PREPARATION AND MASS-SPECTRAL ANALYSIS OF *O*-HYDROXY-ETHYL DERIVATIVES OF *D*-GLUCOSE

KATSUYUKI NAGAI, ATSUKO HONDA, TADASHI KIHO, SHIGEO UKAI* Gifu Pharmaceutical University, Mitahora-higashi, Gifu 502 (Japan)

AND TERUO TSUCHIYA Gifu Prefectural Hospital, Noishiki, Gifu 500 (Japan) (Received May 11th, 1988; accepted for publication in revised form, September 30th, 1988)

ABSTRACT

Various hydroxyethyl ethers of D-glucose have been prepared in good yield by treating D-glucose derivatives with 2-bromoethyl tetrahydropyranyl ether in the presence of sodium hydride. The derived O-(hydroxyethyl)-D-glucitol acetates exhibited characteristic mass-spectral fragments. The furanose and pyranose forms of 1,2-O-ethylene-D-glucose derived from 2-O-(2-hydroxyethyl)-D-glucose were identified by mass-spectral analysis.

INTRODUCTION

Several gas-liquid chromatographic (g.l.c.) methods have been used to analyze hydrolyzates of O-(hydroxyethyl)starch and O-(hydroxyethyl)cellulose, compounds used medically as plasma-volume expanders and in industry as coating agents, thickeners or glues¹⁻³. These methods are of poor quantitative value and generate multiple peaks because aldoses form O-trimethylsilyl (Me₃Si) derivatives of either or both anomers of the pyranose and furanose tautomers. In addition, 1,2-O-ethylene-D-glucose derivatives, into which these acid hydrolyzates are partially converted, are not separated satisfactorily by g.l.c. as Me₃Si derivatives of the derived oximes³. We recently reported a g.l.c. method, using alditol acetates formed from such hydrolyzates, which resulted in single peaks instead of multiple peaks from the different anomers of each sugar⁴. Identification of the individual peaks was accomplished by reference to authentic standards and/or by massspectral analysis.

This paper describes the preparation and mass spectra of O-(hydroxyethyl)-D-glucose derivatives needed as reference compounds for this g.l.c. method. The O-hydroxyethyl ethers of D-glucose were synthesized in high yield by a novel method involving reaction of glucose derivatives, containing appropriate free

^{*}To whom inquiries should be addressed.

hydroxyl groups, with 2-bromoethyl tetrahydropyranyl ether in the presence of sodium hydride. The O-hydroxyethyl-D-glucitols were then obtained by reduction with NaBH₄. The mass spectra of the O-hydroxyethyl-D-glucitol acetates revealed characteristic, position-dependent fragments. Further, the furanose and pyranose forms of 1,2-O-ethylene-D-glucose derived from 2-O-hydroxyethyl-D-glucose were differentiated by mass-spectral analysis.

RESULTS AND DISCUSSION

Preparation of O-hydroxyethyl-D-glucose derivatives. — O-Hydroxyethyl derivatives of D-glucose have been prepared by several methods⁵⁻⁷, but these methods give low yields and extensive byproducts. 2-Bromoethyl tetrahydropyranyl ether⁸ was used here as a hydroxyethylating agent in the presence of NaH in N,N-dimethylformamide (DMF) for the preparation of 2-O-, 3-O-, and 6-Ohydroxyethyl-D-glucose (Scheme 1). Thus, when methyl 3,5,6-tri-O-benzyl-D-

glucofuranose (1a) was treated with 2-bromoethyl tetrahydropyranyl ether and NaH in DMF in a nitrogen atmosphere, the 2-O-hydroxyethyl-D-glucose derivative 2a was obtained in 91% yield. Compounds 2b,c were similarly prepared from 1b,c in 95 and 90% yields, respectively. Removal of blocking groups from 2b,c, reduction of the O-(hydroxyethyl)glucoses with NaBH₄, and acetylation produced the alditol acetates 3 and 4, respectively. 2-O-Hydroxyethyl-D-glucose has been

observed to undergo partial conversion into 1,2-O-ethylene-glucose (furanose and pyranose forms) during the acid hydrolysis of O-(hydroxyethyl)-starch and -cellulose⁹⁻¹¹. The 1,2-O-ethylene-D-glucose derivatives **8** (furanose) and **9** (pyranose) were prepared as follows. Treatment of **2a** with 1% methanolic HCl in CHCl₃ afforded **6** in 75% yield. Debenzylation and subsequent acetylation of **6** gave the acetate **8**. Successive glycosidation of D-glucose with 2-bromoethanol, cyclization in alkaline ethanol, and acetylation gave compound **9**. The positive specific rotation of **9** and its ${}^{1}J_{CH}$ value of 170.19 Hz indicate the α -glycosidic configuration.

Preparation of disubstituted O-(hydroxyethyl)glucose derivatives and 2-O-(2hydroxyethoxy)ethyl-D-glucitol peracetate. — The 2,3-diether 13 was prepared in four steps from 7. Compound 7 was isopropylidenated at C-5 and C-6 and then treated with 2-bromoethyl tetrahydropyranyl ether. The resulting compound (12) was converted into the peracetate 13 by acid hydrolysis and subsequent acetylation. Similarly, the 2,6-diether 18 was prepared by starting from 7. Successive tritylation

of 7, benzylation of 14, acid hydrolysis of 15, treatment of 16 with 2-bromoethyl tetrahydropyranyl ether, catalytic hydrogenolysis of the benzyl ether of 17, and acetylation gave compound 18. 2-O-[(2-Hydroxyethoxy)ethyl-D-glucitol acetate (20) was prepared in five steps from 1a (Scheme 2). Thus, treatment of 1a with 2-(2-chloroethoxy)ethyl tetrahydropyranyl ether¹² in DMF in the presence of NaH gave compound 19 in 89% yield. Compound 19 was converted into alditol acetate 20 by successive catalytic hydrogenolysis, acid hydrolysis, reduction, and acetylation.

