Tetrahedron: Asymmetry 25 (2014) 1031-1037

Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

8-Amino-5,6,7,8-tetrahydroquinolines as ligands in iridium(III) catalysts for the reduction of aryl ketones by asymmetric transfer hydrogenation (ATH)

Daniele Zerla^a, Giorgio Facchetti^a, Marco Fusè^a, Michela Pellizzoni^a, Carlo Castellano^b, Edoardo Cesarotti^a, Raffaella Gandolfi^a, Isabella Rimoldi^{a,*}

^a Dipartimento di Scienze Farmaceutiche, Sez. Chimica Generale e Organica 'A. Marchesini', Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy ^b Dipartimento di Chimica, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy

ARTICLE INFO

Article history: Received 20 May 2014 Accepted 6 June 2014

ABSTRACT

Aqua iridium(III) complexes with 8-amino-5,6,7,8-tetrahydroquinolines CAMPY L1 and its derivatives as chiral ligands proved to be very efficient catalysts for the reduction of a wide range of prochiral aryl ketones, revealing a variety of behaviours in terms of reaction rate and stereoselectivity. As standard substrates, differently substituted acetophenones were studied and good enantioselectivity (86% ee) was achieved in the reduction of 1-(o-tolyl)ethan-1-one 6. Particularly interesting was the ATH reaction in the case of β -amino keto esters, precursors of β -lactams and azetidinones. The best results were obtained with $[Cp*Ir(H_2O)(L1)]SO_4$ affording the corresponding diastereometric alcohols in an (*R*,*S*)-configuration with an excellent 99% ee in the reduction of 2-(benzamido methyl)-3-oxo-3-(4-(trifluoromethyl)phenyl) propanoate 12.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most significant applications of asymmetric transfer hydrogenation (ATH) is the reduction of different substituted aryl ketones. Over the last decade, many approaches have been reported and many types of catalysts were used especially when the metal was ruthenium(II).^{1–4} Our research group developed optically active ruthenium(II) catalysts based on complexes between diphosphines and a well-known chiral diamine DPEN, or a new chiral diamine CAMPY, with good results.^{5,6} Recently, the possibility of using iridium complexes has been demonstrated as a valid alternative to the use of classical ruthenium systems.^{7–17} In particular Carreira et al. reported that chiral aqua iridium(III) complexes bearing DPEN and its derivatives were very promising catalysts in the reduction of 2-cyanoacetophenones and β -keto esters.^{18,19} Herein we report the use of a [Cp*Ir(H₂O)₃]SO₄ complex and 8-amino-5,6,7,8-tetrahydroquinoline, CAMPY hereafter, as a source of chirality, its derivative 2-methyl-5,6,7,8-tetrahydroquinolin-8-amine Me-CAMPY, and the corresponding NH-CH₃ diamines (Scheme 1).

The asymmetric reduction of ketones is a synthetically relevant reaction as the corresponding chiral alcohols are precursors of a wide range of bioactive compounds.

Scheme 1. Catalysts used for ATH.

β-Amino keto esters are an important class for the synthesis of unnatural β -aminoacids which are used in the preparation of peptide mimetics and azetidinones.²⁰ The most common azetidinone precursor, used for the preparation of carbapenems, is ethyl 2-(benzamidomethyl)-3-oxobutanoate in which the methyl group is in α position to the carbonyl moiety.^{21,22} In recent years the influence of different substituents at the α -position to the carbonyl group was studied.^{23,24} With regard to the unique pharmacological properties attributed to the fluorine in helping absorption of the drug through the cell wall, selectively fluorinated organic intermediates still remain challenging targets for the synthesis of β-lactam antibiotic precursors.²⁵ Herein we focused our attention on the stereoselective reduction of different aromatic ketones and β-amino keto esters bearing either an electron donating or an electron withdrawing substituent.

Tetrahedron

^{*} Corresponding author. Tel.: +39 02 503 14609; fax: +39 02 503 14615. E-mail address: isabella.rimoldi@unimi.it (I. Rimoldi).

2. Results and discussion

The approach used for the synthesis of **L3** and **L4** is outlined in Scheme 2. Enantiomerically pure CAMPY **L1** and Me-CAMPY **L2** were obtained as salts by crystallization of racemic amines with enantiomerically pure tartaric acids.

Scheme 2. Synthesis of ligands **L3** and **L4**. Reagents and conditions: (a) K_2CO_3 , ClCOOEt, THF/H₂O, 0 °C to rt; (b) LiAlH₄, THF, 0 °C to reflux; (c) NaH, THF, rt to reflux; (d) CH₃I, THF, 0 °C to rt; (e) HCl 6 M, reflux.

The absolute configuration of Me-CAMPY **L2** ligand was assigned by single-crystal X-ray diffraction studies of the PtCl₄((*S*)-(+)-Me-CAMPY)·H₂O salt (Fig. 1). This contains the **L2** ligand protonated on both nitrogen atoms (Fig. 2), a square planar PtCl₄²⁻ counterion and one water molecule. PtCl₄²⁻ and H₂O interact with **L2** through intramolecular hydrogen bonds [N1···H3 N-Ow 139(3)°, N1···Ow 2.982(6) Å; N2···H2-Ow 167.5(3)°, N2···Ow 2.772(7) Å; N1···H1 N-Cl2 165(5)°, N1···Cl2 3.184(6) Å] involving the hydrogens bonded to the two nitrogen atoms. The C1–C6 ring displays an envelope conformation with a deviation of the C3 atom from the meanplane defined by C2, C1, C6, C5 and C4 atoms of 0.310 Å and with the following torsion angles: C4–C5–C6–C1–2.9° and C2–C1–C6–C5–4.0°.

Figure 1. A perspective view of the PtCl₄((*S*)-(+)-Me-CAMPY)·H₂O salt. Selected interatomic distances (Å) are: Pt-Cl1 2.302(2), Pt-Cl2 2.299(2), Pt-Cl3 2.304(2), Pt-Cl4 2.305(2), C1-N1 1.508(6), C1-C2 1.533(7), C2-C3 1.430(10), C3-C4 1.516(11), C4-C5 1.510(7), C5-C6 1.373(6), C1-C6 1.511(6).

CAMPY and its derivatives were used as ligands for the one-pot synthesis of iridium(III) complexes after reaction with $[Cp*Ir(H_2-O)_3]SO_4$, which could be used directly in ATH reactions. Screening was carried out for the reduction of different types of aryl ketones. The results obtained for 2-cyanoacetophenone and its heteroaromatic analogues are reported in Table 1.

