
The Gold(I)- and Silver(I)-Catalyzed Nicholas Reaction
Carolina Valderas,†,‡ María C. de la Torre,*,‡ Israel Fernańdez,† María Paz Muñoz,‡,§
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†Departamento de Quıḿica Orgańica, Facultad de Quıḿica, Universidad Complutense, 28040-Madrid, Spain
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ABSTRACT: The Au(I) and Ag(I) catalytic Nicholas type reaction has been
developed for oxygen and carbon nucleophiles. This process occurs with high
reaction yields and selectivity, avoiding the main shortcomings of the acid-
promoted standard Nicholas reaction. A catalytic reaction pathway involving
trimetallic complex intermediates is proposed.

The trapping of hexacarbonyldicobalt cluster stabilized
propargylic cations by nucleophiles (the Nicholas

reaction)1 is a powerful and widely used tool in organic
synthesis.2 The strong stabilization provided by the Co cluster
to the carbocation allows the nucleophile to react without the
formation of allene byproducts. This carbocation is generated
by acid treatment of a preformed propargyl−Co2(CO)6
complex. The acid used is usually a Lewis acid, but protic
acids or clays have been successfully used in the carbocation
generation (Scheme 1).3 Modifications have been introduced to

avoid the main shortcomings of the Nicholas reaction, namely
the use of acid media and the instability of propargyl−
Co2(CO)6 at temperatures above −40 °C.4−6

The ability of gold catalysts to promote SN-like reactions
using benzylic alcohols reported by Asensio and his co-workers7

led us to investigate the possibility of using gold catalysts to
promote the Nicholas reaction. It is known that gold is able to
act as a Lewis acid8 as well as an appealing catalyst in C−C and

C−heteroatom bond forming reactions.9 Succeeding in this
endeavor would be of great interest, since the use of acid
conditions in the Nicholas reaction would be precluded. This
would be important, for example, to produce complex organic
architectures using sensitive natural products.10 Reported
herein is the successful attempt to develop a catalytic (gold
or silver),11 room-temperature version of the Nicholas reaction.
Yields and selectivities are considerably higher than those
obtained under standard (Lewis acid promoted) conditions.
Addition of benzyl alcohol to complex 1 was tested with

different gold catalysts, in the presence or in the absence of
silver salts, and at two different temperatures, 0 °C and room
temperature (Scheme 2). Table 1 compiles the results of the
different experiments conducted. Three different products were
isolated in variable amounts in these experiments. Compound 2
is the expected Nicholas-type product, since it is known that
these reactions occurred with allylic rearrangement.12 Com-
pound 3 is the elimination product, and compound 4 arises
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Scheme 1. The Nicholas Reaction

Scheme 2. Reaction of Compound 1 with Au and Ag
Catalysts
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from the addition of water competing with the addition of the
benzyl alcohol.13 As depicted in Table 1, salts of Au(III)
(entries 1 and 2) were ineffective in promoting the addition of
benzylic alcohol. Complex 1 reacts with neutral Ph3PAuCl
(entry 3), but products derived from the incorporation of
benzylic alcohol were not isolated. Instead, elimination product
3 (minor product) and rearranged alcohol 4 were isolated
together with unreacted starting material. The use of Ph3PAuCl
in the presence of AgOTf as cocatalyst produces a substantial
amount (49% isolated yield) of the desired product 2 (entry 4).
Similarly, the mixture Ph3PAuCl/AgSbF6 (entry 5) affords
compound 2 in shorter reaction times (4h vs 12 h) and in
higher yields (57% vs 49%). To rule out Ag(I) as the species
responsible for these reactions (see below), NaBArF was tested
next as cocatalyst for the Au(I) complex (entry 6). Under these
conditions, which allowed a decrease in the catalyst load, 2 was
formed with times and yields comparable to those of the
AgSbF6 experiment.
Even more satisfactory was the reaction of complex 1 with

AgSbF6 in the absence of Au catalysts (entries 7−10). Now,
compound 2 was obtained in 77% isolated yield (entry 7) using
AgSbF6 (5% mol). Increasing the load of AgSbF6 does not
improve either the yields or the reaction times (entries 8 and
9). The use of AgOTf produced compound 2 in lower yields
(entry 10). Product 4, derived from water incorporation, was
obtained in variable amounts in these reactions.13 To discard
the possibility of traces of acid in the catalysts being responsible
for the observed reactivity, the reaction was carried out with
TfOH under standard conditions (entry 11). Elimination
product 3 was obtained as the sole reaction product due to a
fast E1 reaction, as expected.12 This experiment rules out the
possibility of traces of TfOH formed in situ from the AgOTf
catalysts (in the presence or absence of [Au]) being the active
catalysts of the Nicholas reaction. These results could be
extrapolated to the hypothetical role of HSbF6 as promoter of
the reaction when AgSbF6 salt is used.
Finally, the use of NaBArF in the absence of Au(I) was