Mass spectra of alditol acetates 3, 4, and 20. — For investigation by mass spectrometry, numerous mono- and oligo-saccharide derivatives have been

described^{13,14}. The partially methylated alditol acetates show very characteristic mass spectra, especially for methylation analysis¹⁵. Lindberg *et al.*¹⁶ reported that the fragmentation of methylated *O*-(hydroxyethyl)glucitol acetates in e.i.-m.s. follows the general principles for partially methylated alditol acetates in the analysis of the distribution of substituents in *O*-(hydroxyethyl)cellulose, using the Hakomori methylation procedure¹⁷. Position-dependent, characteristic fragments were observed for *O*-(hydroxyethyl)glucitol acetates. Molecular ions were not observed in the mass spectra of those alditol acetates, although [M + 1] peaks of low intensity were observed. The base peak in the spectra of these compounds was the acetylium ion, m/z 43. Primary ions were formed from alditol acetates by elimination of an acetoxy group, or by cleavage of the alditol chain. From 3-*O*-(hydroxy-thyloxy-t

ethyl)glucitol acetate (3) intense peaks at m/z 333 and 261 might arise from C-2–C-3 and C-3–C-4 cleavage, respectively. Prominent mass fragments observed in the mass spectrum of 6-O-hydroxyethyl-D-glucitol acetate (4) were similar to those of hexa-O-acetyl-D-glucitol, but the peak at m/z 117 which might result from cleavage between C-5 and C-6 was characteristic for 4. Similarly, from 2-O-(2-hydroxyethoxy)ethyl-D-glucitol acetate (20), the peak arising from the fission between C-2 and C-3 was observed at m/z 233.

Mass spectra of 1,2-O-ethylene-D-glucose derivatives 8 and 9. — In the mass spectra of the 1,2-O-ethylene-D-glucose derivatives 8 and 9, molecular ions were

not observed, although low-intensity [M + 1] peaks were present. 1,2-O-Ethylene-D-glucose derivatives underwent fragmentation in a manner analogous to peracetylated glycosides¹⁸. The base peak was m/z 43 (Ac), and the fragments were degraded by elimination of acetic acid (CH₃CO₂H, 60), or ketene (CH₂CO, 42). In the mass spectrum of the furanose **8**, prominent fragments were observed at m/z273, 212, 187, 170, 127, 73, and 43. These fragments are anticipated to result from single or consecutive eliminations of acetic acid or ketene. The pyranose **9** also showed a characteristic mass spectrum with prominent fragments at m/z 272, 259, 230, 199, 170, 157, 86, 73, and 43. The fragment ion at m/z 259, resulting from the fission of the molecule into a fragment retaining C-1–C-5 and elimination of acetic acid, gives a fragment ion at m/z 199, that loses ketene to give m/z 157. In another fragmentation, the molecular ion is degraded into fragments at m/z 272, 230, and 170 by consecutive loss of acetic acid and ketene. Furthermore, the ion at m/z 170 gives a fragment ion at m/z 86 by elimination of two molecule of ketene. These

Fig. 1. G.l.c. of the acetates derived from acid hydrolyzates of 1,2-O-ethylene-a-D-glucofuranose.

TABLE I

M.S. OF THE ACETATES DERIVED FROM ACID HYDROLYZATES OF 1,2-O-ethylene- α -d-glucofuranose

Peak numbers (compd. no.)	Prominent fragments (m/z)
a (8)	43, 73, 127, 170, 187, 212, 273
b (9)	43, 73, 86, 157, 170, 199, 230, 259, 272
c (10)	43, 73, 86, 157, 170, 199, 230, 259, 272
d (5)	43, 73, 87, 189, 375, 405

results suggest that characteristic fragmentations of the furanose and pyranose may be used to determine the ring size in 1,2-*O*-ethylene-D-glucoses.

G.l.c.-m.s. analysis of acid hydrolyzates of 1,2-O-ethylene- α -D-glucofuranose (7). — Other isomers of 2-O-hydroxyethylglucose were determined by g.l.c.-m.s. of hydrolyzates of 1,2-O-ethylene- α -D-glucofuranose (7). Compound 7 was successively hydrolyzed, reduced and acetylated. The g.l.c. trace is shown in Fig. 1, and Table I gives the prominent mass fragments of the components of the peaks in Fig. 1. By reference to the retention time of prepared standards (8, 9) and massspectral analysis, peak (a) in Fig. 1 was identified as 1,2-O-ethylene- α -D-glucofuranose (8) and peak (b) was 1,2-O-ethylene- α -D-glucopyranose (9). Prominent fragments of peak (c) were observed at m/z 272, 259, 230, 199, 170, 157, and 86 which are characteristic of 1,2-O-ethylene- β -D-glucopyranose triacetate, suggesting that peak (c) is 1,2-O-ethylene- β -D-glucopyranose triacetate (10). Peak (d) was identified as 2-O-hydroxyethyl-D-glucitol pentaacetate (5) by the mass fragment at

73 CH ₂ OAc	CH ₂ OAc
$\frac{189}{100} + \frac{100}{100} + $	$\frac{189}{160} + \frac{160}{160} + $
AcOCH	333 <u>305</u> AcOCH ₂ CH ₂ OCH <u>333</u>
HCOAc	HCOAc
HCOAc	HCOAc
CH ₂ OAc	CH ₂ OAc
5	21
CH ₂ OAc	
$\frac{189}{1000} + \frac{1}{1000} + \frac$	
AcOCH	
HCOAc	
405	
$\operatorname{CH}_{2}\operatorname{OCH}_{2}\operatorname{CH}_{2}\operatorname{OAc}^{-117}$	
22	