The conversion of substrates **1**, **2** and **3** into the corresponding alcohols was achieved for all of the complexes in only 3 h with the exception of the complexes with ligands **L3** and **L4** in the

reduction of substrate **1** (entries 9, 11 and 12). For substrate **1**, the best results were obtained with **L1** in the presence of HCOOH as the hydrogen donor (62% ee, entry 1). For substrate **2**, the azeotropic mixture of HCOOH/TEA gave 75% ee with [Cp*Ir(H₂O) (**L2**)]SO₄ (entry 18). In the case of substrate **3**, data did not show any appreciable difference in terms of reaction conditions or cata-

Table 1

ATH reaction of 2-cyanoacetophenones

	o L	_ CN	[Cp*lr((<i>R</i>)-L)H ₂ O]SO ₄ (0.5 mol %)		OH CN	
A	r´````````` R		hydrogen donor, H ₂ O:MeOH = 1:1;		Ar' Y R'	
1 /	r = Ph;	R'= H	70°C	;	1a Ar = Ph; R'= H	
3 4	r = furyl	; R'= H P'- CH			3a Ar = furyl; R'= H	
	м – т н, т		120113		4a Ar = Ph; R = CH ₂ C	,н ₃
Entry ^a	Sub.	L	Hydrogen donor	Conv. ^b (%)	ee (%)	de (%)
1	1	L1	НСООН	100	62 (S)	
2			HCOONA UCOOU/TEA	100	47 (S)	
4		12	HCOOH	100	55 (S) 57 (S)	
5			HCOONa	100	56 (S)	
6			HCOOH/TEA	100	48 (S)	
7		L3	HCOOH	100	40 (S)	
8			HCOONa	98	45 (S)	
9			HCOOH/TEA	82	24 (S)	
10		L4	HCOON	100	44 (S) 60 (S)	
12			HCOOH/TEA	33	51 (S)	
12	2	11		100	50 (\$)	
13	2	LI	HCOONa	100	30 (3) 46 (S)	
15			HCOOH/TEA	100	46 (S)	
16		L2	нсоон	100	61 (S)	
17			HCOONa	100	73 (S)	
18			HCOOH/TEA	100	75 (S)	
19		L3	HCOON	100	61 (S) 24 (S)	
20			HCOONA HCOOH/TEA	100	19 (S)	
22		L4	НСООН	100	48 (S)	
23			HCOONa	100	44 (S)	
24			HCOOH/TEA	100	54 (S)	
25	3	L1	НСООН	100	34 (S)	
26			HCOONa	100	40 (S)	
27			HCOOH/TEA	100	34 (S)	
28		L2	HCOON	100	50 (S)	
30			HCOOH/TFA	100	41 (S)	
31		L3	НСООН	100	48 (S)	
32			HCOONa	100	48 (S)	
33			HCOOH/TEA	100	49 (S)	
34		L4	HCOOH	100	50 (S)	
35			HCOONA	100	45 (S) 56 (S)	
20			HCOOH/TEA	100	50 (3)	20
3/	4	LI	HCOON	100	94(R,S); 68(S,S)	38 syn
39			HCOOH/TEA	100	89(R,3), 03(3,3) 84(RS), 62(SS)	20 syn
40		L2	НСООН	100	90 (<i>R</i> , <i>S</i>); 75 (<i>S</i> , <i>S</i>)	40 syn
41			HCOONa	72	93 (<i>R</i> , <i>S</i>); 80 (<i>S</i> , <i>S</i>)	40 syn
42			HCOOH/TEA	100	68 (<i>R</i> , <i>S</i>); 53 (<i>S</i> , <i>S</i>)	16 syn
43		L3	HCOOH	68 11	88 (<i>R</i> , <i>S</i>); 64 (<i>S</i> , <i>S</i>)	55 syn
44 45			HCOOH/TEA	100	04(K,S); 62(S,S) 30(RS): 22(SS)	22 syn
46		L4	НСООН	70	74 (R,S): 55 (S,S)	55 svn
47		-	HCOONa	8	84 (<i>R</i> , <i>S</i>); 80 (<i>S</i> , <i>S</i>)	65 syn
48			HCOOH/TEA	100	16 (<i>R</i> , <i>S</i>); 7 (<i>S</i> , <i>S</i>)	14 syn

^a Reactions were carried out at 70 °C using 0.5 mmol of substrate with 0.5 mol % of iridium complex in 2 mL of MeOH/water = 1:1 mixture when HCOOH or HCOONa was used as hydrogen donors, while an HCOOH/TEA azeotropic mixture was used neat.

^b Conversion and ee were determined by GC after 3 h for substrate **1** while for substrates **2** and **3** they were determined by HPLC after 3 h, for substrate **4** after 24 h by HPLC (OD-H Chiralcel column).

Figure 2. A perspective view of the Me-CAMPY L2 dication.

lyst used. The presence of an additional racemic stereogenic centre as in substrate **4** allowed the reaction to reach high stereoselectivity (90–94% ee) even with moderate diastereoselectivity (40% de) (entries 37 and 40). The best results were achieved using HCOOH as the hydrogen donor with complexes in which the diamines carried a primary amino group **L1** and **L2**. When the ATH reductions were carried out in the presence of HCOONa, the conversion decreased dramatically (entries 38, 44 and 47).

Generally, acetophenone was used as the standard substrate to study the catalytic behaviour of catalysts in ATH. We decided to investigate a range of substituted acetophenones with the aim of determining the influence of different groups on the aromatic ring in terms of electronic properties and steric hindrance (substrates 6, 7 and 8). The results are reported in Table 2. In the case of substituted acetophenones **6**, **7** and **8**, $[Cp*Ir(H_2O)(L1)]SO_4$ in the presence of HCOOH generally gave the best results (entries 13, 25 and 37). In fact when there was a steric hindrance at the *ortho*-position with respect to ketone **6**, 86% ee was obtained with L1 (entry 13); instead for acetophenone **5**, 74% ee was obtained using diamine ligand L2 (entry 4).

Generally when the steric hindrance of the substrate was increased by the introduction of a group at the ortho-position, the stereoselectivity was increased. In our case, this behaviour suggested that the ideal matching between the ligand and the substrate was realized in the presence of a methyl group either on the substrate or on the backbone of the ligand. In the case of substrates 7 and 8, the presence of a meta-methoxy group or a para-trifluoromethyl group improved the catalytic performance compared to acetophenone 5 (66% ee vs 46% ee, entries 1, 25 and 37, Table 2). These results, in terms of reaction rate, confirmed that the withdrawing properties of both substituents favoured the keto form over the enolic one, thus increasing the reaction rate and the stereoselectivity. For all of the substrates, when a secondary amine on the amino stereogenic centre of the ligands L3 and L4 was present, the reduction did not proceed well, either in terms of conversion or in terms of stereoselectivity. The same behaviour was observed under azeotropic mixture conditions.

