Tetrahedron Letters 54 (2013) 3543-3545

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Oxidative cross-coupling between secondary phosphine selenides and thiols or dithiols: a facile regio-selective synthesis of thioselenophosphinic S-esters and S-diesters

Nina K. Gusarova^a, Pavel A. Volkov^a, Nina I. Ivanova^a, Yurii V. Gatilov^b, Boris A. Trofimov^{a,*}

^a A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation ^b N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentjev Ave. 9, 630090 Novosibirsk, Russian Federation

ARTICLE INFO

Article history: Received 14 March 2013 Revised 15 April 2013 Accepted 26 April 2013 Available online 3 May 2013

Keywords: Secondary phosphine selenides Thiols Dithiols Thioselenophosphinic S-esters Thioselenophosphinic S-diesters

ABSTRACT

Reactions between secondary phosphine selenides and a wide range of aliphatic, aromatic and heteroaromatic thiols or dithiols proceed in the Et_3N/CCl_4 oxidative system under mild conditions (rt 1–3 h) to give thioselenophosphinic S-esters or S-diesters in 80–92% isolated yields.

© 2013 Elsevier Ltd. All rights reserved.

Chalcogenophosphinic thioesters have attracted considerable attention due to their applications as ligands for the design of metal-complexes,¹ drug intermediates,^{1a-c,2} flame retardants,³ *RAFT*agents for controlled styrene polymerization⁴ and building blocks in organic and elementoorganic synthesis.⁵

Thioselenophosphinic S-esters are of particular interest as promising selenium sources for the fabrication of selenium-containing nanoparticles. However, the syntheses of these S-esters are very limited⁶ and have difficulties associated with the typical initial reagents such as phosphorus chlorides and organometallic compounds, which exhibit their own problems, including moisture- and air-sensitivity and issues in handling.

For example, Murai et al. published^{6d} a method for the preparation of chiral thioselenophosphinic *S*-esters which utilized phenyldichlorophosphane, elemental selenium, Grignard reagents and alkali metal thiolates (Scheme 1).

Esters of thioselenophosphinic acids have also been synthesized by alkylation of their ammonium^{6d,7} or alkali metal⁸ salts. However, the main products of these reactions were thioselenophosphinic Se-esters (Scheme 2).

The goal of this work was to elaborate a novel, general and simple approach to the regio-selective synthesis of thioselenophosphinic *S*-esters and *S*-diesters.

PhPCl₂ + Se
$$\xrightarrow{RMgX}$$
 R Se R'SLi R Se
Ph^CCl Ph^CSR'
61-91% 79-99%
R = *i*-Pr, *t*-Bu; R' = *n*-Bu, Ph

Scheme 1. Synthesis of thioselenophosphinic S-esters from phenyldichlorophosphane.

$$\begin{array}{c} R_{1}^{1} \underset{R}{\overset{Se}{}} \stackrel{R}{\overset{F}{}} \stackrel{Se}{\overset{F}{}} \stackrel{H}{\overset{F}{}} + R^{2}\text{-Hal} \xrightarrow{\qquad R^{1}} \underset{R}{\overset{F}{}} \stackrel{Se}{\overset{F}{}} \stackrel{R^{2}}{\overset{F}{}} \stackrel{R^{2}}{\overset{F}{}} \stackrel{R^{2}}{\overset{F}{}} \stackrel{Se}{\overset{F}} \stackrel{R^{2}}{\overset{F}{}} \stackrel{R^{2}}{\overset{F}{}} \stackrel{R^{2}}{\overset{F}{}} \stackrel{R^{2}}{\overset{F}{}} \stackrel{R^{2}}{\overset{F}{}} \stackrel{R^{2}}{\overset{F}{}} \stackrel{R^{2}}{\overset{F}{}} \stackrel{R^{2}}{\overset{F}{}} \stackrel{R^{2}}{\overset{F}} \stackrel{R^{2}}{\overset{F}} \stackrel{R^{2}}{\overset{F}{}} \stackrel{R^{2}}{\overset{F}} \stackrel{R^{2}} \stackrel{R^{2}} \stackrel{R^{2}}{\overset{F}} \stackrel{R^{2}} \stackrel{R} \stackrel{R^{2}} \stackrel{R} \stackrel$$

Scheme 2. Regio-selective reaction of thioselenophosphinates with organic halides.

Scheme 3. Synthesis of secondary phosphine selenides.

^{*} Corresponding author. Tel.: +7 395242 14 11; fax: +7 395241 93 46. *E-mail address:* boris_trofimov@irioch.irk.ru (B.A. Trofimov).