TABLE II

) IN MASS SPECTRA OF HYDROXYETHYLGLUCITOL ACETATES
m/z)
PROMINENT FRAGMENTS (

O-hydroxyethyl glucitol	z/m	• `																					
peracetates ^a	43	73	86	87	115	117	127	157	170	187	189	661	212	230	233 2	259	2 192	272 2	73 30	5 33	3 37	5 405	449
1,2- <i>O</i> -etn-α-D-Glcf (8)	ł	+					+		+	+			+					-					
1.2- O -etn- α -D-Glcp (9)	+	+	+					+	+			+		+		+	'	+					
$1,2-O-\operatorname{etn}-\beta-D-\operatorname{Glcp}(10)$	+	+	+					+	+			+		+		+	,	+					
$1,2-O-\text{etn-}6-O-\text{hc-}\alpha-\text{D-}Glcf(18)$	+	+		+			+			+													
1,2-O-etn-3-O-he-a-D-Glcf (13)	+	+		+			+		+				+				'	+					
6-0-he-Glc (4)	+			+	+	+															+		
2-0-he-Glc (5)	+	+		+	+						+										+	+	
3-0-he-Glc (3)	+			+	+												+			+	+		
2,6- <i>O</i> -dihe-Glc (22)	+	+		+	+	+															+	+	+
$2,2$ - <i>O</i> -dihe-Glc $(20)^b$	+	+		+	+										+						+		+
2,3- <i>O</i> -dihe-Glc (21)	+	+		+							+								+		+		+
"Ethylene = etn; hydroxyethyl =	he. ^b 2,	2-0-5	lihe-G	jlc =	2-0-(2	2-acet(hyeth	oxy)et	thyl-D-	-glucite	ol 1,3,	4,5,6-1	bentaa	icetate.									

m/z 405 resulting from C-1–C-2 cleavage, and at m/z 189 from cleavage between C-2 and C-3. Similarly, 2,3-di-O- and 2,6-di-O-(2-hydroxyethyl)-D-glucitol peracetates (**21** and **22**) were identified by g.l.c.-m.s. of the alditol acetates formed from the acid hydrolyzates of 1,2-O-ethylene-3-O-hydroxyethyl- and 1,2-Oethylene-6-O-hydroxyethyl- α -D-glucofuranose. 2,3-Di-O-hydroxyethyl-D-glucitol peracetate (**21**) was identified by characteristic mass fragments at m/z 449, from C-1–C-2 cleavage, at m/z 333 and 189 from C-2–C-3 cleavage, and at m/z 305 from cleavage between C-3 and C-4. 2,6-Di-O-hydroxyethyl-D-glucitol peracetate (**22**) was also identified by the mass fragments at m/z 449 resulting from C-1–C-2 fission and at m/z 189 from C-2–C-3 fission, and at m/z 405, 117 from C-5–C-6 cleavage.

Table II gives the prominent mass-spectral fragments of these O-(hydroxyethyl)glucose derivatives. The fragment ion at m/z 87 was observed only in the case of compounds having hydroxyethyl groups that do not engage the glycosidic linkage (cyclic acetal). This result suggests that the m/z 87 fragment is characteristic of the acetoxyethyl group (CH₃CO₂CH₂CH₂, 87).

The characteristic mass-spectral fragments of these O-(hydroxyethyl)glucose derivatives as shown in Table II are useful for the characterization of acid hydrolyzates of O-(hydroxyethyl)-starch and -cellulose⁴.

EXPERIMENTAL

General methods. — Evaporations were conducted under diminished pressure with bath temperatures not exceeding 40°. Column chromatography was performed with silica gel (Wako gel C-200, Wako Pure Chemical Industries, Ltd., Osaka, Japan). Thin layer chromatography (t.l.c.) was performed on t.l.c. sheets precoated with silica gel 60F-254 (Merck; 0.2-mm thickness) on an aluminum support, with the column-chromatographic solvent, unless otherwise specified. Specific rotations were measured with a Jasco DIP-4 automatic polarimeter. G.l.c. was performed with a Shimadzu 4CM chromatograph fitted with a flame-ionization detector. Peak retention times and areas were measured by use of a Shimadzu Chromatopac C-R3A integrator. Mass spectrometry and g.l.c.-m.s. were conducted with a JEOL JMS-D 300 instrument at an ionization potential of 30 eV. N.m.r. spectra were recorded with a JEOL JNM-GX270 instrument; chemical shifts are expressed in ppm (δ) relation to Me₄Si as the internal standard. Elemental analyses were not secured for the products; proposed structures are supported by n.m.r. and m.s. data on chromatographically homogeneous products.

Methyl 3,5,6-tri-O-benzyl-2-O-(2-tetrahydropyranyloxyethyl)- α - and - β -D-glucofuranoside (2a), 1,2;5,6-di-O-isopropylidene-3-O-(2-tetrahydropyranyloxyethyl)- α -D-glucofuranose (2b), and 3,5-O-benzylidene-1,2-O-isopropylidene-6-O-(2-tetrahydropyranyloxyethyl)- α -D-glucofuranose (2c). — A mixture of methyl 3,5,6-tri-O-benzyl- α -D-glucofuranoside¹⁹ (1.38 g), NaH (0.42 g), Bu₄NI (5 mg) and imidazole (5 mg) in dry DMF (20 mL) was stirred for 1 h at room temperature under nitrogen. 2-Bromoethyl tetrahydropyranyl ether⁸ (2 mL) was added dropwise

