Preliminary communication

Stereospecific synthesis of 1,2-cis-glycosides of 2-amino sugars

Nicolay K. Kochetkov, Evgeny M. Klimov, Nelly N. Malysheva and Alexey V. Demchenko

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow B-334 (Russian Federation)

(Received July 28th, 1992; accepted January 13th, 1993)

The highly stereoselective synthesis of a 1,2-*cis*-glycosidic linkage is difficult and a satisfactory solution remains a problem in the synthetic chemistry of carbohydrates. Recently, we proposed a new approach to specific 1,2-*cis*-glycosylation, by using 1,2-*trans*-glycosyl thiocyanates with a non-participating substituent at C-2 as the glycosylation reagent¹⁻³.

We report now the application of this approach to the stereospecific synthesis of 1,2-cis-glycosides of 2-amino sugars, which can also be regarded as a difficult problem [cf. ref. 4]. The corresponding 1,2-trans-2-azido-2-deoxyglycosyl thiocyanate was used as glycosyl donor with subsequent conversion of the azido into an amino group. The stereospecific synthesis of 1,2-cis-glycosaminides is demonstrated by the synthesis of derivatives of α -D-glucosaminyl-D-glucoses with different types of glycosidic linkages.

3,4,6-Tri-O-acetyl-2-azido-2-deoxy- β -D-glucopyranosyl thiocyanate (1) has been obtained by treatment of the known 3,4,6-tri-O-acetyl-2-azido-2-deoxy- α -D-glucopyranosyl bromide⁵ (5.6 mmol) with KSCN (16.9 mmol, dried in vacuo at 110°C) in the presence of 18-crown-6 (1.7 mmol, dried in vacuo at 20°C) in acetone (6.5 h, TLC control, 20°C). After evaporation, addition of benzene, filtration through SiO₂, evaporation, and chromatography (SiO₂, benzene–ether gradient), 1, mp 124.5–125.5°C (from ether–hexane), $[\alpha]_D^{29} - 84.4^\circ$ (c 1.15, CHCl₃), was isolated in 71% yield *; ν_{max} 2162 cm⁻¹ (SCN), 2116 cm⁻¹ (N₃); ¹H NMR data: δ 5.19 (dd, 1 H, $J_{3,4}$ 9.5 Hz, H-3), 5.09 (dd, 1 H, $J_{4,5}$ 9.5 Hz, H-4), 4.55 (d, 1 H, $J_{1,2}$ 9.5 Hz, H-1), 4.16–4.30 (m, 2 H, $J_{5,6a}$ 5, $J_{5,6b}$ 2.5, $J_{6a,6b}$ 10 Hz, H-6a,6b), 3.86 (d, 1 H, $J_{2,3}$ 9.5 Hz,

^{*} All crystalline compounds have the correct elemental analysis.

Scheme 1.

H-2), 3.77–3.84 (m, 1 H, H-5), 2.06, 2.13, and 2.16 (3 s, 9 H, OAc); ¹³C NMR data: δ 169.43–170.52 (C=O), 107.30 (SCN), 83.28 (C-1), 77.23 (C-5), 74.13 (C-3), 67.62 (C-4), 63.74 (C-2), 61.54 (C-6), and 20.59 (OAc).

As glycosyl acceptors, the corresponding trityl ethers of acetylated methyl D-glucopyranosides, 6-*O*-trityl⁶ (2), 3-*O*-trityl (3), and 2-*O*-trityl (4), have been explored. Compounds 3 and 4 were synthesised by tritylation of the corresponding hydroxy derivatives, as follows⁷. Methyl 2,4,6-tri-*O*-acetyl- β -D-glucopyranoside⁸ (2.8 mmol) reacts with TrClO₄ (4.3 mmol) in dry CH₂Cl₂ containing collidine (5.7 mmol, 15 h, 20°C in the dark). After addition of CHCl₃, washing with water, evaporation, and chromatography (SiO₂, hexane–ether gradient), 3, mp 174–175°C, $[\alpha]_D^{27} - 12^\circ$ (*c* 1.21, CHCl₃), was obtained in 94% yield and with the expected ¹H NMR spectrum. Similarly, methyl 3,4,6-tri-*O*-acetyl- β -D-glucopyranoside⁹ (0.62 mmol) and TrClO₄ (0.94 mmol) gave 4 (98%), with the expected ¹H NMR spectrum, as a syrup, $[\alpha]_D^{27} + 16.3^\circ$ (*c* 1.46, CHCl₃).

The glycosylation reaction was carried out as described earlier^{2,3}. The trityl derivative (2–4, 1 mmol), glucosyl thiocyanate 1 (1.1–1.5 mmol), and TrClO₄ (0.1 mmol) in dry CH₂Cl₂ were kept at 20°C. After 10–12 h (TLC control), the reaction was quenched by a few drops of pyridine, the mixture was diluted with CHCl₃, washed with water, evaporated, and acetylated (Ac₂O–Py) *, and, after chromatography on SiO₂, the disaccharide derivative was isolated. The results are presented in Table I.

Special attempts were made to detect the formation of isomeric disaccharides with 1,2-*trans*-linkages by NMR spectroscopy of *the whole* disaccharide fraction: the signals characteristic of 1,2-*trans*-glycosides at 100–102 ppm in the ¹³C NMR spectra were absent and probably these isomers are not formed at all. Hence, the

^{*} Partial detritylation of the acceptor takes place during the reaction (cf. refs. 2 and 3) and acetylation of the reaction mixture simplifies the isolation of the disaccharide derivatives formed.