tested. Compound 2 was isolated in 34% yield after 48 h of
reaction at room temperature (entry 12, Table 1), while the
analogous reaction in the presence of Au(I) takes place in 3 h
under the same conditions, leading to compound 2 isolated in
55% yield.
Having demonstrated the possibility of carrying out a Ag(I)-

and Au(I)-catalyzed Nicholas reaction, other nucleophiles were

studied next (Scheme 3). Both the mixture Ph3PAuCl (5%)/

NaBArF (7.5%) and AgSbF6 (5%) produced excellent yields of

the corresponding adducts 5a,b with primary alcohols (MeOH

and EtOH). Indole and 1,3,5-trimethoxybenzene were also

Table 1. Study of the Reaction of Compound 1 with Different Gold and Silver Catalysts

yield (%)c

entry Au cat. (amt (mol %)) cocat. (amt (mol %)) amt of BnOH (equiv)a time (h)b 2 3 4 1

1 AuCl3 (5) none 1 48 0 0 0 100
2 NaAuCl4·2H2O (5) none 1 48 0 0 0 100
3 Ph3PAuCl (10) none 3 48 0 2 20 66
4 Ph3PAuCl (10) AgOTf (15) 3 12 49 0 0 0
5 Ph3PAuCl (10) AgSbF6 (15) 3 4 57 12 4 0
6 Ph3PAuCl (5) NaBArF (7.5) 3 3 55 9 3 0
7 none AgSbF6 (5) 3 4 77 0 6 0
8 none AgSbF6 (15) 3 4 68 0 4 0
9 none AgSbF6 (10) 3 2 68 0 12 0
10 none AgOTf (15) 3 48 48 0 4 0
11 none HOTf (15) 3 3 0 100 0 0
12 none NaBArF 3 48 34 0 0 49

aThe reactions in entries 3−6 and 9−13 were also carried out with 1 equiv of BnOH. Yields were considerably lower than those reported in the table
using 3 equiv of BnOH. bThe reactions were carried out at room temperature. cIn isolated product.

Scheme 3. Au and Ag Catalytic Nicholas Reaction with
diverse O and C Nucleophiles
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reactive under these reaction conditions, providing good yields
of compounds 6 (derived from the attack of the C3 indole
carbon atom) and 7, respectively. Minor amounts of
elimination and water addition products (3 and 4) were
obtained in some cases. The less reactive 1,2,3-trimethox-
ybenzene and 1,4-dimethoxybenzene were unreactive toward
the addition. Elimination and water addition products in
variable amounts were the reaction products, together with
unreacted starting material. Although Ag(I)-catalyzed reactions
were usually faster and cleaner, no significant differences in
reactivity between both Au(I) and Ag(I) catalytic systems were
found.
However, the differences in reactivity between Au(I) and

Ag(I) were exacerbated when allyltrimethylsilane was reacted
with substrate 1. Now, while gold catalyst was inactive, a 60%
yield of complex 8 was obtained when AgSbF6 (5%) was the
catalyst. While the Co-mediated Hosomi−Sakurai type
cyclization is sensitive to the Lewis acid used,14a the
intramolecular Hosomi−Sakurai reaction in propargylic alco-
hols has been carried out efficiently both in its Co-mediated
version using TMSOTf as promotor and in the absence of Co
using Au(I) catalysts.14b The dramatic difference in the Au(I)
vs Ag(I) reactions observed for complex 8 pointed to a reaction
mechanism different from the classical cationic pathway (see
below).
To demonstrate that the mechanism of the catalyzed reaction

differs from the classical cation formation, the stereochemistry
of the catalyzed process in comparison with the standard
Nicholas reaction was studied next using the alcohol 9 derived
from (R)-(−)-carvone (Scheme 4).15 Whereas benzyl ether 10

was obtained as a 60/40 diastereomeric mixture in the reaction
of the preformed propargyl−Co2(CO)6 complex 11 with
BF3·Et2O at −20 °C for 15 min (standard Nicholas process),
a remarkable increase in the diastereoselection was observed in
the reaction with Ph3PAuCl/NaBArF (80/20 mixture) or in the
analogous transformation using AgSbF6 (91/9 mixture).16 The
stereochemistry of the major reaction product 10 was
spectroscopically determined as the trans diastereoisomer.17