^{0040-4039/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.04.117

Table 1

Synthesis of thioselenophosphinic S-esters 10a-i^a

$$\begin{array}{c} R^{1} & Se \\ R^{1} & H \\ R^{1} & H \\ \mathbf{3.9} \end{array} \xrightarrow{t} \left[Et_{3}N/CCI_{4}, r.t. \\ - [Et_{3}NH]CI \\ - [Et_{3}NH]CI \\ - CHCI_{3} \end{array} \xrightarrow{R^{1}} \left[R^{2} \\ R^{1} \\ R^{2} \\ R^{2}$$

Entry	$R^{1}_{2}P(Se)H(1 \text{ mmol})$	R^1	R ² SH (1 mmol)	R^2	Time (h)	S-ester	Yield ^b (%)
1	1	$Ph(CH_2)_2$	3	Et	2	10a	91
2	1	$Ph(CH_2)_2$	4	<i>n</i> -hept	2	10b	90
				Me			
3	1	$Ph(CH_2)_2$	5	Et	2	10c	80
4			C	Me	1	104	02
4	1	$PII(CH_2)_2$	6	PII	1	100	92
5	2	$PhCH(Me)CH_2$	6	Ph	1	10e	85
6	1	Ph(CH ₂) ₂	7		3	10f	90
7	1	Ph(CH ₂) ₂	8	N	2	10g	88
8	1	$Ph(CH_2)_2$	9	S N	1.5	10h	90
9	2	PhCH(Me)CH ₂	9	N S	2	10i	87

^a All experiments were carried out under an argon atmosphere at rt for 1–3 h; Et₃N (1 mmol) and CCl₄ (4 mL) were used.

^b Isolated yield.

Scheme 4. Synthesis of thioselenophosphinic S-diesters 12a,b.

Scheme 5. A possible mechanism for the formation of thioselenophosphinic Sesters 10a-i.

To achieve this goal we have studied, for the first time, the oxidative transition metal free cross-coupling between secondary phosphine selenides and various thiols or dithiols in a Et_3N/CCl_4 system.

The starting secondary phosphine selenides were easily prepared via a halogen-free method from red phosphorus, styrenes and elemental selenium (Scheme 3).⁹

The experiments showed¹⁰ that bis(2-phenylalkyl)phosphine selenides **1** and **2** react with aliphatic **3–5**, aromatic **6** and hetero-aromatic **7–9** thiols in the Et_3N/CCl_4 system under mild conditions

(20-22 °C, 1-3 h) to afford thioselenophosphinic *S*-esters **10a**-**i** in 80–92% isolated yields (Table 1).

The generality and preparative efficiency of the developed method was demonstrated by the synthesis of *S*-diesters **12a** and **b** in 88–90% yield from phosphine selenides **1,2** and dithiol **11** in a 2:1 molar ratio under the same conditions¹¹ (Scheme 4).

It should be noted that triethylammonium chloride and CHCl₃ are also formed in the studied reactions (Table 1; Scheme 4). The experimental results obtained are in good agreement with the reaction mechanism (Scheme 5), which we proposed earlier for the cross-coupling of secondary phosphine chalcogenides with primary and secondary amines,¹² alcohols and phenols.¹³ The deprotonation of secondary phosphine selenides 1,2 by triethylamine produces P,Se-ambident selenophosphinite-anion A (step i). The latter participates in a one-electron transfer with CCl₄ (oxidizer) to give secondary phosphine selenide free radical **B** and anion radical C (step ii). The interaction of species B and C affords phosphinoselenoic chloride **D** and the ⁻CCl₃ carbanion (step iii). Protonation of the latter by a triethylammonium cation leads to regeneration of triethylamine and formation of chloroform (step iv). The reaction between chloride **D** and the thiol in the presence of triethylamine results in the final product, a thioselenophosphinic S-ester, and triethylammonium chloride (step v).

The structures of thioselenophosphinic *S*-esters **10a–i** and *S*-diesters **12a,b** were established using multinuclear ¹H, ¹³C, ³¹P and ⁷⁷Se NMR spectroscopy, as well as X-ray diffraction analysis (for compound **10h**) (Fig. 1).¹⁴

Figure 1. ORTEP diagram of the molecular structure of **10h**. Selected bond lengths [Å] and angles [deg]: P = Se 2.0963(16), P–S 2.127(2), P–C 1.804(5) and 1.815(5) A; Se–P–S 108.60(7), Se–P–C 113.8(2) and 116.1(2), S–P–C 105.2(2) and 106.4(2), C–P–C 106.0(2).

