Tetrahedron Letters 54 (2013) 4073-4075

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of 2,3,4,5-tetra-substituted pyrroles via a base-promoted double Michael reaction of oxime-enoates with nitroolefins

etrahedror

Yusuke Kuroda, Kazuto Imaizumi, Ken-ichi Yamada, Yosuke Yamaoka, Kiyosei Takasu*

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

ARTICLE INFO

Article history: Received 30 April 2013 Revised 18 May 2013 Accepted 23 May 2013 Available online 1 June 2013

Keywords: Pyrroles Oximes Nitroolefins Domino reaction Michael addition

ABSTRACT

A new method of synthesizing 2,3,4,5-tetra-substituted pyrroles from oxime-enoates with nitroolefins is described. This reaction involves a base-promoted double Michael reaction, followed by dehydrative aromatization.

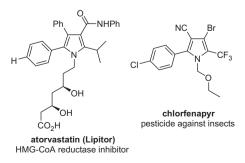
© 2013 Elsevier Ltd. All rights reserved.

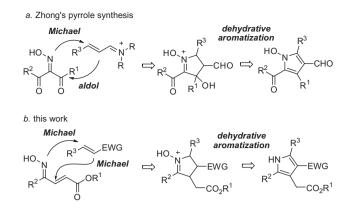
Pyrrole nuclei are important chemical cores found in natural products¹ and pharmaceuticals.² They are useful as reagents, catalysts, and substances in the context of organic synthesis.³ The pyrrole scaffold has received much attention in material science because of its special optical and electronic properties.⁴ Poly-substituted pyrroles play increasingly important roles as promising pharmacophores in medicinal chemistry (Fig. 1).⁵ The broad applicability of substituted pyrroles has inspired significant efforts toward investigating their synthesis.^{6,7} Classical methods, such as the Knorr, Hantzsch, and Parr–Knorr syntheses, are widely recognized as relevant for the preparation of pyrroles; however, a facile and efficient procedure for the synthesis of multi-substituted pyrroles remains highly desirable.

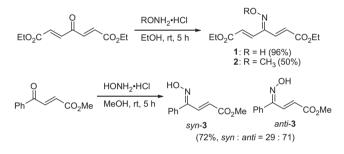
Recently, Zhong and co-workers reported the preparation of poly-substituted *N*-hydroxypyrroles by means of an amine-catalyzed reaction of 1,3-diketo-2-oximes with α,β -unsaturated aldehydes.⁸ The reaction was assumed to begin with a Michael addition of the nitrogen atom of the oximes to the β -position of the unsaturated iminiums that were generated in situ from the aldehydes with an amine catalyst. An intramolecular aldol condensation, followed by aromatization, furnished the *N*-hydroxypyrroles in good yields (Scheme 1a). These compounds could be successfully reduced into the corresponding pyrroles. Inspired by this brilliant work, we envisaged that the reaction of the oximeenoate with α,β -unsaturated carbonyl compounds could afford highly substituted pyrroles by means of a double Michael sequence⁹ (Scheme 1b).

The substrates were prepared from the corresponding 4-oxobutenoates via condensation with a hydroxylamine HCl salt (Scheme 2). The oxime-dienoate **1**, which possessed no geometrical isomers around the C=N bond, was obtained from diethyl (*E*,*E*)-4-oxo-2,5-heptadienedioate in 96% yield. The oxime ether **2** was also prepared from methoxyamine hydrochloride in 50% yield. The asymmetrical oxime **3** was prepared from the commercially available ethyl (*E*)-4-oxo-4-phenylbutenoate¹⁰ in 72% yield as an inseparable mixture of isomers (*syn/anti* = 29:71).

When oxime **1** was treated with β -nitrostyrene (**4a**) in the presence of KOH (1.1 equiv) in EtOH, **1** was fully consumed within 30 min at 0 °C to give the desired tetra-substituted pyrrole **5a** in 56% yield (Table 1, entry 1). The structure of **5a** was elucidated




Figure 1. Biologically active tetra-substituted pyrroles.