Proton	2a (α anomer)	2a (β anomer)	2Ь	2c	19 (β anomer)
H-1	4.98	4.87	5.86	6.03	4.86
$(J_{1,2})$	(3.85)	(~0)	(3.43)	(3.85)	(~0)
H-2	4.02	3.89	4.59	4.63	3.87
$(J_{2,3})$	(4.28)	(5.13)	(~0)	(~0)	(5.12)
H-3	4.22	4.05	3.94	4.57	3.98
$(J_{3,4})$	(5.98)	(4.70)	(2.93)	(2.43)	(4.58)
H-4	4.33	4.30	4.14	4.22	4.29
$(J_{4,5})$	(6.84)	(8.98)	(7.33)	(~0)	(8.99)
H-5	4.02	4.09	4.34	4.37	4.04
(J_{56})	(5.59)	(5.56)	(6.35)	(3.85)	(5.56)
H-6	3.86	3.91	4.09	4.00	3.85
$(J_{5,6})$	(2.14)	(2.14)	(5.86)	(3.85)	(2.14)
H-6	3.70	3.71	4.00	3.91-3.84	3.70
$(J_{6.6})$	(10.69)	(10.69)	(8.30)	(10.52)	(10.69)
-OCH,CH,O-	3.88-3.76(2H)	3.87-3.75(2H)	3.86-3.82(2H)	3.94-3.78(2H)	3.99-3.45(8H)
	3.76-3.55(2H)	3.66-3.54(2H)	3.81-3.75(2H)	3.72-3.63(2H)	
OCH ₂	4.78, 4.56	4.77, 4.51			4.75, 4.50
2	(11.54)	(11.54)			(11.54)
-OCH ₂ -	4.55	4.59			4.58
-OCH ₂ -	4.55	4.59			4.58
H-2 of THP ring	4.62	4.58	4.63	4.63	4.64
H-6 of THP ring	3.55-3.43	3.54-3.41	3.59-3.48	3.60, 3.52	3.55-3.44
H-3,4,5 of THP ring	1.89-1.39	1.89-1.40	1.81-1.52	1.86 - 1.44	1.80-1.50
-OCH ₃	3.41	3.38			3.37
$-CCH_{2}(1,2)$			1.50, 1.43	1.53, 1.34	
-CCH ₃ (5,6)			1.35, 1.31		
-CHC6H5				6.07	
$-CHC_{6}H_{5}$				7.46-7.26	
-C ₆ H ₅	7.32-7.24	7.36-7.24			8.06-7.26

TABLE III

¹H-N.M.R. DATA^a FOR *O*-HYDROXYETHYL-D-GLUCOFURANOSE DERIVATIVES

^aChemical shifts (δ and, in parentheses, spacing (Hz). The assignments are based on the data in ref. 21.

and the mixture was stirred at room temperature for 4 days. After evaporation of the solvent, the residue was chromatographed on a column of silica gel (3:1 hexane–EtOAc), to give **2a** (α anomer) as 1.42 g (80.8%) of colorless syrup. This compound was homogeneous by t.l.c. (R_F 0.40); $[\alpha]_D^{20}$ +34.1° (c 0.51, CHCl₃); ¹H-n.m.r. data (CDCl₃) see Table III. Calc. for C₃₅H₄₄O₈: mol. wt., 592. Found for **2a** (α anomer): m/z 592 [M].

The β anomer was prepared from methyl 3,5,6-tri-*O*-benzyl- β -D-glucofuranoside (1.68 g) by the same procedure, giving 1.94 g (90.9%) of **2a** (β anomer) as a colorless syrup, homogeneous by t.l.c. ($R_F 0.38$); $[\alpha]_D^{20} - 36.8^\circ$ (c 0.13, CHCl₃); ¹H-n.m.r. data (CDCl₃) see Table III. Calc. for C₃₅H₄₄O₈: mol. wt., 592. Found for **2a** (β anomer): m/z 592 [M].

Compound **2b** was prepared from 1,2;5,6-di-*O*-isopropylidene- α -D-gluco-furanose (300 mg) by the same procedure as just described, as 425.3 mg (95.0%) of colorless, syrupy **2b**, homogeneous by t.l.c. (R_F 0.28, 2:1 hexane-EtOAc); $[\alpha]_D^{20}$

 -38.2° (c 0.32, CHCl₃); ¹H-n.m.r. data (CDCl₃) see Table III. Calc. for C₁₉H₃₂O₈: mol. wt., 388. Found for **2b**: m/z 388 [M].

Compound **2c** was prepared from 3,5-*O*-benzylidene-1,2-*O*-isopropylidene- α -D-glucofuranose²⁰ (200 mg) by the same procedure, giving 255.4 mg (90.2%) of colorless crystals of **2c**, homogeneous by t.l.c. ($R_F 0.33$, 2:1 hexane-EtOAc); m.p. 102-103° [α]_D²⁰ +7.0° (c 0.10, CHCl₃); ¹H-n.m.r. data (CDCl₃) see Table III. Calc. for C₂₃H₃₂O₈: mol. wt., 436. Found for **2c**: m/z 436 [M].

3-O-(2-Acetoxyethyl)glucitol 1,2,4,5,6-pentaacetate (3) and 6-O-(2-acetoxyethyl)glucitol 1,2,3,4,5-pentaacetate (4). — Compound 2b (45.4 mg) was hydrolyzed in 10 mL of 2M CF₃CO₂H in a sealed tube for 5 h at 100°. The hydrolyzate was evaporated, and traces of CF₃CO₂H in the syrupy residue were removed by repeated evaporation (3 times) with water (3 mL). The residue was dissolved in water (10 mL) and reduced with NaBH₄ (50 mg) for 3 h at room temperature, and then passed through a column of Amberlite CG-120 (H⁺) resin. The eluate was evaporated to dryness and boric acid in the residue was removed by repeated evaporation with methanol. The dried residue was acetylated with 1:1 Ac₂Opyridine (1 mL) for 2 h at 95°. The solution was evaporated and the residue subjected to g.l.c.⁴ on a column (0.3 cm × 1.5 m) packed with 2% EGSS-X on Chromosorb W AW DMCS (60–80 mesh) at 215° at a nitrogen pressure of 1.2 kg/cm². The retention time of 3 relative to hexa-O-acetylglucitol is 3.89; mass data are already described.