As reported in previous work this type of catalyst was also applied to the reduction of β -ketoesters such as ethyl 3-oxo-3-phenylpropanoate **9** utilizing a monosulfonylated diamine as a ligand.¹⁹ First screening with the monotosylated CAMPY derivatives did not lead to appreciable results with lower conversion and selectivity (data not reported), probably due to the excessive steric hindrance and the electronic effect of the tosyl group depleting the primary amine present in our ligands. For this reason, we decided to apply the non-sulfonylated catalysts, reported herein

Table 2

ATH reaction of acetophenones

	5 R = H 6 R = o-CH 7 R = p-CF 8 R = m-OO	3 3 2H ₃	[Cp*Ir((<i>R</i>)-L)H ₂ O]SO ₄ (0.5 mol %) hydrogen donor, H ₂ O:MeOH = 1:1; 70°C	OH 5a R = H 6a R = o-CH ₃ 7a R = p-CF ₃ 8a R = m-OCH ₃	
y ^a	Sub.	L	Hydrogen donor	Conv. ^b (%)	e

Entry ^a	Sub.	L	Hydrogen donor	Conv. ^D (%)	ee (%)
1	5	L1	НСООН	88	46 (S)
2			HCOONa	46	48 (S)
3			HCOOH/TEA	49	45 (S)
4		L2	нсоон	74	74(S)
5			HCOONa	59	30 (5)
6			HCOOH/TEA	48	27(S)
7		L3	нсоон	71	43 (S)
8		25	HCOONa	38	33 (S)
9			HCOOH/TEA	8	23(S)
10		14	НСООН	37	21(S)
11			HCOONa	10	31 (S)
12			HCOOH/TEA	50	0
13	6	L1	НСООН	73	86 (S)
14			HCOONa	58	83 (S)
15			HCOOH/TEA	29	70 (S)
16		L2	НСООН	17	31 (S)
17			HCOONa	19	47 (S)
18			HCOOH/TEA	23	10 (S)
19		L3	НСООН	37	58 (S)
20			HCOONa	7	35 (S)
21			HCOOH/TEA	10	15 (S)
22		L4	НСООН	5	9 (S)
23			HCOONa	3	51 (S)
24			HCOOH/TEA	9	0
25	7	L1	НСООН	100	65 (S)
26			HCOONa	77	57 (S)
27			HCOOH/TEA	63	61 (S)
28		L2	НСООН	98	46 (S)
29			HCOONa	96	38 (S)
30			HCOOH/TEA	92	41 (S)
31		L3	НСООН	67	43 (S)
32			HCOONa	13	25 (S)
33			HCOOH/TEA	24	16 (S)
34		L4	нсоон	31	27 (S)
35			HCOONa	32	29 (S)
36			HCOOH/TEA	58	6 (S)
37	9	11	нсоон	80	66 (5)
38	0	LI	HCOON	50	62 (5)
30			HCOOH/TEA	J0	61 (S)
<u> </u>		12		45 01	24 (5)
40		L2		01	24 (3) 20 (S)
42				67	JU (J) 45 (S)
-12 //3		13	НСООН	44	43 (S) 43 (S)
ري- ۸۸		1.3	HCOOND	- 	-+3 (3) 23 (5)
44				رد ۸	JZ (J)
45		14		4 45	13 (3)
40		14		4J 11	47 (S) 45 (S)
47				11	43 (S) 19 (C)
4ð			ncoon/iea	10	18 (5)

^a Reactions were carried out at 70 °C using 0.5 mmol of substrate with 0.5 mol% of iridium complex in 2 mL of MeOH/water = 1:1 mixture when HCOOH or HCOONa were used as hydrogen donors, while an HCOOH/TEA azeotropic mixture was used neat.

^b Conversion and ee were determined by GC after 6 h.

to different substituted β -keto esters. In particular we focused our attention on the reduction of β -lactam precursors. Starting from substrate **9**, we synthesized the corresponding β -amino keto ester **10** and its substituted *p*-OMe and *p*-CF₃ derivatives **11** and **12**. The results are reported in Table 3.

The reduction of ethyl 3-oxo-3-phenylpropanoate **9** proceeded with modest enantiomeric excesses except for complex bearing **L1** in the presence of HCOOH with 73% ee (entry 1). The reactions

carried out with $[Cp^*Ir(H_2O)(L3)]SO_4$ and $[Cp^*Ir(H_2O)(L4)]SO_4$, did not lead to the complete formation of the corresponding alcohols as expected on the basis of the results with the monotosylated CAMPY derivatives. Regarding substrates 10, 11 and 12 our expectations were confirmed. The presence of an electron donor group at the para-position in the ketone moved the keto-enol equilibrium towards the enolic form, thus decreasing the conversion of

Table 3

ATH reaction of β-ketoesters

12a R = p-CF₃; R' = -CH₂NHCOPh

OEt

substrate 11 even if the stereoselectivity remained acceptable.

Conversely, when the aromatic moiety was substituted with an

electron-withdrawing group, at the para-position, complete conver-

sion was observed during the majority of the experiments mirroring

the results obtained in the reduction of **10**. For substrates **10** and **12**

when the reactions were conducted in the presence of a base (with

HCOONa), a variable amount of by-products was detected, which

Entry ^a	Sub.	L	Hydrogen donor	Conv. ^b (%)	ee (%)	de (%)
1	9	L1	НСООН	100	73 (S)	
2			HCOONa	100	48 (S)	
3			HCOOH/TEA	100	36 (S)	
4		L2	НСООН	100	19 (S)	
5			HCOONa	100	21 (S)	
6			HCOOH/TEA	100	18 (S)	
7		L3	НСООН	100	47 (S)	
8			HCOONa	17	48 (S)	
9			HCOOH/TEA	10	49 (S)	
10		L4	НСООН	52	27 (S)	
11			HCOONa	24	50 (S)	
12			HCOOH/TEA	100	0	
13	10	L1	НСООН	100	73 (S,S); 81 (R,S)	13 anti
14			HCOONa	100 ^c	68 (S,S); 80 (R,S)	25 anti
15			HCOOH/TEA	100	42(S,S); 51(R,S)	0
16		L2	нсоон	57	75 (S,S); 83 (R,S)	0
17			HCOONa	100 ^c	9 (S,S); 18 (R,S)	9 anti
18			HCOOH/TEA	100	15 (S,S); 26 (R,S)	34 anti
19		L3	НСООН	100	78 (S,S); 80 (R,S)	0
20			HCOONa	100 ^c	20 (S,S); 42 (R,S)	10 anti
21			HCOOH/TEA	10	23 (S,S); 50 (R,S)	0
22		L4	НСООН	29	57 (S,S); 78 (R,S)	17 anti
23			HCOONa	50	63 (S,S); 75 (R,S)	34 anti
24			HCOOH/TEA	100	0 (S,S); 0 (R,S)	34 anti
25	11	11	нсоон	71	$81(SS) \cdot 32(RS)$	37 anti
25		LI	HCOON	92	89 (SS): 76 (RS)	32 anti
20			HCOOH/TEA	40	76 (SS): 63 (RS)	57 anti
28		12	НСООН	32	86 (SS): 69 (RS)	32 anti
29			HCOONa	48	88(SS); 62(RS)	20 anti
30			HCOOH/TEA	79	56(SS); 44(RS)	8 anti
31		13	нсоон	11	96(SS); 78(RS)	23 anti
32		20	HCOONa	13	94 (S,S); 78 (R,S)	16 anti
33			HCOOH/TEA	13	73 (S,S); 53 (R,S)	0 anti
34		L4	НСООН	13	67 (S.S); 52 (R.S)	4 anti
35			HCOONa	14	36(S,S); 47(R,S)	19 anti
36			HCOOH/TEA	72	0;0	29 anti
37	12	L1	НСООН	100	83 (S.S): 99 (R.S)	18 anti
38			HCOONa	100 ^c	64 (S,S); 91 (R,S)	0
39			HCOOH/TEA	100	70(SS); 99(RS)	15 anti
40		L2	НСООН	100	92(S,S); 99(R,S)	20 anti
41			HCOONa	100 ^c	73 (S.S); 86 (R.S)	0
42			HCOOH/TEA	100	86 (S,S); 99 (R,S)	13 anti
43		L3	НСООН	38	70 (S,S); 98 (R.S)	23 anti
44			HCOONa	100 ^c	70 (S.S); 25 (R.S)	25 anti
45			HCOOH/TEA	78	46 (S,S); 67 (R,S)	33 anti
46		L4	НСООН	100	71 (S.S): 97 (R.S)	37 anti
47			HCOONa	100 ^c	40 (S.S); 33 (R.S)	59 anti
48			HCOOH/TEA	100	69 (S,S); 93 (R,S)	56 anti
					(-,-,,,	