Results in Scheme 4 clearly demonstrate that the role of the
Ag(I) or Au(I) in promoting the reaction is different from the
conventional, Lewis acid promoted Nicholas reaction and that
the role of these catalysts is not to act as mere cation-forming

species. To shed some light on the above processes, aware that
considerable additional experimentation and computation
would be required before fully understanding the mechanism
of this reaction, we first computed the geometry adopted by
complex 11 upon coordination of Co2(CO)8 to the triple bond
of compound 9 (DFT calculations were carried out at the
PCM(CH2Cl2)-M06/def2-SVP//B3LYP/def2-SVP level; see
the Supporting Information). Conformer I (Figure 1), where

the isopropenyl substituent and the metal fragment are placed
in pseudoequatorial and pseudoaxial positions, respectively, is
6.2 kcal/mol more stable than conformer II, having the
isopropenyl group in a pseudoaxial position. This suggests that
the reaction with the gold(I) catalyst occurs mainly from
conformer I.
Thus, the coordination of the gold(I) catalyst to the double

bond of the more stable conformer I may lead to two possible
trimetallic cationic species: i.e. compound I-A, where the
gold(I) moiety and the dicobalt fragment are anti, and
compound I-B, where both metallic moieties are syn (Figure
2a). The species I-A lies 2.2 kcal/mol below I-B. This is in part
due to reduced steric hindrance in this complex and,
additionally, to the presence of a stabilizing intramolecular

Scheme 4. Reactions of Propargylic Alcohol 9 with Different
Catalysts

Figure 1. Possible conformations adopted by compound 11. The
relative free energy (ΔG298, computed at 298 K at the PCM(CH2Cl2)-
M06/def2-SVP//B3LYP/def2-SVP level) is given in kcal/mol.

Figure 2. (a) Possible species formed upon coordination of gold(I) to
conformer I. (b) NBO orbitals involved in the stabilization of species
I-A. Relative free energies (ΔG298, computed at 298 K at the
PCM(CH2Cl2)-M06/def2-SVP//B3LYP/def2-SVP level) are given in
kcal/mol.
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donor−acceptor interaction between the oxygen atom of the
alcohol substituent and the gold(I) fragment (Au···O distance
of 3.14 Å). Indeed, the second-order perturbation theory
(SOPT) of the NBO method locates a two-electron stabilizing
delocalization from the lone pair of this oxygen atom to an
empty p atomic orbital of the transition metal with a significant
associated SOPT energy of ΔE(2) = −5.2 kcal/mol (Figure
2b). Evidently, the stereoselectivity of the reaction would be
defined in the coordination step, which is in agreement with the
observed experimental results.
From species I-A and I-B the OH group should migrate to

Ag(I) or Au(I), forming new allyl−gold(I) or −silver(I)
complexes.18 Nucleophilic addition to carbon atom C3 would
yield the new intermediates 14 and 15, from which the
demetalation occurs, giving the reaction products 10 and
regenerating the catalyst. The moderate to strong increase in
selectivity observed in the catalytic processes respect to the
Lewis acid promoted “classical reaction” is congruent with the
participation of polymetallic intermediates such as 12 and 13
(Scheme 5).
Finally, the necessity of the presence of a double bond allylic

to the alcohol for the reaction above to occur was addressed.
Co2(CO)6 complex 16, lacking this structural feature, was
prepared from 1-phenyl-2-propyn-1-ol (17) and reacted with
benzylic alcohol in the presence of Ph3PAuCl/NaBArF and
AgSbF6 (5% loads of catalyst related to the alcohol 16).
Interestingly, the complex 16 was inert toward the Au(I)
catalyst, and it was recovered unaltered, while the expected
benzyl alcohol adduct 18 was isolated in 63% yield in the
presence of Ag(I) catalyst (Scheme 6).19 Therefore, the
catalytic processes developed through this communication do
not require an allylic rearrangement to occur.
In summary, an Au(I) and Ag(I) catalytic Nicholas type

reaction has been developed. The reaction proceeds smoothly
at room temperature in good to excellent yields, minimizing the
formation of elimination products. Oxygen and carbon
nucleophiles can be used as well. Experimental data obtained
from the reactions of chiral carvone derivatives toward Au(I),
Ag(I), and BF3·Et2O pointed to the involvement of trimetallic
cationic species in these processes, the coordination of the
catalyst to the substrate determining the stereoselectivity. The
findings that the Nicholas reaction can be catalyzed by Au(I)
and Ag(I) catalysts and that these species participate in the
process open the doors to the possibility of effecting
asymmetric chiral catalysis. Efforts to fully develop this new
methodology are now in progress.
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