^{(7) (}a) Umemoto, T.; Kawada, K.; Tomita, K. *Tetrahedron Lett.* **1986**, 27, 4465. (b) Umemoto, T.; Fukami, S.; Tomizawa, G.; Harasawa, K.; Kawada, K.; Tomita, K. *J. Am. Chem. Soc.* **1990**, *112*, 8563. (c) Lal, G. S.; Pez, G. P.; Syvret, R. G. *Chem. Rev.* **1996**, *96*, 1737.

Selective *O*-methylation of **5** to form **6** was carried out using trimethylsilyldiazomethane (which was far more efficacious than diazomethane itself). Catalytic oxidation of **6** in a THF solution using dioxygen and a catalytic amount of cobalt bis-salicylidineethylenediamine complex (salcomine) provided saframycin A (**1**) cleanly.⁸

The A-ring monoquinone **6** can be regarded as a pentacyclic hybrid of ecteinascidin and saframycin structures. In connection with the correlation of antitumor activity of saframycin and ecteinascidin type compounds with this structure, we decided to evaluate compound **6** and also the alternative Et 743-saframycin hybrid **7**, which has the

characteristic saframycin A appendage on ring B but is nonquinoid at rings A and E. This compound was readily prepared from phenol **4** in 64% overall yield by acetylation (Ac₂O, DMAP in CH₂Cl₂ at 23 °C) and MOM ether cleavage (4:1:1 CF₃CO₂H-H₂O-THF at 23 °C for 11 h).

(9) Martinez, E. J., Owa, T., Schreiber, S. L., Corey, E. J. Proc. Acad. Sci. U.S.A. **1999**, *96*, 3496. The antitumor activities of 1, 6, 7, Et 743, and phthalascidin (Pt 650, the most active of a series of synthetic Et 743 analogues)⁹ were determined using four human cancer cell lines with the results shown in Table 1. A number of

Table 1.	Antiproliferative Activities of Et 743, Saframycin A, and	
Analogues	(IC ₅₀ (nM))	

compd	A-549 (lung)	HCT 116 (colon)	A 375 (melanoma)	PC-3 (prostate)
7	16	3.4	1.2	3.6
6	>180	47	26	44
1	430	39	30	27
Et 743	1.0	0.50	0.15	0.70
Pt 650	0.95	0.38	0.17	0.55

important points emerge from these data. It is clear that saframycin A is at least 2 orders of magnitude less active than ecteinascidin 743 or phthalascidin. Comparison of the A-ring monoquinone 6 and the analogous nonquinone structure 7 reveals that a quinoid A-ring lowers potency relative to the benzenoid A-ring counterpart by about 10-fold. These results underscore the importance of the benzenoid A-ring to the superior antitumor activity of Et 743 and Pt 650.

Acknowledgment. This work was assisted by a grant from the National Institutes of Health and a graduate student fellowship from Schering Plough.

OL990553I

⁽⁸⁾ De Jonge, C. R. H. I.; Hageman, H. J.; Hoentjen, G.; Mus, W. J. *Organic Syntheses*; Wiley: New York, 1988; Collect Vol. VI, p 412. (9) Martinez, E. J.; Owa, T.; Schreiber, S. L.; Corey, E. J. *Proc. Natl.*