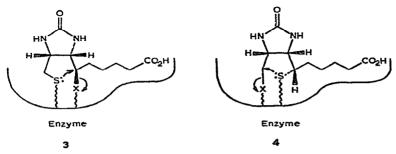

Preliminary communication

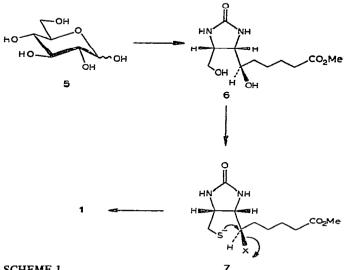
A biomimetic synthesis of (+)-biotin from D-glucose


TOMOYA OGAWA^{*}, TAKASHI KAWANO[#], and MASANAO MATSUI The Institute of Physical and Chemical Research, Wako-shi, Saitama, 351 (Japan) (Received April 29th, 1977; accepted for publication, May 14th, 1977)

Recent studies¹ on the biosynthesis of (+)-biotin (1) showed that (+)-desthiobiotin (2) is a precursor in the biosynthesis and is transformed by Aspergillus niger into

(+)-biotin in a stereospecific manner through an oxidative reaction. A plausible intermediate for this oxidative transformation by enzymes might be visualized as either 3 or 4.

Even though several total syntheses² of biotin have been reported, including recent chiral syntheses from D-mannose³ and from L-cysteine⁴, to the best of the authors' knowledge, none of these syntheses employed a biomimetic transformation such as those shown in 3 or 4.


*To whom enquiries should be made.

#Research fellow from the Laboratory of Fine Chemical Research, Teikoku Chemical Industry, Co., Itami-shi, Hyogo, Japan.

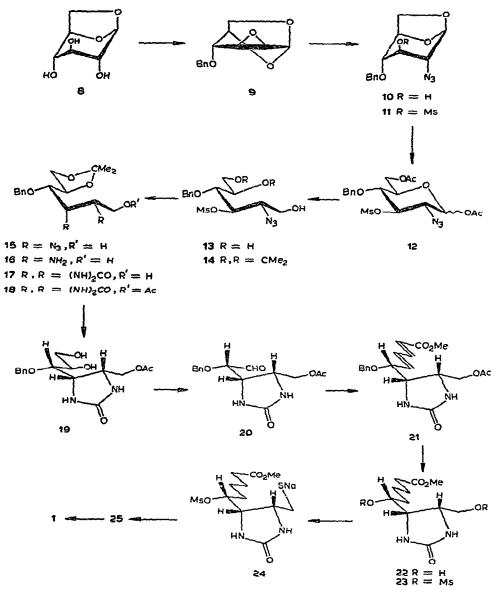
PRELIMINARY COMMUNICATION

We now report a total synthesis of (+)-biotin from D-elucose (5) which involves in the biomimetic sequence the stereospecific ring-closure to a tetrahydrothiophene at the last stage of the synthesis, as shown in Scheme 1.

For the successful, stereospecific transformation of 5 into the key intermediate 13, use of the conformationally rigid⁵ 1.6-anhydro- β -D-glucose (8) as the starting material

SCHEME 1

was essential. Diaxial epoxide opening of 1,6:2,3-dianhydro-4-O-benzyl-\$\beta-D-mannopyran $oside^{6}$ (9), which had already been prepared from 8 in 4 steps, with sodium azide and ammonium chloride in 4:1 2-methoxyethanol-water for 22 h at 120° gave, in 85% yield, 1,6-anhydro-2-azido-4-O-benzyl-2-deoxy-β-D-glucopyranoside (10), m. p. 101-103°, $[\alpha]_{D}^{20} - 7.2^{\circ} \text{ (ethanol)}^*$.


The alteration of the steric environment at C-3 of methanesulfonate 11, m.p. $58-59^{\circ}$, $\left[\alpha\right]_{D}^{20}$ +66.2° (chloroform), which was obtained from 10 by the conventional method, is necessary in order to achieve smooth SN2 displacement⁷ of the sulfonate group by azide anion, as the attacking azide ion has two 1,2-interactions with axial substituents at C-2 and C-4 in 11. For this purpose, a flexible, acyclic structure, such as 14, seemed to be more promising than the conformationally rigid, 1,6-anhydro structure.

Thus, acetolysis of 11 in 4% BF3 etherate-acetic anhydride for 3 h at 20° gave, in 95% yield, an anomeric mixture of diacetates 12 in the ratio of $\alpha:\beta = 8:3$; ¹H-n.m.r. (CDCl₃): δ 6.35 (d, J 4 Hz, H-1 of α anomer) and 5.57 (d, J 9 Hz, H-1 of β anomer). On solvolysis with 1% HCl in methanol for 16 h at 20° and subsequent reduction with NaBH4

^{*}All compounds for which [a]D is recorded gave satisfactory elemental analyses, and i.r. and 'Hn.m.r. data.

in the presence of boric acid in ethanol at $0-5^{\circ}$, 12 gave the oily triol 13, $[\alpha]_D^{20} + 37.3^{\circ}$ (chloroform), in 45% yield from 11.

Introduction of the azide group could be achieved by initial treatment of the triol 13 with 2,2-dimethoxypropane in HCONMe₂ in the presence of a catalytic amount of TsOH \cdot H₂O for 15 h at 20°, to give the oily monoisopropylidene derivative 14, $[\alpha]_D^{20}$ +31.1° (chloroform); ¹H-n.m.r. (CDCl₃): δ 1.35 and 1.44 (two 3-proton s, C-Me₂) and

SCHEME 2

2.98 (s, 3 H, SO₂Me). Reaction of 14 with LiN₃ in HCONMe₂ for 40 h at 80° gave oily diazide 15, $[\alpha]_D^{20}$ +11.2°, in 52% yield from 13.