^a Reactions were carried out at 70 °C using 0.5 mmol of substrate with 0.5 mol % of iridium complex in 2 mL of MeOH/water = 1:1 mixture when HCOOH or HCOONa were used as hydrogen donors, while an HCOOH/TEA azeotropic mixture was used neat.

Conversion, ee and de were determined by HPLC (AD Chiralpak column) after 24 h.

^c Under these conditions N-(3-oxo-3-phenylpropyl)benzamide and its reduction products were observed as in previous work.

were attributable to spontaneous decarboxylation after hydrolysis of the ethyl ester function as observed in the literature.²⁶

For both substrates, the best catalytic performances were achieved in favour of the (R,S)-diastereomer with an ee of up to 99% for **12** (entries 37, 39, 40 and 42). On the contrary, the (S,S)-diastereomer was predominant for the reduction of substrate **11**. The preferential formation of the couple of diastereomers with an *anti*-configuration for this type of catalysts is noteworthy. In our previous work, only the *syn*-diastereomers were formed by using classical transition metal catalysts in which the source of chirality was an atropoisomeric diphosphine. Finally in all of the reductions of these substrates, an increase in the diastereomeric excess was obtained along with a decrease in stereoselectivity on the prochiral centre.

3. Conclusions

In conclusion a series of efficient iridium catalysts based on CAMPY derivatives has been studied in the reduction of different types of aryl ketones. A wide variety of behaviours was seen by changing the reaction conditions. In particular the presence of HCOOH as a hydrogen donor played an important role with regard to the stereoselectivity of the catalysts. In the case of ligands **L3** and **L4**, by changing the primary amino group into a secondary one, the catalytic performance was reduced. Finally ATH reactions on β -lactam precursors led to very high ee. Further investigations are currently underway with the aim of increasing the de without losing the excellent stereoselectivity obtained.

4. Experimental

4.1. General

¹H and ¹³C NMR spectra were recorded in CDCl₃ or D₂O on Bruker DRX Avance 300 MHz equipped with a non-reverse probe. Chemical shifts (in ppm) are referenced to residual solvent proton/carbon peak. FTIR spectra were collected by using a Perkin Elmer (MA. USA) FTIR Spectrometer 'Spectrum One' in the spectroscopic region between 4000 and 450 cm⁻¹ and analysed by transmittance techniques with 32 scansions and 4 cm⁻¹ resolution. Polarimetry analyses were carried out on Perkin Elmer 343 Plus equipped with Na/Hal lamp. MS analyses were performed by using a Thermo Finnigan (MA, USA) LCQ Advantage system MS spectrometer with an electronspray ionization source and an 'Ion Trap' mass analyser. The MS spectra were obtained by direct infusion of a sample solution in MeOH under ESI positive ionization. Catalytic reactions were monitored by gas chromatography analysis using a chiral stationary phase column (MEGA DMT β , 25 m, internal diameter 0.25 mm) or by HPLC analysis with Merck-Hitachi L-7100 equipped with Detector UV6000LP and a chiral column (OD-H Chiralcel or AD Chiralpak).

Commercially reagent grade solvents were dried according to standard procedures and freshly distilled under nitrogen before use. Unless otherwise stated, materials were obtained from commercial sources and used without further purification; enantiomerically pure (R)-(-)- and (S)-(+)-8-amino-5,6,7,8-tetrahydroquinolines (CAMPY) were obtained as reported in the literature;⁶ *rac*-2-methyl-5,6,7,8-tetrahydroquinolin-8-amines (Me-CAMPY) were synthesized according to literature procedures.^{27,28}

4.2. Synthesis of the ligands

4.2.1. (*R*)-2-Methyl-5,6,7,8-tetrahydroquinolin-8-amine ((*R*)-Me-CAMPY) L2

Rac-Me-CAMPY (486 mg, 3 mmol) was dissolved in EtOH (30 mL), then a solution of (R,R)-L-(+)-tartaric acid (225 mg, 1.5 mmol) in EtOH (20 mL) was added. The suspension was heated until the disappearance of the solid salt, cooled to room tempera-

ture and complete crystallization was obtained at -18 °C. Yield 273 mg of (*R*)-(-)-Me CAMPY/(*R*,*R*)-(+)-L-tartrate (0.87 mmol, 58% yield); ¹H NMR (CDCl₃, 300 MHz, 25 °C): δ = 1.64–1.77 (m, 2H), 2.04–2.14 (m, 2H), 2.46 (s, 3H), 2.60–2.77 (m, 2H), 3.93 (t, *J* = 6.3 Hz, 1H), 6.89 (d, *J* = 7.8 Hz, 1H), 7.22 (d, *J* = 7.8 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz, 25 °C): δ = 20.06, 24.00, 28.63, 31.89, 50.91, 121.64, 128.60, 137.77, 155.77, 157.75 ppm. FTIR ν = 3493, 3456, 3320, 2973, 2916, 1725, 1627, 1602, 1485, 1305, 1264, 1135, 1107, 1077, 1067, 680 cm⁻¹ Elemental analysis of C₁₄H₀N₂O₆ calcd C 53.84 H 6.45 N 8.97; found C 53.85 H 6.66 N 8.82; MS (ESI) of C₁₀H₁₄N₂ (*m*/*z*): calcd 162.1, found 163.1 [M+1]⁺. The enantiomeric excess of Me-CAMPY was evaluated using the corresponding acetylated derivatives by chiral GC analysis (conditions: 140 °C 10 min, 2 °C/min to 165 °C).

