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The synthesis of both enantiomers of lactobacillic acid and mycolic acid analogues.
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Abstract
(11R, 125)-Lactobacillic acid (1) has been prepared ¢ither from D-mannitol by asymmetric cyclopropanation or from cis-
cyclopropane-1, 2-dimethanol by enzymatic desymmetrisation. The syntheses of (115 12R)-lactobacillic acid (2) and (1R, 25) 1-
(3’-methoxycarbonylpropyl)-2-octadecylcyclopropane (26) and related analogues (27 and 28) have also been achieved.
© 1999 Elsevier Science Ltd. Al rights reserved.
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The cyclopropane ring can be found in a range of naturally occurring compounds including those present in
bacterial fatty acids. In 1950, Hofmann and Lucas reported the identification of a new cyclopropane fatty acid
as a result of studies on the relation between biotin and fatty acids.” Subsequent investigation of Lactobacillus
arabinosus and Lactobacillus casei gave an acid of composition CysHssO, >* Further studies established
structure (1) with a cis-cyclopropane ring at the C,;-C,, position;’ the absolute configuration has been assigned
as 11R,128, (1), by comparison with related cyclopropyl ketones® and this is reported to have been confirmed.’
Suprisingly, there appears to be no synthesis of (1) as a single enantiomer. We now describe two routes to (1),
each involving a common intermediate (6), as well as routes to the enantiomer (2) and longer chain analogues.

HOL( Me(CHy) H
Me(CH3) Hw(dﬂﬂ

1) 2

Wittig reaction of the acetonide (3), derived from D-mannitol,® with n-heptyltriphenyl phosphonium
bromide and n-BuLi gave the cis-alkene (4). Cyclopropanation using a modified Simmons-Smith reaction, in
which co-ordination of the zinc carbenoid to the neighbouring oxygen atom of the isopropylidene ring of (4)
delivers the methylene group to the bottom (1re-2si) face of the alkene,>' gave (5)'' Deprotection of the
isopropylidene ring of (5) with HC] - MeOH followed by oxidative cleavage of the the glycol using aqueous
sodium (meta) periodate gave (1R, 25)-(6) ([a}p™ + 23.6).
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In the second route, the aldehyde (6) was prepared from the mono-ester (8) ([a]o® —17.8), derived by
enzyme catalysed desymmetrisation of cis-cyclopropane-1,2-dimethanol (7) using 2,2,2-trifluoroethyl butyrate
as solvent.'” Oxidation of (8) followed by a Wittig reaction led to (9), which was hydrolysed to the alcohol.
The double bond was hydrogenated, with di-imide generated in situ,' before oxidation to the aldehyde (6).

The specific rotation of (6) was not measured in this instance.
o)

HO @ Me(CHz)z’lL H  (i)gaye MeCHR— 0 " )98%
’%( T81% ;7 (iii)70% ws ©
(1 m o
(8) TOMCHIYT @) ()%
@ CF;(HzOCO(CHz)zCHg/ pig Iver esterase () POC, CHy Ly Gi) B PhyP*(CHz)CH, -BuOK,

(iv) K2CO3/ MeOH (v) NoHy, H;0, NalOy, CH;00,H, CuSOy, i-PrOH

Reaction of (6) with the phosphorane derived from 9-tetrahydropyranyloxynon-1-
yltriphenylphosphonium bromide led to a mixture of the alkenes (10) (11%) and (11) (33%):-
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Selective double bond reduction was achieved in both cases by treatment of (10) and (11) with di-imide,
as above,” to yield the saturated analogues (12) and (13), respectively, there was no evidence of
hydrogenolysis of the cyclopropane rings. Tetrahydropyranyl deprotection of (12) by refluxing for 1.5 h with
aqueous-methanolic p-toluenesulphonic acid, gave (13) (80%). Oxidation of (13) with potassium permanganate
and cetrimide, in acetonitrile and water, led to (11R, 12S)-lactobacillic acid (1)'*'* (62% after conversion into
methyl ester).
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(i)NoH4.H0, NalDy, CuSOy, i-PrOH, CH3CO-H, 57 0dii) KMnO,, cetrimde, CH3CN, H20 (2:1)

(115, 12R)-Lactobacillic acid was also synthesised from the aldehyde (3), via the Z-alkene (15) (57%).
Cyclopropanation, as above, gave (16)'® (87%) which, after deprotection of the isopropylidene ring and
oxidative cleavage, gave the formyl cyclopropane (17)."”
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A Wittig reaction of the aldehyde (17) gave the alkene (18) (83%). Selective reduction of the double
bond by di-imide," followed by deprotection of the tetrahydropyranyl ether and oxidation of the alcohol, using
PDC in dichloromethane, gave (115, 12R)-lactobacillic acid (2) (76%)."®

Long chain 2-alkyl-3-hydroxy “mycolic™ acids are major components in the cell walls of Mycobacterium
tuberculosis and they incorporate cis cyclopropane rings of unknown chirality.'> We describe syntheses of
optically pure cyclopropane fatty acids that may be used to probe the chirality of the cyclopropane rings in
mycolic acids. Reaction of (3) with nonadecyltriphenylphosphonium bromide (19) and #-BuLi in THF at ~78
%C gave the Z-alkene (20) (77%). Selective cyclopropanation led to the cyclopropane (21),%° which afforded
the formyl cyclopropane (22), using standard transformations.
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Reaction of (22) with appropriate acid or ester phosphoranes, and necessary bases, yielded the alkenes
(23) (72%), (24) (86%) and (25) (57%) which were saturated, using in situ generated di-imide, to give the
ester (26) [ap’* + 34.7 (74%) and acids which, after esterification, with DOWEX H" in refluxing methanol,
afforded the esters (27) [a]p™ + 7.1 and (28) [a]p> + 1.6.
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(i) for (23) (712%) R=Me.n=0=(5)=(23)

(ii) for (24) (86%) (V). W for@7N  n=0=(26)
i) for @8 57%) K- hn=2=(2)=24) (V). Wfor(@8)  n=2-@7
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() PhaP=CHCOsMe, MeOH, (ii) BrPh3P+(CHp)3C0» H:. NaHMDS, THF, -78 0C (iif) BrPh3P*(CH)4CO2H.
NaHMDS, THF,-78 0C (iv) NoH4. HpO, NalO4, CuSOy, i-PrOH. CHRCO2H, 57 0C, (v) DOWEX H*, MeOH, reflux.
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