^{*} Corresponding author. Tel.: +81 75 753 4553; fax: +81 75 753 4604. *E-mail address:* kay-t@pharm.kyoto-u.ac.jp (K. Takasu).

^{0040-4039/\$ -} see front matter \odot 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.05.100

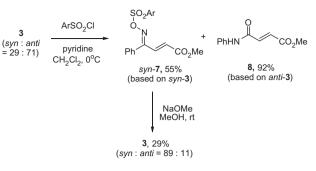
Table 2

Scheme 1. Pyrrole synthesis from oximes: (a) Zhong's Michael/aldol strategy, and (b) our double Michael strategy.

Scheme 2. Synthesis of the substrates 1-3.

Table 1

Synthesis of the pyrroles via a double Michael addition^a


1-3	+ $R^2 \longrightarrow N$ 4a : $R^2 = F$ (1.3 equiv	O ₂	(1.1 equiv)	R^1	IO ₂ O ₂ Et , R ² = Ph h
Entry	Substrate	Base	Solvent	Product	Yield (%)
1 2 3 4 5 6 7 ^b	1 1 1 1 2 3 [°]	KOH NaOH NaOEt Na2CO3 DBU NaOH NaOMe	EtOH EtOH EtOH EtOH EtOH EtOH MeOH	5a 5a 5a 5a 5a 5a 6a	56 73 74 0 0 0 18

 a Conditions: 1–3 (0.2 mmol), 4a (1.3 equiv), base (1.1 equiv), solvent (1.0 mL), 0 °C, 30 min.

^b 2.0 equiv of **4a** was used.

^c A mixture of the isomers (*syn:anti* = 29:71) was used.

by ¹H and ¹³C NMR spectroscopy, and the regiochemistries of the substituents were fully assigned according to HMBC. The NaOH base afforded **5a** in 73% yield (entry 2). The use of NaOEt as a base suppressed the decomposition of **1** and **4a**, and the yield of **5a** was improved to 74% (entry 3).¹¹ Alcohols were clearly crucial as the solvents. No desired product was obtained in DMSO or acetonitrile. In the presence of the weaker bases, such as Na₂CO₃ or DBU, the reaction did not proceed, even when the reaction time was elongated (entries 4 and 5). Interestingly, no reaction occurred from oxime ether **2** (entry 6). These results indicated that deprotonation of the hydroxyl group of **1** drove the promotion of the first Michael addition to nitrostyrene **4a**. Thus, the nucleophilicity of the nitro-

Scheme 3. Preparation of syn-3. Ar = $3,5-(CF_3)_2C_6H_3$.

Reaction of ${\bf 1}$ with a variety of nitroolefins ${\bf 4b}{\bf -g}$ to give the highly substituted pyrroles $^{\rm a}$

Entry	Nitroolefin 4 (R ²)	Product	Yield (%)
1	4b $({}^{p}BrC_{6}H_{4})$	5b	60
2	4c $({}^{p}CF_{3}C_{6}H_{4})$	5c	55
3	4d (p MeOC ₆ H ₄)	5d	61
4	4e (${}^{o}MeC_{6}H_{4}$)	5e	58
5	4f (Cyclohexyl)	5f	59
6	4g (Pentyl)	5g	66

 $^{\rm a}$ Conditions: 1 (0.2 mmol), 4 (1.3 equiv), NaOMe (1.1 equiv), MeOH (1.0 mL), 0 °C, 30 min.

gen atom of **1** was enhanced under the strongly basic conditions. The reaction of the asymmetrical oxime **3** (*syn:anti* = 29:71) with **4a** was carried out in the presence of NaOMe in MeOH to yield pyrrole **6a** in 18% yield (entry 7). In the reaction, *anti*-**3** was recovered (17%) but no *syn*-isomer was detected.