Compound 4 was prepared from 2c (40.2 mg) by the same procedure, and analyzed by g.l.c. under the same condition as described. The retention time of 4 relative to hexa-O-acetylglucitol is 2.97; mass data are already given.

3,5,6-Tri-O-benzyl-1,2-O-ethylene- α -D-glucofuranose (6). — To a solution of compound **2a** (α anomer, 1.42 g) in CHCl₃ (63 mL) was added 10% HCl-MeOH (7 mL) and the solution was boiled under reflux for 3 h. The cooled solution was made neutral with BaCO₃. The mixture was filtered and the filtrate evaporated. The residue was chromatographed on a column of silica gel (3:1 hexane-EtOAc) to give 856 mg (75.0%) of colorless syrupy 6, homogeneous by t.l.c. (R_F 0.48); $[\alpha]_D^{20} - 61.7^\circ$ (c 0.12, CHCl₃); ¹H-n.m.r. data (CDCl₃) see Table IV. Calc. for C₂₉H₃₂O₆: mol. wt., 476. Found for 6: m/z 476 [M].

1,2-O-Ethylene- α -D-glucofuranose 3,5,6-triacetate (8). — Compound 6 (754 mg) was dissolved in MeOH (60 mL) containing 10% of formic acid. Palladium on carbon (10%, 2.25 g) was added slowly to the solution. The mixture was stirred at room temperature overnight, filtered, the filtrate evaporated, and the residue recrystallized from methanol to give 1,2-O-ethylene- α -D-glucofuranose (7). Compound 7 (5 mg) was dissolved in 1:1 Ac₂O-pyridine (0.5 mL) and heated for 2 h at 95°. The mixture was evaporated and the residue recrystallized from EtOH to give 6.53 mg (81.0%) of colorless crystalline 8; m.p. 93–95°, $[\alpha]_{D}^{20}$ –40.7° (c 0.11, CHCl₃); ¹H-n.m.r. data (CDCl₃) see Table IV; mass data are described earlier.

1,2-O-Ethylene- α -D-glucopyranose 3,4,6-triacetate (9). — To a suspension of D-glucose (1.0 g) in 2-bromoethanol (18 mL) was added CF₃CO₂H (0.4 mL) and

Proton	6	8	11	12	13
H-1	5.38	5.38	5.43	5.31	5.33
$(J_{1,2})$	(2.11)	(1.79)	(2.14)	(2.10)	(1.71)
H-2	3.92	3.81	3.86	3.91	3.90
$(J_{2,3})$	(~0)	(~0)	(~0)	(~0)	(~0)
H-3	4.04	5.30	4.25	3.883.79	3.82
$(J_{3,4})$	(2.99)	(3.42)	(2.57)	b	(3.85)
H-4	4.55	4.66	4.33-4.28	4.41-4.48	4.59
$(J_{4,5})$	(8.52)	(9.83)	b	b	(8.55)
H-5	3.99	5.16	4.25-4.31	4.28	5.20
$(J_{5,6})$	(5.98)	(5.56)	Ь	(5.98)	(5.13)
H-6	3,94	4.63	4.17	4.09	4.64
$(J_{5.6})$	(5.55)	(2.14)	(5.98)	(5.98)	(2.56)
H-6	3.73	4.15	4.05	4.06	4.19
$(J_{6.6})$	(10.68)	(12.39)	(8.12)	(8.12)	(12.39)
H-7	4.09-4.03(2H)	4.05, 3.73	4.11-4.01(1H)	4.03-3.97(1H)	4.11-3.98(1H)
	3.70-3.66(2H)		3.69(2H)	3.78-3.62(2H)	3.77-3.68(2H)
H-8	3.50(1H)	3.68, 3.54	3.50(1H)	3.61-3.44(1H)	3.52(1H)
-OCH ₂ CH ₂ O-				3.94-3.76(2H)	4.17-4.12(2H)
				3.76-3.65(2H)	3.66-3.56(2H)
-OCH2-	4.81, 4.48				
	(11.54)				
-OCH ₂ -	4.59				
-OCH ₂ -	4.59				
H-2 of THP ring				4.63	
H-6 of THP ring				3.61-3.44	
H-3,4,5 of THP ring				1.80-1.54	
-Ac		2.05			2.07
$-CCH_{3}(5,6)$			1.43, 1.35	1.42, 1.34	
$-C_6H_5$	7.37-7.26				

TABLE IV

¹H-n.m.r. data^a for 1,2-O-ethylene-d-glucofuranose derivatives

^aChemical shifts (δ) and, in parentheses, spacing (Hz). The assignments are based on the data in ref. 21. ^bSignal not resolved.

the mixture was stirred for a week at room temperature. The solvent was evaporated and the thick syrupy residue of 2-O-bromoethyl-D-glucoside was dissolved in 0.12M NaOH-EtOH (1:1, 30 mL) and boiled under reflux for 2 days. The mixture was made neutral with 0.5M H₂SO₄ and filtered. The filtrate was evaporated and the dried residue was acetylated with 1:1 Ac₂O-pyridine (10 mL) for 2 h at 95°. The mixture was evaporated and the residue recrystallized from EtOH to yield colorless crystals of 9; 986 mg (62.2%); m.p. 115–116° [α]_B²⁰ +107.4° (*c* 0.50, CHCl₃); ¹H-n.m.r. data (CDCl₃) for 9, 5.79 (dd, 1 H, H-3, 9.83), 5.06 (dd, 1 H, H-4, 9.83), 5.01 (d, 1 H, H-1, 3.42), 4.29 (dd, 1 H, H-6, 4.27, 12.40), 4.18 (ddd, 1 H, H-5, 1.71, 4.27, 9.83), 4.08 (dd, 1 H, H-6, 1.71, 12.40), 3.98 (dd, 2 H, H-7 or H-8, 11.97), 3.90 (dd, 1 H, H-7 or H-8, 2.57, 11.97), 3.76 (dd, 1 H, H-2, 3.42, 9.83), 3.41 (dd, 1 H, H-7 or H-8, 2.57, 11.97), 2.09 (s, 3 H, Ac), 2.08 (s, 3 H, Ac), and 2.04 (s, 3 H, Ac); mass spectral data already recorded.