In summary, the oxidative transition metal free cross-coupling between secondary phosphine selenides and thiols or dithiols in the Et_3N/CCl_4 system at room temperature for 1–3 h affords regioselectively thioselenophosphinic *S*-esters and *S*-diesters in high yields. The compounds synthesized are novel representatives of rare derivatives of thioselenophosphinic acids, which can be used as single-source precursors of nanomaterials, *RAFT*-agents for pseudo-living radical polymerization and as potential drug candidates.

Acknowledgments

This work was supported by leading scientific schools of the President of the Russian Federation (Grant NSh-1550.2012.3) and the Russian Fund for Basic Research (Grant No. 12-03-31631).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013.04. 117.

References and notes

- (a) Gogoi, P. K.; Phukan, D. P.; Das, D. K. J. Asian Chem. **1999**, *11*, 1291; (b) van Zyl, W. E.; de Luzuriaga, J. M. L.; Fackler, J. P. Jr.; Staples, R. J. Can. J. Chem. **2001**, 79, 896; (c) Larionov, S. V.; Kokina, T. E.; Glinskaya, L. A.; Klevtsova, R. F. Russ. J. Coord. Chem. **2001**, *27*, 493; (d) Vorobyev, D. Yu.; Plyusnin, V. F.; Ivanov, Yu. V.; Grivin, V. P.; Larionov, S. V.; Lemmetyinenet, H. Chem. Phys. **2003**, 289, 359; (e) Chauhan, H. P. S.; Singh, U. P. Appl. Organomet. Chem. **2006**, *20*, 404; (f) Chauhan, H. P. S.; Singh, U. P.; Shaik, N. M.; Bhatiya, S. Main Group Chem. **2007**, *30*, 279; (g) Bhattacharyya, A.; Ghanty, T. K.; Mohapatra, P. K.; Manchanda, V. K. Inorg. Chem. **2011**, *50*, 3913.
- (a) Agabekyan, R. S.; Pegova, Z. K.; Syundyukova, V. K.; Vil'chevskaya, V. D.; Godovikov, N. N. *Metalloorg. Khim.* **1990**, 3, 275; (b) Agabekyan, R. S.; Pegova, Z.

K.; Sjundjukova, V. K.; Vil'chevskaya, V. D.; Godovikov, N. N. Chem. Abstr. 1990, 113, 24162; (c) Renard, P.-Y.; Schwebel, H.; Vayron, P.; Josien, L; Valleix, A.; Mioskowski, C. Chem. Eur. J. 2002, 8, 2910; (d) Tikhonova, O. V.; Skvortsov, V. S.; Raevskii, O. A. Biochem. (Moscow) Suppl. Ser. B: Biomed. Chem. 2010, 4, 342.