The above results (Table 1, entry 7) indicated an interesting stereochemical outcome in the reactions of the *syn/anti*-oximes; that is, the geometry around the nitrogen lone pair of **3** was important for the formation of the pyrrole. This result is consistent with the proposed mechanism that the oximes can act as N-selective nucleophiles in a double Michael reaction. The mixture of geometrical isomers of **3** was difficult to separate; therefore, the preparation of each isomer was assessed through chemical transformations (Scheme 3). Sulfonylation of a mixture of 3 was carried out using 3,5-bis(trifluoromethyl)benzenesulfonyl chloride at 0 °C to yield the oxime sulfonate syn-7 as a pure geometrical isomer, along with amide 8. In the process, only anti-3 spontaneously underwent a Beckman rearrangement after sulfonylation at this temperature due to the higher electron-donating properties of the phenyl group of the anti-7 relative to the enoate moiety of the syn-7. The syn-3 was obtained by treatment of syn-7 with NaOMe, although the overall yield was unsatisfactory. Unfortunately, a small amount of syn-3 was isomerized into anti-3 during silica gel chromatography purification. No isomerization was observed under the conditions used for the pyrrole synthesis (NaOMe in MeOH at 0 °C).

Anti-**3**, which was obtained in the above reaction (Table 1, entry 7) as a pure stereoisomer, did not react under the conditions described above, and *anti*-**3** was recovered in 61% yield. By contrast, the *syn*-enriched **3** (*anti:syn* = 89:11) afforded pyrrole **6a** in 53% yield. The results clearly indicated that the geometry of the nitrogen lone pair of **3** was important for the formation of the pyrrole. These results were consistent with the proposed mechanism, in which the oximes acted as *N*-selective nucleophiles⁸ in a double Michael reaction.

Finally, we examined the pyrrole synthesis of oxime **1** via reaction with various nitroolefins (Table 2). The nitoroolefins **4b–e**, which featured an electron-withdrawing or -donating aryl group, were good substrates and afforded the pyrroles **5b–e**, respectively, in a reaction with **1** (entries 1–4). Good yields were achieved with the nitroolefins **4f** and **4g**, which included alkyl group substituents at the β positions (entries 5 and 6). By contrast, no formation of the desired pyrrole was observed in the reaction with α , β -unsaturated esters or nitriles instead of nitroolefins.

In summary, we describe a facile synthesis of the tetra-substituted pyrroles from oxime-enoates and nitroolefins in the presence of a strong base. The reaction sequence involved a double Michael addition and a dehydrative aromatization. The oxime-enoates, in particular, acted as *N*-selective nucleophiles in the initial Michael addition. The new strategy should have broad applications to the synthesis of biologically important heterocyclic compounds and organic materials.

Acknowledgments

This work was supported by Grants-in Aid for Scientific Research and Platform for Drug Design, Discovery and Development from MEXT, Japan, and the Takeda Science Foundation.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013.05. 100.

References and notes

- (a) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J.-F. Chem. Rev. 2008, 108, 264–287; (b) Walsh, C. T.; Garneau-Tsodikova, S.; Howard-Jones, A. R. Nat. Prod. Rep. 2006, 23, 517–531; (c) Fürstner, A. Angew. Chem., Int. Ed. 2003, 42, 3582–3603.
- (a) Hall, A.; Atkinson, S.; Brown, S. H.; Chessell, I. P.; Chowdhury, A.; Giblin, G. M. P.; Goldsmith, P.; Healy, M. P.; Jandu, K. S.; Johnson, M. R.; Michel, A. D.;

Naylor, A.; Sweeting, J. A. Bioorg. Med. Chem. Lett. 2007, 17, 1200–1205; (b) Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213–7256.