1,2-O-Ethylene-5,6-O-isopropylidene- α -D-glucofuranose (11). — To a solution of 1,2-O-ethylene- α -D-glucofuranose (7, 200 mg) in dry acetone (4 mL) was added 2,2-dimethoxypropane (4 mL) and p-toluenesulfonic acid (3 mg). After stirring overnight at room temperature, the solution was made neutral with BaCO₃, the mixture filtered, and the filtrate evaporated. The residue was chromatographed on a column of silica gel (2:1 hexane–EtOAc) and crystallized from MeOH to give 214 mg (89.6%) of colorless crystals of 11; m.p. 128° [α]_D²⁰ +13.3° (c 0.02, CHCl₃); ¹H-n.m.r. data (CDCl₃) see Table IV. Calc. for C₁₁H₁₈O₆: mol. wt., 246. Found for 11: m/z 246 [M].

1,2-O-Ethylene-5,6-O-isopropylidene-3-O-(2-tetrahydropyranyloxyethyl)-α-D-glucofuranose (12) — A mixture of compound 11 (75.7 mg), NaH (43 mg), Bu₄NI (1 mg) and imidazole (1 mg) in dry DMF (3 mL) was stirred for 1 h under nitrogen. 2-Bromoethyl tetrahydropyranyl ether (0.3 mL) was added dropwise with stirring. The mixture was stirred at room temperature overnight and then evaporated. The residue was chromatographed on a column of silica gel (2:1 hexane-EtOAc) to give 102.4 mg (89.0%) of colorless syrupy 12, homogeneous by t.l.c. (R_F 0.59, 1:1 hexane-EtOAc); [α]_D²⁰ -50.5° (c 0.11, CHCl₃); ¹H-n.m.r. data (CDCl₃) see Table IV. Calc. for C₁₈H₃₀O₈: mol. wt., 374. Found for 12: m/z 374 [M].

3-O-(2-Acetoxyethyl)-5,6-di-O-acetyl-1,2-O-ethylene- α -D-glucofuranose (13). — Compound 12 (79.8 mg) was dissolved in 1:1 MeOH–0.8% H₂SO₄ (1 mL) and the solution was stirred overnight at room temperature. The solution was made neutral with BaCO₃, the mixture filtered, and the filtrate evaporated and the residue further acetylated with 1:1 Ac₂O-pyridine (2 mL) for 2 h at 95°. The mixture was evaporated and the residue chromatographed on a column of silica gel (3:1 hexane-EtOAc) to give 76.5 mg (95.3%) of 13 as a slightly yellow syrup, homogeneous by t.l.c. (R_F 0.48, 1:1 hexane-EtOAc); [α]_D²⁰ -31.1° (c 0.24, CHCl₃); ¹H-n.m.r. data (CDCl₃) see Table IV. Calc. for C₁₆H₂₄O₁₀: mol. wt., 376. Found for 13: m/z 317 [M - OAc].

1,2-O-Ethylene-6-O-trityl- α -D-glucofuranose (14). — Compound 7 (150 mg), chlorotriphenylmethane (230 mg) and N,N-dimethylaminopyridine (100 mg) were dissolved in pyridine (8 mL), and the solution was stirred for 5 days at 60°. The mixture was evaporated and the residue chromatographed on a column of silica gel (1:1 hexane–EtOAc) to give 255 mg (78.2%) of colorless syrupy 14, homogeneous by t.l.c. ($R_F 0.46$); $[\alpha]_D^{20} - 36.0^\circ$ (c 0.08, CHCl₃); ¹H-n.m.r. data (CDCl₃) see Table V. Calc. for C₂₇H₂₈O₆; mol. wt. 448. Found for 14: m/z 448 [M].

3,5-Di-O-benzyl-1,2-O-ethylene-6-O-trityl- α -D-glucofuranose (15). — Compound 14 (160 mg) was benzylated with NaH (160 mg), benzyl bromide (0.4 mL) and Bu₄NI (2 mg) in the same manner as already described. The residue was chromatographed on a column of silica gel (3:1 hexane-EtOAc) to give 217.5 mg (96.6%) of 15 as a slightly pale-yellow syrup, homogeneous by t.l.c. (R_F 0.40); $[\alpha]_D^{20}$ -41.7° (c 0.22, CHCl₃); ¹H-n.m.r. data (CDCl₃) see Table V. Calc. for C₄₁H₄₀O₆: mol. wt., 628. Found for 15: m/z 385 [M - Tr].