- Hahn, K.; Kriha, O.; Bellin, I.; Spies, P.; Fuchs, S.; Deglmann, P.; Massonne, K.; Denecke, H.; Fleckenstein, C.; Janssens, G.; Hofmann, M. U.S. Patent 0196052, 2011; *Chem. Abstr.* 2011, *155*, 242131.
- (a) Gigmes, D.; Bertin, D.; Marque, S.; Guerret, O.; Tordo, P. *Tetrahedron Lett.* 2003, 44, 1227; (b) Hodgson, J. L.; Green, K. A.; Coote, M. L. *Org. Lett.* 2005, 7, 4581.
- (a) Au-Yeung, T.-L.; Chan, K.-Y.; Chan, W.-K.; Haynes, R. K.; Williams, I. D.; Yeung, L. L. Tetrahedron Lett. **2001**, 42, 453; (b) Kuo, L. Y.; Blum, A. P.; Sabat, M. Inorg. Chem. **2005**, 44, 5537; (c) Carta, P.; Puljic, N.; Robert, C.; Dhimane, A.-L.; Fensterbank, L.; Lacôte, E.; Malacria, M. Org. Lett. **2007**, 9, 1061; (d) Piekutowska, M.; Pakulski, Z. Carbohydr. Res. **2008**, 343, 785; (e) Sato, A.; Yorimitsu, H.; Oshima, K. Tetrahedron **2009**, 65, 1553; (f) Hoshi, N.; Kashiwabara, T.; Tanaka, M. Tetrahedron Lett. **2012**, 53, 2078.
- (a) Bayandina, E. V.; Nuretdinov, I. A. Zh. Obshch. Khim. Chem. Abstr. 1976, 46, 288; (b) Bayandina, E. V.; Nuretdinov, I. A.; Nurmukhamedova, L. V. Chem. Abstr. 1976, 84, 164945; (c) Murai, T.; Kimura, T.; Miwa, A.; Kurachi, D.; Yoshikawa, K. S. Chem. Lett. 2002, 914; (d) Bayandina, E. V.; Nuretdinov, I. A.; Nurmukhamedova, L. V. Chem. Abstr. 1979, 90, 137923; (e) Kimura, T.; Murai, T. J. Org. Chem. 2005, 70, 952.
- 7. Kimura, T.; Murai, T. Chem. Commun. 2005, 32, 4077.
- Artem'ev, A. V.; Gusarova, N. K.; Bagryanskaya, I. Y.; Verkhoturova, S. I.; Doronina, E. P.; Sidorkin, V. F.; Trofimov, B. A. Eur. J. Inorg. Chem. 2013, 415.
- (a) Sukhov, B. G.; Gusarova, N. K.; Ivanova, N. I.; Bogdanova, M. V.; Kazheva, O. N.; Alexandrov, G. G.; D'yachenko, O. A.; Sinegovskaya, L. M.; Malysheva, S. F.; Trofimov, B. A. J. Struct. Chem. 2005, 46, 1066 (Engl. Transl.); (b) Malysheva, S. F.; Artem'ev, A. V.; Gusarova, N. K.; Timokhin, B. V.; Tatarinova, A. A.; Trofimov, B. A. Russ. J. Gen. Chem. 2009, 79, 1617.
- 10. General procedure for the synthesis of thioselenophosphinic S-esters **10a-i**. A mixture of secondary phosphine selenide **1** or **2** (1.0 mmol) and Et₅N (1.0 mmol) in CCl₄ (4 mL) was stirred at 20–22 °C for 10 min. Thiols 3–9 (1.0 mmol) were added, and the reaction mixture was stirred at 20–22 °C for 1–3 h. The solvent was removed under reduced pressure, and 1,4-dioxane (3 mL) was added. The precipitated white solid (triethylammonium chloride) was removed by filtration, and the 1,4-dioxane was evaporated. Hexane (2 mL) was added to the residue obtained, and the resulting mixture was allowed to stand for 12 h at 0–1 °C. The solution was removed from the precipitate by decantation, the solvent was evaporated and the residue was dried under vacuum to give thioesters **10a-c**, **e**, **i**. In the cases of thioesters **10d,f-h** the residue (after 1,4-dioxane was evaporated under vacuum) was washed with hexane (3 × 1 mL) and dried under vacuum to afford **10d, f-h**.
- 11. General procedure for the synthesis of thioselenophosphinic S-diesters **12a** and **b**. A mixture of secondary phosphine selenide **1** or **2** (1.0 mmol) and Et₃N (1.0 mmol) in CCl₄ (4 mL) was stirred at 20–22 °C for 10 min. The dithiol **11** (0.5 mmol) was added, and the mixture was stirred at 20–22 °C for 1-1.5 h. The solvent was removed under reduced pressure and 1,4-dioxane (3 mL) was added. The precipitated white solid (triethylammonium chloride) was removed by filtration, and the 1,4-dioxane was evaporated. The residue was reprecipitated from CHCl₃ (1 mL) into hexane (10 mL) to give **12a** and **b**.
- Gusarova, N. K.; Volkov, P. A.; Ivanova, N. I.; Larina, L. I.; Trofimov, B. A. Tetrahedron Lett. 2011, 52, 2367.
- Gusarova, N. K.; Volkov, P. A.; Ivanova, N. I.; Larina, L. I.; Trofimov, B. A. Synthesis 2011, 3723.
- 14. X-ray crystallographic data for compound **10h**. C₂₃H₂₂NPS₂Se, M_r = 486.493, *R*-factor is 0.0446 (2609 *l* > 2 σ (*l*)), monoclinic, space group *P*2₁/*n*, *a* = 5.4327(6), *b* = 38.793(4), *c* = 10.8139(11) Å, β = 90.369(3)°, *V* = 2279.0(4) Å³, *Z* = 4, D_{calcd} = 1.418 g cm⁻³. CCDC 927802. X-ray analysis was carried out using a Bruker APEX-II CCD diffractometer at 200 K using graphite-monochromated Mo-K_{\alpha} radiation (λ = 0.71073 A). Absorption corrections were applied using the sababs program. The crystal structure was solved by direct methods followed with Fourier synthesis using shEIXS-97.¹⁵ All nonhydrogen atoms were refined using anisotropic full-matrix approximation using shEIXL-97.¹⁵ The coordinates of the hydrogen atoms were calculated from geometrical positions.
- Sheldrick, G. M. SHELXS-97 and SHELXL-97; Programs for the Solution and Refinement of Crystal Structures: University of Göttingen, Göttingen, 1997.