Crystal structure of $PtCl_4((S)-(+)-Me-CAMPY) \cdot H_2O$: $C_{10}H_{18}Cl_4N_2$ OPt, *M* = 519.15, monoclinic, *a* = 12.6157(5), *b* = 8.2091(3), *c* = 15. 4482(6) Å, $\beta = 90.4678(5)$, U = 1599.8(1) Å³, T = 294(2) K, space group C2 (No. 5), Z = 4, $\mu = (Mo-K\alpha) 9.427 \text{ mm}^{-1}$. 8475 reflections (4809 unique; Rint = 0.019) were collected at room temperature in the range $5.28^{\circ} < 2\theta < 62.92^{\circ}$, employing a $0.25 \times 0.20 \times 0.15$ mm crystal mounted on a Bruker APEX II CCD diffractometer and using graphite-monochromatized Mo-K α radiation (λ = 0.71073 Å). Datasets were corrected for Lorentz polarization effects and for absorption (SADABS).²⁹ The structure was resolved by direct methods (SIR-97)³⁰ and was completed by iterative cycles of full-matrix least squares refinement on Fo² and Δ F synthesis using the SHELXL-97³¹ program (WinGX suite).³² Hydrogen atoms located on the Δ F maps, were allowed to ride on the carbon atoms for the phenanthroline ligand and on N2, whereas the position of those bonded to the N1 atom and to the water molecule were refined without constraint. The presence of the anomalous X-ray scatterer platinum atom allowed us to unambiguously determine the absolute configuration, the Flack parameter was 0.017(8) which confirmed that the absolute structure given by the structure refinement was correct. Final R1 [wR2] values are 0.0199 [0.0584] on $I > 2\sigma(I)$ [all data].

CCDC-989123 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data_request/cif.

4.2.2. (*R*)-*N*-Methyl-5,6,7,8-tetrahydroquinolin-8-amine ((*R*)-NH Me-CAMPY) L3

(R)-N-Acetyl-5,6,7,8-tetrahydroquinolin-8-amine (141 mg. 0.74 mmol) and NaH (24 mg, 1 mmol) in anhydrous THF (5 mL) were refluxed for 1 h, cooled to 0 °C and CH₃I (142 mg, 1 mmol) was added dropwise. The reaction mixture was stirred at room temperature and monitored by TLC (CH₂Cl₂/MeOH 9:1). The solution was quenched with water and the aqueous layers were extracted with diethyl ether (3 \times 10 mL). The combined organic layers were dried over Na₂SO₄. The crude product was purified by Kugelrohr distillation to give N-methyl-N-(5,6,7,8-tetrahydroquinolin-8yl)acetamide (GC: iso 140 °C 10 min, 1 °C/min to 160 °C). The corresponding N-acetyl derivate was hydrolysed by refluxing in HCl 6 M (3 mL). The solution was cooled to room temperature, quenched with Na₂CO₃, extracted with CH₂Cl₂ and dried over Na₂SO₄. The crude oil was dissolved in hexane (10 mL) and filtered on a Celite pad to give the product as a pale yellow oil (100 mg, 0.62 mmol, 82% yield). ¹H NMR (CDCl₃, 300 MHz, 25 °C): δ = 1.69–1.81 (m, 2H), 1.93-2.01 (m, 1H), 2.10-2.18 (m, 1H), 2.53 (s, 3H), 2.50-2.78 (m, 3H), 3.67 (t, J = 5.2 Hz, 1H), 7.05 (dd, J = 7.7, 4.7 Hz, 1H), 7.39 $(d, J = 7.6 \text{ Hz}, 1\text{H}), 8.40 (d, J = 4.6 \text{ Hz}, 1\text{H}) \text{ ppm}; {}^{13}\text{C} \text{ NMR} (\text{CDCl}_3, 1)$ 75 MHz, 25 °C): δ = 19.55, 27.82, 28.85, 34.26, 59.56, 121.86, 132.46, 136.89, 146.86, 157,23 ppm. FTIR v = 3333.9, 3049.6, 2926.7, 2855.2, 2784.1, 1648.1, 1575.3, 1444.5, 1428.1, 1238.7, 1104.1, 782.2 cm⁻¹. MS (ESI) of $C_{10}H_{14}N_2$ (*m/z*): calcd 162.1, found 163.2 [M+1]⁺. $[\alpha]_D^{20} = -20.8$ (c 0.5, CH₂Cl₂).

4.2.3. (*R*)-(–)-*N*-2-Dimethyl-5,6,7,8-tetrahydroquinolin-8-amine ((*R*)-NHMe-Me-CAMPY) L4

To a solution of (R)-Me-CAMPY L2 (121 mg, 0.75 mmol) in THF (5 mL), aqueous K₂CO₃ (1.5 mL, 1 M) and ethyl chloroformate (0.11 mL, 1.1 mmol) were added at 0 °C. The solution was warmed to room temperature and stirred for 2.5 h. The organic phase was dried and the solvent was removed in vacuo. The crude oil obtained was dissolved in anhydrous THF (5 mL) and added dropwise into a suspension of LiAlH₄ (46 mg, 1.2 mmol) in anhydrous THF (5 mL) at 0 °C, stirred at room temperature for 1 h and refluxed for 2 h. The reaction mixture was quenched by adding THF, aqueous KOH and extracted with diethyl ether (3×10 mL). The crude product was purified by Kugelrohr distillation to obtain a pale yellow oil (99 mg, 0.56 mmol; 56% yield). ¹H NMR (CDCl₃, 300 MHz, 25 °C): $\delta = 1.56 - 1.74$ (m, 1H), 1.81 - 1.95 (m, 2H), 2.08 (s, 3H), 2.52 (s, 3H), 2.55-2.68 (m, 1H), 2.77 (t, J = 6.5 Hz, 2H), 4.76 (dd, *I* = 9.6, 4.9 Hz, 1H), 6.70 (br, 1H), 7.00 (d, *I* = 7.9 Hz, 1H), 7.33 (d, I = 7.9 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz, 25 °C): $\delta = 20.29$, 24.13, 24.35, 28.14, 29.56, 51.64, 122.49, 130.15, 137.96, 154.62, 155.75 ppm. FTIR v = 3330, 2940, 2860, 2785, 1707, 1596, 1574, 1471, 1444, 1258, 1147, 1119, 1105, 1035, 850, 813, 783 cm⁻¹. MS (ESI) of $C_{11}H_{16}N_2$ (*m*/*z*): calcd 176.1, found 177.2 [M+1]⁺. $[\alpha]_{D}^{20} = -52.5$ (c 1, CH₂Cl₂).

4.3. General procedure for the synthesis of [Cp*Ir(H₂O)(L)]SO₄

The complexes were prepared according to a literature procedure.¹⁸

4.3.1. [Cp*Ir(H₂O)(L1)]SO₄

¹H NMR (D₂O, 300 MHz, 25 °C): δ = 1.63 (m, 2H), 1.72 (s, 15H), 2.04–2.06 (m, 1H), 2.45–2.48 (m, 1H), 2.85–2.99 (m, 2 H), 4.02– 4.13 (m, 1H), 7.58 (dd, *J* = 5.9 Hz,1 H), 7.80 (d, *J* = 7.9 Hz,1 H), 8.70 (d, *J* = 5.5 Hz, 1H) ppm; ¹³C NMR (D₂O, 75 MHz, 25 °C): δ = 10.24, 20.11, 29.39, 37.57, 51.79, 122.34, 132.17, 137.28, 147.39, 155.12 ppm. MS (ESI) of C₁₇H₂₇IrN₂ [M–SO₄–H₂O–H] (*m*/ *z*): calcd 475.7, found 475.4.