3,5-Di-O-benzyl-1,2-O-ethylene- α -D-glucofuranose (16). — To a solution of

¹ H-N.M.R. DATA ^a FOR 1,2- <i>O</i> -	ETHYLENE-D-GLUCOFURANO	JSE DERIVATIVES			
Proton	14	15	16	17	18
H-1	5.41	5.30	5.39	5.37	5.37
$(J_{1,2})$	(2.10)	(2.13)	(2.13)	(2.03)	(2.44)
H-2	3.80	<u>3</u> .90	3.94	3.91	3.80
$(J_{2,3})$	(0)	(0~)	(0~)	(0~)	(0~)
H-3	4.24	4.04	4.04	4.02	5.29
$(J_{3,4})$	(3.14)	(3.42)	(3.85)	(2.88)	(3.42)
H-4	4.34	4.66	4.58	4.65	4.71
$(J_{4,5})$	(7.05)	(0.40)	(9.12)	(8.24)	(6.77)
H-5	4.07	3.86	3.93-3.87	3.96-3.82	5.11
$(J_{\varsigma,n})$	(5.56)	(5.13)	q	<i>q</i>	(5.37)
H-6	3.41	3.53	3.90-3.77	3.96-3.82	3.85-3.75
$(J_{\epsilon,\epsilon})$	(3.63)	(2.14)	q	4	(2.44)
H-6	3.32	3.42	3.90-3.77	3.96-3.82	3.85-3.75
$(J_{\epsilon,\epsilon})$	(6.83)	(10.26)	9	4	q
H-7	4.02-3.91(1H)	4.09-3.98(1H)	4.11-4.02(1H)	4.09-4.01(1H)	4.05(1H)
	3.62(2H)	3.71-3.63(2H)	3.71-3.67(2H)	3.79–3.61(2H)	3.73-3.62(2H)
H-8	3.50(1H)	3.47(1H)	3.49(1H)	3.57-3.46(1H)	3.53(1H)
-0CH,CH,O-	~	•		3.98-3.81(2H)	4.31(1H), 4.21(1H)
4				3.79-3.57(2H)	3.85-3.75(2H)
$-OCH_2-$		4.74, 4.48	4.61, 4.48	4.86, 4.47	
		(11.54)	(11.54)	(11.54)	
-0CH ₂ -		4.57, 4.38		4.57, 4.49	
		(11.54)		(11.54)	
H-2 of THP ring				4.64	
H-6 of THP ring				3.57-3.46	
H-3,4,5 of THP ring				1.89-1.42	
-Ac					2.04
-C ₆ H ₅	7.49(6H)	7.53-7.49(6H)			
$-C_6H_5$	7.33-7.21(9H)	7.34-7.17(19H)	7.32-7.23	7.27-7.24	
				······································	Normal and the second s

"Chemical shifts (8) and, in parentheses, spacing (Hz). The assignments are based on the data in ref. 21. "Signal not resolved.

TABLE V

compound **15** (210.0 mg) in MeOH (3 mL) was added 10% HCl–MeOH (0.3 mL). The solution was stirred for 1 h at room temperature, made neutral with BaCO₃, evaporated, and chromatographed on a column of silica gel (1:1 hexane–EtOAc) to give 107.7 mg (83.7%) of slightly pale-yellow syrupy **16**, homogeneous by t.l.c. $(R_{\rm F} 0.35)$; $[\alpha]_{\rm D}^{20}$ -64.3° (c 0.47, CHCl₃); ¹H-n.m.r. data (CDCl₃) see Table V. Calc. for C₂₂H₂₆O₆: mol. wt., 386. Found for **16**: *m/z* 386 [M].

3,5-Di-O-benzyl-1,2-O-ethylene-6-O-(2-tetrahydropyranyloxyethyl)- α -Dglucofuranose (17). — A mixture of compound 16 (23.3 mg), NaH (8.5 mg) and Bu₄NI (1 mg) in dry DMF (1 mL) was stirred for 30 min under nitrogen. 2-Bromoethyl tetrahydropyranyl ether (0.06 mL) was added dropwise with stirring and the mixture was stirred for 5 days at room temperature. The solvent was evaporated and the residue chromatographed on a column of silica gel (1:1 hexane–EtOAc) to give 27.7 mg (89.3%) of 17 as a slightly pale-yellow syrup, homogeneous by t.l.c. (R_F 0.23); [α]_D²⁰ -50° (c 0.03, CHCl₃); ¹H-n.m.r. ata (CDCl₃) see Table V. Calc. for c₂₀H₃₈O₈: mol. wt., 514. Found for 17: m/z 429 [M – THP].

6-O-(2-Acetoxyethyl)-3,5-di-O-acetyl-1,2-O-ethylene-α-D-glucofuranose (18). — Debenzylation of compound 17 (25.6 mg) was accomplished as described for compound 8. After acetylation of the residue with 1:1 Ac₂O-pyridine (0.5 mL) for 2 h at 95°, the solvent was evaporated and the residue chromatographed on a column of silica gel (1:1 hexane-EtOAc) to give 15.5 mg (82.8%) of 18 as a colorless syrup, homogeneous by t.l.c. (R_F 0.31); $[\alpha]_D^{20}$ -23.5° (c 0.17, CHCl₃); ¹Hn.m.r. data (CDCl₃) see Table V. Calc. for C₁₆H₂₄O₁₀: mol. wt., 376. Found for 18: m/z 317 [M - OAc].

Methyl 3,5,6-tri-O-benzyl-2-O-(2-tetrahydropyranyloxyethoxy)ethyl- β -D-glucofuranose (19). — A mixture of methyl 3,5,6-tri-O-benzyl- β -D-glucofuranoside¹⁹ (667.3 mg), NaH (200 mg), Bu₄NI (5 mg) and imidazole (5 mg) in dry DMF (13 mL) was stirred for 2 h at room temperature under nitrogen. 2-Chloroethoxyethyl tetrahydropyranyl ether¹² (1.3 mL) was introduced dropwise with stirring, and stirring was continued at room temperature for 5 days. The solvent was evaporated and the residue was chromatographed on a column of silica gel (3:1 hexane–EtOAc) to give 857.1 mg (93.7%) of colorless syrupy 19, homogeneous by t.1.c. ($R_{\rm F}$ 0.57, 1:1 hexane–EtOAc); $[\alpha]_{\rm D}^{20}$ –24.7° (c 0.46, CHCl₃); ¹H-n.m.r. data sce Table III. Calc. for C₃₇H₄₈O₉: mol. wt., 636. Found for 19: m/z 429 [M – OMe – THP – Bn].