TABLE I

Run	Accep- tor	Donor/ acceptor	Disaccharide derivative ^a	$\begin{matrix} [\alpha]_{\rm D}^{28} \\ (c, \text{CHCl}_3) \end{matrix}$	Yield (%)
1	2	1.1/1	$\begin{array}{c} CH_2OAc \\ OAc \\ AcO \\ N_3 \end{array} \xrightarrow{OCH_2} OCH_2 \\ OAc \\ OAc \end{array} $ (5)	+ 162° (1.02)	81
2	3	1.4/1	A_{cO} N_3 CH_2OAc CH_2OAc OMe (6)	+ 42° (1.02)	73
3	4	1.5/1	CH ₂ OAc AcO N ₃ CH ₂ OAc AcO N ₃ (7)	+ 98° (1.05)	72

The glycosylation of 2, 3, and 4 by glycosyl thiocyanate 1

^a For NMR data, see Table II.

new glycosylation reaction proceeds stereospecifically for azido sugars, as has been shown for synthesis of 2'-O-benzyl derivatives^{2,3}. For an explanation of the complete stereospecificity, which is unusual for 1,2-cis-glycosylation, a concerted

TABLE II

INMIX data for disaccilarities 5-7	NMR	data f	or d	lisacc	haride	s 5–7
------------------------------------	-----	--------	------	--------	--------	-------

Compound	¹ H NMR	¹³ C NMR ^a						
	$H-1(J_{1,2}, Hz)$	C-1	C-2	C-3	C-4	C-5	C-6	
	$\overline{\text{H-1'}(J_{1',2'}\text{Hz})}$	<u>C-1′</u>	<u>C-2'</u>	C-3'	C-4'	C-5'	$\overline{C}-6'$	
5	4.97 (4.0)	97.78	71.02	70.14	69.36	67.92	61.97	
	5.00 (3.5)	96.65	61.05	70.39	68.58	67.92	66.87	
6	4.31 (8.0)	101.72	72.28	80,99	69.07	71.93	62.12	
	5.04 (3.5)	98.97	62.00	70.76	67.84	68.78	61.09	
7	4.50 (8.0)	103.87	75.52	73.18	68.98	71.71	61.95	
	5.54 (3.5)	97.02	60.85	70.08	68.29	68.08	61.57	

^a Additional signals are present in all spectra: 169.4–170.0 (C=O), 55.55 (α-OMe), 56.91–57.38 (β-OMe), and 20.65–21.05 (OAc).

push-pull process, which ensures $S_N 2$ substitution at the anomeric centre with inversion of configuration, was proposed¹. The azido group substituent at C-2 of the donor serves, as expected⁴, as a good non-participating group and, in addition, does not interact with the thiocyanate group. Moreover, the glycosyl thiocyanates containing a neighbouring azido group have no tendency for isomerisation into unreactive glycosyl isothiocyanate derivatives, which is a rather perceptible side reaction during glycosylation by 2-*O*-benzylated glycosyl thiocyanates^{2.3}.

The data presented show that glycosylation proceeds independently of the locaion of the trityl group in the acceptor, since the 6-, 3-, and 2-O-trityl derivatives gave similar results.

The disaccharides synthesised can be easily converted into the corresponding 2-acetamido-2-deoxy derivatives by conventional procedures. For example, the disaccharide **6** (77 mg), after deacetylation (0.1 mL 1 M NaOMe in MeOH, 17 h, 20°C), neutralisation up to pH 6.5, hydrogenation in 4:1 MeOH–EtOAc on 10% Pd–C (50 mg, 3 h, 40°C), and *N*-acetylation in 50% aq MeOH by Ac₂O (1 mL, 16 h, 20°C), gave rise after chromatography to methyl 3-*O*-(2-acetamido-2-deoxy- α -D-glucopyranosyl)- β -D-glucopyranoside (**8**, 88%), [α]_D²⁹ + 89.4° (*c* 1, MeOH); ¹H NMR data: δ 5.09 (d, 1 H, $J_{1',2'}$ 4 Hz, H-1'), and 4.10 (d, 1 H, $J_{1,2}$ 8 Hz, H-1); ¹³C NMR data; δ 105.37 (C-1), 99.63 (C-1'), 85.61 (C-3), 77.77 (C-5), 73.85 (C-2,5'), 73.25 (C-3'), 72.11 (C-4'), 71.42 (C-4), 62.42 (C-6,6'), 57.41 (OMe), 55.59 (C-2'), and 22.87 (NAc).

In summary, the new glycosylation reaction using a 1,2-*trans*-glycosyl thiocyanate containing a 2-azido group as glycosyl donor opens an efficient route to a highly stereospecific synthesis of 1,2-*cis*-glycosides of 2-amino sugars.

REFERENCES

- 1 N.K. Kochetkov, E.M. Klimov, and N.N. Malysheva, Tetrahedron Lett., 30 (1989) 5459-5462.
- 2 N.K. Kochetkov, E.M. Klimov, N.N. Malysheva, and A.V. Demchenko, *Carbohydr. Res.*, 212 (1991) 77-91.
- 3 N.K. Kochetkov, E.M. Klimov, N.N. Malysheva, and A.V. Demchenko, *Bioorg. Khim.*, 16 (1990) 701-710.
- 4 H. Paulsen, Angew. Chem. Int. Ed. Engl., 21 (1982) 155-173.
- 5 H. Paulsen, A. Wulff, and A.C. Heitman, Liebigs Ann. Chem., (1988) 1073-1078.
- 6 B. Helferich, W. Klein, and W. Schafer, Justus Liebigs Ann. Chem., 44 (1926) 19-26.
- 7 Ya.V. Vosney and N.K. Kochetkov, Carbohydr. Res., 54 (1977) 300-303.
- 8 P.A. Finan and S.D. Warren, J. Chem. Soc., (1962) 3089-3092.
- 9 S. Brennan and P.A. Finan, J. Chem. Soc., C, (1970) 1742-1744.