4.3.2. [Cp*Ir(H₂O)(L2)]SO₄

¹H NMR (D₂O, 300 MHz, 25 °C): δ = 1.52 (s, 15H), 1.62–1.66 (m, 2H), 1.74–1.85 (m, 2H), 2.28–2.32 (m, 2H), 2.70 (s, 3H), 4.58–4.66 (m, 1H), 7.35 (d, *J* = 7.7 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 1H) ppm; ¹³C NMR (D₂O, 75 MHz, 25 °C): δ = 8.76, 20.12, 26.61, 26.83, 31.74, 62.37, 87.85, 126.62, 133.89, 141.28, 157.86, 158.02 ppm. MS (ESI) of C₂₀H₂₉IrN₂ [M–SO₄–H₂O–H] (*m*/*z*): calcd 489.7, found 489.6.

4.3.3. [Cp*Ir(H₂O)(L3)]SO₄

¹H NMR (D₂O, 300 MHz, 25 °C): δ = 1.54 (s, 15H), 1.66–1.69 (m, 2H), 1.75–1.78 (m, 2H), 2.54–2.69 (m, 2H), 3.10 (d, *J* = 6.1 Hz, 3H), 3.93–4.2 (m, 1H), 7.38 (dd, *J* = 7.7 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 8.51 (d, *J* = 5.5 Hz, 1H) ppm; ¹³C NMR (D₂O, 75 MHz, 25 °C): δ = 8.46, 14.07, 22.35, 23.38, 28.79, 54.09, 116.39, 126.99, 131.42, 141.39, 151.76 ppm. MS (ESI) of C₂₀H₂₉IrN₂ [M–SO₄–H₂O–H] (*m*/*z*): calcd 489.7, found 489.5.

4.3.4. [Cp*Ir(H₂O)(L4)]SO₄

¹H NMR (D₂O, 300 MHz, 25 °C): δ = 1.68 (s, 15H), 1.94–1.97 (m, 2H), 2.48–2.50 (m, 2H), 2.62–2.65 (m, 2H), 2.70 (s, 3H), 3.14 (d, *J* = 5.9 Hz, 3H), 3.99–4.04 (m, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 8.1 Hz, 1H) ppm; ¹³C NMR (D₂O, 75 MHz, 25 °C): δ = 8.81, 19.78, 26.58, 38.77, 69.15, 88.43, 126.87, 134.00, 141.43, 156.67, 158.30 ppm. MS (ESI) of C₂₁H₃₁IrN₂ [M–SO₄–H₂O–H] (*m*/*z*): calcd 503.7, found 503.4.

4.4. Synthesis of the substrates

4.4.1. Enzymatic synthesis of rac-2-benzoylbutanenitrile 4

Commercial Baker's yeast (50 g/L) was suspended in a phosphate buffer (200 mL, 0.1 M, pH 7) containing 50 g/L of glucose and 5 g/L of the substrate 1 was added. The biotransformation system was shaken with a mechanical stirrer at 28 °C. When total conversion was achieved, the cells were separated by centrifugation. Both the aqueous phases and the cell mixture were extracted with diethyl ether $(3 \times 50 \text{ mL})$, dried over Na₂SO₄ and the solvent was removed in vacuo. The crude product was purified by flash chromatography (CH_2Cl_2 /hexane/ethyl acetate = 4:1:1) to give 860 mg of **4** (86% yield). ¹H NMR (CDCl₃, 300 MHz, 25 °C): δ = 1.16 (t, *J* = 7.7 Hz, 3 H), 2.02–2.15 (m, 2H), 4.30 (dd, *J* = 6.2, 4.3 Hz, 1H), 7.49–7.56 (m, 2H), 7.65 (d, J = 7.6 Hz, 1H) 7.95 (d, J = 6.7 Hz, 2H) ppm: ¹³C NMR (CDCl₃, 75 MHz, 25 °C): δ = 11.71, 23.77, 41.69, 117.41, 128.92–134.63, 170.91, 190.97 ppm, FTIR v = 3467, 2975, 2936, 2249, 1694, 1597, 1449, 1265, 1233, 1208, 1000, 696 cm⁻¹. MS (ESI) of C₁₁H₁₁NO (*m*/*z*): calcd 173.2, found 196.1 [M+Na⁺].

Compound **4a**: ¹H NMR (CDCl₃, 300 MHz, 25 °C): δ = 1.09 (t, *J* = 7.7 Hz, 3H, anti), δ = 1.17 (t, *J* = 7.6 Hz, 3H, syn), 1.51–1.69 (m, 2H), 2.76–2.83 (m, 2H, anti), 2.87–2.95 (m, 2H, syn), 4.79 (d, *J* = 6.2 Hz, 1H, anti), 4.83 (d, *J* = 6.6 Hz, 1H, syn), 7.33–7.56 (m, 5H) ppm; ¹³C NMR (CDCl₃, 75 MHz, 25 °C): δ = 9.84 (syn), 10.38 (anti), 24.86 (anti), 25.87 (syn), 76.86 (syn), 77.46 (anti), 127.04, 128.05 (anti), 128.22 (syn), 128.55 (anti), 128.69 (syn), 140.61 (anti) 141.42 (syn) ppm. FTIR *v* = 3390, 2964, 1494, 1453, 160, 1103, 1038, 702 cm⁻¹. MS (ESI) of C₁₁H₁₁NO (*m*/*z*): calcd 175.1, found 198.3 [M+Na⁺]. Yield was evaluated by ¹H NMR analysis. HPLC data: OD-H Chiralcel, eluent: hexane: 2-propanol = 95:5, flow = 0.8 mL/min, λ = 216 nm. rt: (*R*, *S*) = 25.6 min, (*S*, *S*) = 26.5 min, (*S*, *R*) = 34.6 min, (*R*, *R*) = 36.0 min.

4.4.2. Ethyl-2-(benzamidomethyl)-3-oxo-phenylpropanoate 10

The substrate was prepared according to a literature procedure.²⁶ ¹H NMR (CDCl₃, 300 MHz, 25 °C): δ = 1.18 (t, *J* = 6.9 Hz, 3H), 3.93–3.97 (m, 2H), 4.09–4.16 (m, 2H), 4.19 (q, *J* = 6.9 Hz, 2H), 4.87 (dd, *J* = 5.5, 3.7 Hz, 1H), 6.73 (br, 1H), 7.42–7.62 (m, 2H), 7.71 (dd, *J* = 8.0, 1.5 Hz, 4H), 8.10 (dd, *J* = 5.1, 2.2 Hz, 4H) ppm; ¹³C NMR (CDCl₃, 75 MHz, 25 °C): δ = 14.1, 39.2, 53.7, 62.03, 127.1–135.9, 167.9 (isomer), 169.2 (isomer), 194.8 ppm. FTIR *v* = 3334, 1961, 1734, 1679, 1637, 1534, 1311, 1250, 1211, 1198, 1078, 694 cm⁻¹. MS (ESI) of C₁₉H₁₉NO₄ (*m/z*): calcd 325.1, found 348.5 [M+Na⁺].