2-O-(2-Acetoxyethoxy)ethyl-D-glucitol 1,3,4,5,6-pentaacetate (20). — Compound 19 (20.7 mg) was debenzylated with 10% Pd/C (48 mg) in 10% methanolic formic acid (1.1 mL) as described for compound 8. The residue was reduced with NaBH₄ and acetylated with 1:1 Ac₂O-pyridine (0.5 mL) as described for compound 3. The resulting material was subjected to g.l.c. as already described. The retention time of 20 relative to hexa-O-acetyl-glucitol was 8.67. Mass-spectral data are already described.

G.l.c.-m.s. analysis of acid hydrolyzates of 1,2-O-ethylene- α -D-glucofuranose (7). — 1,2-O-Ethylene- α -D-glucofuranose (5 mg) was hydrolyzed with 90% formic

acid (1.5 mL) for 4 h at 100°. The solution was evaporated, whereupon the residue was dissolved in $2M \operatorname{CF_3CO_2H}(1 \text{ mL})$ and heated for 4 h at 100°. The acidic solution was evaporated to dryness with repeated (three times) addition of water (1 mL). Reduction (NaBH₄, 5 mg) and acetylation (1:1 Ac₂O-pyridine, 0.5 mL) of the residue as described for compound **3** was followed by analysis by g.l.c.-m.s. on a column (0.2 cm × 1 m) packed with 2% EGSS-X on Chromosorb W AW DMCS (60–80 mesh) at 205°, at a pressure of helium of 1.2 kg/cm². The mass spectra were recorded at an ionizing potential of 70 eV, an ionizing current of 50 μ A, and an ion-source temperature of 220°. The data are given in Table I.

G.l.c.-m.s. analysis of 2,3-di-O- and 2,6-di-O-(2-hydroxyethyl)-glucitol peracetates (**21** and **22**). — 1,2-O-Ethylene-3-O-hydroxyethyl- α -D-glucofuranose (5 mg) and 1,2-O-ethylene-6-O-hydroxyethyl- α -D-glucofuranose (5 mg) were successively hydrolyzed, reduced, and acetylated by the procedure already described. G.l.c.-m.s. was performed on the same column under the same conditions. The retention times of **21** and **22** relative to hexa-O-acetyl-D-glucitol were 10.58 and 8.12, respectively. The prominent fragments in m.s. of **21** and **22** are listed in Table II.

REFERENCES

- 1 O. RAMMÄS AND O. SAMUELSON, Svensk. Papperstidn, 71 (1968) 674-678, 829-831.
- 2 J. W. MOURITS, H. G. MERKUS, AND L. DE GALAN, Anal. Chem., 48 (1976) 1557-1562.
- 3 C. Y. SUM, K. MAI, S. T. KAM, C. M. LAI, A. YACOBI, AND T. F. KALHORN, J. Chromatogr., 254 (1983) 187-194.
- 4 S. UKAI, A. HONDA, K. NAGAI, T. KIHO, AND T. TSUCHIYA, J. Chromatogr., 435 (1988) 374-379.
- 5 H. C. SRIVASTAVA, K. V. RAMALINGAM, AND A. S. CHAUDHARI, Indian J. Chem., 9 (1971) 1081-1082.
- 6 H. C. SRIVASTAVA, K. V. RAMALINGAM, AND A. S. CHAUDHARI, Indian J. Chem., 9 (1971) 1083-1084.
- 7 B. H. THEWLIS, Stärke, 27 (1975) 336-338.
- 8 W. E. PARHAM AND E. L. ANDERSON, J. Am. Chem. Soc., 70 (1948) 4187-4189.
- 9 A. N. DEBELDER AND B. NORRMAN, Carbohydr. Res., 10 (1969) 391-394.
- 10 E. J. ROBERTS AND S. P. ROWLAND, Can. J. Chem., 47 (1969) 1592-1595.
- 11 H. C. SRIVASTAVA, K. V. RAMALINGAM, N. M. DOSHI, AND A. S. CHAUDHARI, *Carbohydr. Res.*, 12 (1970) 23–28.
- 12 E. P. KYBA, R. C. HELGESON, K. MADAN, G. W. GOKEL, T. L. TARNOWSKI, S. S. MOORE, AND D. J. CRAM, J. Am. Chem. Soc., 99 (1977) 2564–2571.
- 13 J. LÖNNGREN AND S. SVENSSON, Adv. Carbohydr. Chem. Biochem., 29 (1974) 41-106.
- 14 H. RAUVALA, J. FINNE, T. KRUSIUS, J. KÄRKKÄINEN, AND J. JÄNEFELT, Adv. Carbohydr. Chem. Biochem., 38 (1981) 389–416.
- 15 H. BJÖRNDAL, B. LINDBERG, AND S. SVENSSON, Carbohydr. Res., 5 (1967) 433-440.
- 16 B. LINDBERG, U. LINDQUIST, AND O. STENBERG, Carbohydr. Res., 170 (1987) 207-214.
- 17 S. HAKOMORI, J. Biochem. (Tokyo), 55 (1964) 205-208.
- 18 K. BIEMANN, D. C. DEJONGH, AND H. K. SCHNOES, J. Am. Chem. Soc., 85 (1963) 1763-1771.
- 19 F. WEYGAND AND O. TRAUTH, Chem. Ber., 85 (1952) 57-60.
- 20 O. TH, SCHMIDT, Methods Carbohydr. Chem., I, 198-201.
- 21 D. S. LEE, A. S. PERLIN, Carbohydr. Res., 125 (1984) 265-282.