Selective hydrogenation⁸ of the azide groups of 15 in the presence of the benzyl ether group could be effected by Lindler catalyst in ethanol, to give, in quantitative yield, diamine 16, m.p. 116–117°, $[\alpha]_D^{20}$ +45.7° (chloroform), which, by reaction with COCl₂– CCl₄ in aq. Na₂CO₃ at 0–5°, gave ureide 17, m.p. 116–116.5°, $[\alpha]_D^{20}$ -66.2° (chloroform), in 87% yield from 15 (see Scheme 2).

Selective transformation of the dioxolane moiety of 17 into the C₅ side-chain moiety of the key intermediate 21 could be achieved in 6 steps (in 40% yield): (1) acetylation (Ac₂O-py) of 17 to monoacetate 18, m.p. 74-76°, $[\alpha]_D^{20}$ -87.1° (chloroform); (2) deisopropylidenation of 18 in 80% aq. AcOH for 3.5 h at 70° to diol 19, $[\alpha]_D^{20}$ -66.1°; (3) NaIO₄ oxidation of 19 in 50% aq. EtOH for 1 h at 20° to aldehyde 20, which was (4) immediately submitted to the Wittig reaction with [3-(carbomethoxy)-2-propen-1ylidene]triphenylphosphorane^{3,9} in CH₂Cl₂ at 20° to give ester 21, $[\alpha]_D^{20} + 4.0°$ (chloroform); (5) hydrogenation of 21 over 10% Pd-C in MeOH; and (6) subsequent deacetylation by MeONa in MeOH, to give diol ester 22, m.p. 194-195°, $[\alpha]_D^{20} -20.3°$ (MeOH).

Final transformation, which involves formation of the tetrahydrothiophene ring by inversion of the stereochemistry at C-4, could be achieved in 30% yield by two successive reactions: (1) methanesulfonylation of 22 with 15 equivalents of MsCl in pyridinedichloroethane for 15 h at -10° , and (2), without isolation* of 23, treatment with a large excess of Na₂S in HCONMe₂ for 3 h at 100°, to afford 24 and thence (+)-biotin methyl ester (25), m.p. 165–166°, $[\alpha]_D^{20}$ +82.0° (methanol), which was identical in all respects with an authentic sample of 25, and was further converted into (+)-biotin (1), m.p. 232–233°, $[\alpha]_D^{20}$ +91.0° (0.1M NaOH).

ACKNOWLEDGMENTS

We thank Dr. H. Homma and his staff for the elemental analyses, and Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the n.m.r. spectra.

REFERENCES

 S. Okumura, R. Tsugawa, T. Tsunada, and S. Motozuki, Nippon Nogei Nagaku Kaishi, 36 (1962) 599-613; M. A. Eisenberg, J. Bacteriol., 86 (1963) 673-680; S. Iwahara, M. Kikuchi, T. Tochikura, and K. Ogata, Agric. Biol. Chem., 30 (1966) 304-306; M. A. Eisenberg, R. Maeda, and C. Star, Fed. Proc. Fed. Am. Soc. Exp. Biol., 27 (1968) 762; H. C. Li, D. A. McCormic, and L. D. Wright, J. Biol. Chem., 243 (1968) 6442-6445; R. J. Parry and M. G. Kunitani, J. Am. Chem. Soc., 98 (1976) 4024-4026.

^{*}Even though the reaction product could be seen as a single spot in t.l.c. (silica gel), attempted isolation of 23 was not successful, most probably due to its instability during processing.

PRELIMINARY COMMUNICATION

- 2 S. A. Harris, D. E. Wolf, R. Mozingo, G. E. Arth, R. C. Anderson, N. R. Easton, and K. Folkers, J. Am. Chem. Soc., 67 (1945) 2096-2100; L. C. Cheny and J. R. Piening, *ibid.*, 67 (1945) 2252-2255; B. R. Baker, M. V. Querry, W. L. McEwen, S. Bernstein, S. R. Safir, L. Dorfman, and Y. Subbarow, J. Org. Chem., 12 (1947) 186-198; C. A. Grob and H. von Sprecher, Helv. Chim. Acta, 35 (1952) 885-901; M. Gerecke, J. P. Zimmermann, and W. Aschwanden, Helv. Chim. Acta, 53 (1970) 991-999; S. Bory, M. J. Luche, B. Moreau, S. Lavielle, and A. Marquet, Tetrahedron Lett., (1975) 827-828; P. N. Confalone, G. Pizzolato, and M. R. Uskokovic, Helv. Chim. Acta, 59 (1976) 1005-1008.
- 3 H. Ohrui and S. Emoto, Tetrahedron Lett., (1975) 2765-2766.
- 4 P. N. Confalone, G. Pizzolato, E. G. Baggiolini, D. Lollar, and M. R. Uskokovic, J. Am. Chem. Soc., 97 (1975) 5936-5938.
- 5 M. Černý, T. Trnka, P. Beran, and J. Pacák, Collect. Czech. Chem. Commun., 34 (1969) 3377-3382.
- 6 M. Černý, O. Julakova, and J. Pacák, Collect. Czech. Chem. Commun., 39 (1974) 1391-1396.
- 7 M. L. Wolfrom, Y. L. Hung, P. Chakravarty, G. U. Yuen, and D. Horton, J. Org. Chem., 31 (1966) 2227-2232.
- 8 E. J. Corey, K. C. Nicolaou, R. D. Balanson, and Y. Machida, Synthesis, (1975) 590-591.
- 9 E. Buchta and F. Andree, Chem. Ber., 92 (1959) 3111-3116.