Compound **10a**: ¹H NMR (CDCl₃, 300 MHz, 25 °C): δ = 1.01 (t, *J* = 7.0 Hz, 3H), 2.93–3.01 (m, 1H, syn), 3.15–3.24 (m, 1H, anti), 3.61–3.69 (m, 2H), 3.98 (q, *J* = 7.0 Hz, 2H), 4.12–4.19 (m, 2H), 4.95 (d, *J* = 7.3 Hz, 1H, anti), 4.96 (d, *J* = 7.3 Hz, 1H, syn), 6.72 (br, 1H), 7.29–7.53 (m, 4H), 7.77 (dd, *J* = 8.0, 1.5 Hz, 4H) ppm; ¹³C NMR (CDCl₃, 75 MHz, 25 °C): δ = 14.0, 37.9 (syn), 38.0 (anti), 53.0, 61.1, 72.6, 126.4–132.0, 164.31, 173.5 ppm. FTIR *v* = 3364, 1948, 1724, 1649, 1607, 1535, 1301, 1246, 1111, 828 cm⁻¹. MS (ESI) of C₁₉H₂₁NO₄ (*m/z*): calcd 327.1, found 350.4 [M+Na⁺]. (2*R*,3*R*) [α]_D²⁰ = +33.2 (*c* 0.15, CHCl₃); (2*S*,35) [α]_D²⁰ = -11.0 (*c* 0.18, CHCl₃); (2*R*,35) [α]_D²⁰ = -11.3 (*c* 0.12, CHCl₃); Yield was evaluated by ¹H NMR analysis. HPLC data: AD Chiralpak, eluent hexane/2-propanol = 90:10, flow = 0.6 mL/min, λ = 230 nm. rt: (*R*, *R*) = 35.1 min, (*S*, *S*) = 37.1 min, (*S*, *R*) = 49.8 min, (*R*, *S*) = 68.8 min.

4.4.3. Ethyl 2-(benzamidomethyl)-3-(4-methoxyphenyl)-3-oxopropanoate 11

The substrate was prepared according to the literature by starting from ethyl 3-(4-methoxyphenyl)-3-oxopropanoate.²⁶ ¹H NMR (CDCl₃, 300 MHz, 25 °C) δ = 1.22 (t, *J* = 7.3 Hz, 3H); 3.78 (s, 3H); 3.86–4.93 (m, 1H); 4.01–4.13 (m, 1H); 4.15 (q, *J* = 5.9 Hz, 2H); 4.88 (dd, *J* = 5.9, 3.8 Hz, 1H); 6.88 (d, *J* = 8.8 Hz, 2H); 7.37–7.67

(m, 3H) 7.74 (d, J = 8.4 Hz, 2H); 8.09 (d, J = 8.8 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 75 MHz, 25 °C): $\delta = 13.92$, 39.14, 53.23, 55.77, 62.19, 114.04, 127.17, 128.24, 128.78, 131.61, 134.25, 164.03, 167.96, 186.91, 192.70 ppm. FTIR $\nu = 3401$, 2979, 1731, 1665, 1602, 1574, 1533, 1261, 1205, 1184, 1016, 838, 714 cm⁻¹. MS (ESI) of C₂₀H₂₁NO₅ (*m/z*): calcd 355.1, found 378.2 [M+Na⁺].

Compound **11a**: ¹H NMR (CDCl₃, 300 MHz, 25 °C): $\delta = 0.96$ (t, J = 7.3 Hz, 3H, syn), 1.21 (t, J = 6.9 Hz, 3H, anti); 2.94–3.02 (m, 1H, syn); 3.10–3.24 (m, 1H, anti); 3.54–3.68 (m, 2H); 3.73 (s, 3H); 3.99 (q, J = 7.0 Hz, 2H, syn); 4.16 (q, J = 7.3 Hz, 2H, anti); 4.88 (dd, J = 6.8, 3.9 Hz, 1H, syn); 4.95 (dd, J = 6.9, 3.9 Hz, 1H, anti); 6.55–6.68 (br, NH); 6.88 (d, 2H); 7.43 (d, J = 2.7 Hz, 2H); 7.47–7.59 (m, 3H); 7.79 (d, J = 2.5 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 75 MHz, 25 °C): $\delta = 14.36$, 39.55, 53.67, 56.23, 62.14, 71.63, 114.61, 128.03, 128.73, 129.25, 132.32, 134.60, 164.75, 168.03, 170.00 ppm. FTIR $\nu = 3371$, 2940, 1724, 1635, 1544, 1513, 1308, 1245, 1114, 836 cm⁻¹. MS (ESI) of C₂₀H₂₃NO₅ (*m/z*): calcd 357.2, found 380.3 [M+Na⁺]. Yield was evaluated by ¹H NMR analysis. HPLC data: AD Chiralpak, eluent: hexane/2-propanol = 80:20, flow = 1.0 mL/min, $\lambda = 230$ nm. rt: (*S*, *S*) = 9.7 min, (*R*, *R*) = 10.7 min, (*S*, *R*) = 14.9 min, (*R*, *S*) = 21.7 min.

4.4.4. Ethyl 2-(benzamidomethyl)-3-oxo-3-(4-(trifluoromethyl)phenyl)propanoate 12

The substrate was prepared according to the literature by starting from ethyl 2-(benzamidomethyl)-4,4,4-trifluoro-3-oxobutanoate.²⁶ ¹H NMR (CDCl₃, 300 MHz, 25 °C): δ = 1.17 (t, *J* = 7.0 Hz, 3H); 3.87–4.15 (m, 1H); 4.16–4.22 (q, *J* = 5.9 Hz, 2H); 4.91 (dd, *J* = 5.9, 3.7 Hz, 1H); 6.92–6.98 (br, NH), 7.35–7.54 (m, 3H), 7.71– 7.77 (m, 4H); 8.20 (d, *J* = 8.0 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 75 MHz, 25 °C): δ = 14.17, 39.15, 53.50, 62.01, 115.52, 120.94, 126.06, 126.37, 127.13, 128.80, 129.41, 131.94, 134.09, 134.91, 135.59, 136.33, 138.70, 167.87, 168.81, 193.79 ppm. FTIR ν = 3258, 2986, 1740, 1730, 1633, 1542, 1325, 1293, 1192, 1166, 1129, 1112, 1067, 1014, 710, 696 cm⁻¹. MS (ESI) of C₂₀H₁₈F₃NO₄ (*m/z*): calcd 393.1, found 416.1 [M+Na⁺].