- (a) Cafeo, G.; De Rosa, M.; Kohnke, F. H.; Meri, P.; Soriente, A.; Luca, V. Tetrahedron Lett. 2008, 49, 153–155; (b) Raheem, I. T.; Thiara, P. S.; Jacobsen, E. N. Org. Lett. 2008, 10, 1577–1580; (c) Reddy, R. P.; Ravisekhara, P.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 10312–10313.
- (a) Guernion, N. J. L.; Hayes, W. Curr. Org. Chem. 2004, 8, 637–651; (b) Liu, D.; Pu, S.; Wang, R. Org. Lett. 2013, 15, 980–983; (c) Kim, S.-U.; Liu, Y.; Nash, K. M.; Zweier, J. L.; Rocjenbauer, A.; Villamena, F. A. J. Am. Chem. Soc. 2010, 132, 17157–17173; (d) Nishinaga, T.; Tateno, M.; Fujii, M.; Fujita, W.; Takase, M.; Iyoda, M. Org. Lett. 2010, 12, 5374–5377.
- (a) Jendralla, H.; Baader, E.; Bartmann, W.; Beck, G.; Bergmann, A.; Granzer, E.; Kerekjarto, B.; Kesseler, K.; Krause, R.; Schubert, W.; Wess, G. J. Med. Chem. **1990**, *33*, 61; (b) Rosowsky, A.; Forsch, R. A.; Maran, R. G. J. Med. Chem. **1991**, *34*, 463; (c) Barrero, A. F.; Sanchez, J. F.; Oltra, J. E.; Teva, D.; Ferrol, R. R.; Elmerabet, J.; Del Moral, R. G.; Lucena, M. A.; O'Valle, F. *Eur. J. Med. Chem.* **1994**, *29*, 773.
- Recent reviews of the synthesis of highly substituted pyrroles; (a) Schmuck, C.; Rupprecht, D. Synthesis 2007, 3095–3110; (b) Ono, N. Heterocycles 2008, 75, 243–284.
- Selected recent examples of highly substituted pyrrole syntheses: (a) Yoshida, M.; Sugimura, C. *Tetrahedron Lett.* **2013**, *54*, 2082–2084; (b) Suresh, R.; Muthusubramanian, S.; Nagaraja, M.; Manickam, G. *Tetrahedron Lett.* **2013**, *54*, 1779–1784; (c) Ngwerume, S.; Lewis, W.; Camp, J. E. J. Org. Chem. **2013**, *78*, 920–934; (d) Michlik, S.; Kempe, R. *Nat. Chem.* **2013**, *5*, 140–144; (e) Lian, Y.; Huber, T.; Hesp, K. D.; Bergman, R. G.; Ellman, J. A. Angew. Chem., Int. Ed. **2013**, *52*, 629–633; (f) Zhang, M.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. **2013**, *52*, 597–601; (g) lida, K.; Miura, T.; Ando, J.; Saito, S. Org. Lett. **2013**, *15*, 1436– 1439.
- Tan, B.; Shi, Z.; Chua, P.-J.; Li, Y.; Zhong, G. Angew. Chem., Int. Ed. 2009, 48, 758– 761.
- Examples for double Michael addition; (a) Ihara, M. Chem. Pharm. Bull. 2006, 54, 765–774; (b) Takasu, K.; Nishida, N.; Ihara, M. Tetrahedron Lett. 2003, 44, 7429– 7432; (c) Hagiwara, H. J. Synth. Org. Chem. Jpn. 1992, 50, 713–725.
- 10. Marchionni, C.; Vogel, P. Helv. Chim. Acta 2001, 84, 431-472.
- 11. General procedure for the preparation of pyrrole: To a stirred solution of **1** (0.20 mmol) and **4** (0.26 mmol) in EtOH (1.0 mL) was added NaOEt (0.22 mmol) at 0 °C. After stirring for 30 min, the resulting mixture was diluted with CHCl₃ and quenched with saturated aqueous NH₄Cl. The aqueous phase was extracted with CHCl₃ three times. The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel chromatography (hexane/EtOAc = 4:1) to afford the desired product **5**.