Compound **12a**: ¹H NMR (CDCl₃, 300 MHz, 25 °C): δ = 0.87 (t, J = 7.0 Hz, 3H, syn); 0.99 (t, J = 7.3 Hz, 3H, anti); 2.94–2.99 (m, 1H, syn); 3.17-3.27 (m, 1H, anti); 3.55-3.87 (m, 1H); 3.96 (q, J = 7.0 Hz, 2H, syn); 4.14 (q, J = 7.3 Hz, 2H, anti); 4.17–4.27 (m, 1H), 4.94 (d, J = 8.1 Hz, 1H, syn); 5.09 (d, J = 5.1 Hz, 1H, anti); 6.77-6.79 (br, NH, anti), 6.93-6.96 (br, NH, syn), 7.36-7.68 (m, 7H); 7.70 (d, I = 6.9 Hz, 2H, anti); 7.73 (d, I = 5.4 Hz, 2H, syn) ppm. ¹³C NMR (CDCl₃, 75 MHz, 25 °C): δ = 13.97, 37.82, 53.18, 61.39, 71.93, 121.47, 125.41, 126.96, 127.25, 127.44, 128.64, 129.98, 130.63, 131.32, 131.89, 133.64, 145.28, 168.87, 173.09 ppm. FTIR *v* = 3368, 2980, 2937, 1728, 1644, 1536, 1514, 1304, 1248, 1112, 1033, 834 cm⁻¹. MS (ESI) of $C_{20}H_{20}F_3NO_4$ (*m*/*z*): calcd 395.1 found 418.2 [M+Na⁺]. Yield was evaluated by ¹H NMR analysis. HPLC data: AD Chiralpak, eluent: hexane/2-propanol = 90:10, flow = 0.8 mL/min, λ = 230 nm. rt: (S, S) = 17.3 min, (R, R) = 18.3 min, (R, S) = 29.9 min, (S, R) = 31.8 min.

4.5. General procedure for the asymmetric transfer hydrogenation (ATH)

4.5.1. Method A

The ATH procedure when formic acid or sodium formate was used as the hydrogen donor. To a solution of the substrate (0.5 mmol) in a 1:1 mixture methanol and water (2 mL), [Cp*Ir(H₂₋O)(L)]SO₄ (0.0025 mmol) and hydrogen donor (2.5 mmol, 5 equiv) were added. The reaction mixture was stirred at 70 °C for a fixed

time (3 h for 2-cyanoacetophenones, 6 h for acetophenones and 24 h for β -ketoesters). The reaction mixture was quenched with brine (4 mL) and extracted with ethyl acetate (2 \times 5 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo.

4.5.2. Method B

The ATH procedure when the HCOOH/TEA azeotropic mixture (5:2) was used as the hydrogen donor. To a solution of the substrate (0.5 mmol) in 2 mL of HCOOH/TEA azeotropic mixture (5:2), [Cp*Ir(H₂O)(L)]SO₄ (0.0025 mmol) was added. The reaction mixture was stirred at 70 °C for a fixed time (3 h for 2-cyanoace-tophenones, 6 h for acetophenones and 24 h for β -ketoesters). The reaction mixture was quenched with 5% NaHCO₃ solution (4 mL) and extracted with ethyl acetate (2 × 5 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo.

References

- Touge, T.; Hakamata, T.; Nara, H.; Kobayashi, T.; Sayo, N.; Saito, T.; Kayaki, Y.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 14960–14963.
- 2. Fang, Z.; Wills, M. J. Org. Chem. 2013, 78, 8594-8605.
- Darwish, M. O.; Wallace, A.; Clarkson, G. J.; Wills, M. Tetrahedron Lett. 2013, 54, 4250–4253.
- 4. Zhou, H.; Huang, H. ChemCatChem 2013, 5, 2253–2257.
- Facchetti, G.; Cesarotti, E.; Pellizzoni, M.; Zerla, D.; Rimoldi, I. *Eur. J. Inorg. Chem.* 2012, 2012, 4365–4370.
- Rimoldi, I. F. G.; Cesarotti, E.; Pelizzoni, M.; Fusè, M.; Zerla, D. Curr. Org. Chem. 2012, 16, 2982–2988.
- 7. Furegati, M.; Rippert, A. J. Tetrahedron: Asymmetry 2005, 16, 3947–3950.
- Tang, W.; Johnston, S.; Li, C.; Iggo, J. A.; Bacsa, J.; Xiao, J. Chem. Eur. J. 2013, 19, 14187–14193.
- Li, C.; Zhang, L.; Du, Y.; Zheng, X.-L.; Fu, H.-Y.; Chen, H.; Li, R.-X. Catal. Commun. 2012, 28, 5–8.
- 10. Wu, X.; Vinci, D.; Ikariya, T.; Xiao, J. Chem. Commun. 2005, 4447-4449.
- 11. Wu, X.; Liu, J.; Li, X.; Zanotti-Gerosa, A.; Hancock, F.; Vinci, D.; Ruan, J.; Xiao, J.
- Angew. Chem., Int. Ed. **2006**, 45, 6718–6722. **12.** Sun, X.; Li, W.; Zhou, L.; Zhang, X. Chem. Eur. J. **2009**, 15, 7302–7305.
- de Koning, P. D.; Jackson, M.; Lennon, I. C. Org. Process Res. Dev. 2006, 10, 1054– 1058
- 14. Šterk, D.; Stephan, M.; Mohar, B. Org. Lett. 2006, 8, 5935–5938.
- Lundgren, R. J.; Rankin, M. A.; McDonald, R.; Schatte, G.; Stradiotto, M. Angew. Chem., Int. Ed. 2007, 46, 4732–4735.
- 16. Ahlford, K.; Zaitsev, A. B.; Ekström, J.; Adolfsson, H. Synlett **2007**, 2541–2544.
- Talwar, D.; Salguero, N. P.; Robertson, C. M.; Xiao, J. Chem. Eur. J. 2014, 20, 245– 252.
- Vázquez-Villa, H.; Reber, S.; Ariger, M. A.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 8979–8981.
- 19. Ariger, M. A.; Carreira, E. M. Org. Lett. 2012, 14, 4522-4524.
- Makino, K.; Goto, T.; Hiroki, Y.; Hamada, Y. Tetrahedron: Asymmetry 2008, 19, 2816–2828.
- 21. Zhu, D.; Yang, Y.; Hua, L. J. Org. Chem. 2006, 71, 4202–4205.
- Yang, Y.; Zhu, D.; Piegat, T. J.; Hua, L. Tetrahedron: Asymmetry 2007, 18, 1799– 1803.
- Meng, Q.; Sun, Y.; Ratovelomanana-Vidal, V.; Genêt, J. P.; Zhang, Z. J. Org. Chem. 2008, 73, 3842–3847.
- Plantan, I.; Stephan, M.; Urleb, U.; Mohar, B. Tetrahedron Lett. 2009, 50, 2676– 2677.
- 25. Zhu, D.; Malik, H. T.; Huo, L. Tetrahedron: Asymmetry 2006, 17, 3010–3014.
- Rimoldi, I.; Cesarotti, E.; Zerla, D.; Molinari, F.; Albanese, D.; Castellano, C.; Gandolfi, R. *Tetrahedron: Asymmetry* 2011, 22, 597–602.
- Petit, M.; Tran, C.; Roger, T.; Gallavardin, T.; Dhimane, H.; Palma-Cerda, F.; Blanchard-Desce, M.; Acher, F. C.; Ogden, D.; Dalko, P. I. Org. Lett. 2012, 14, 6366–6369.
- Skupinska, K. A.; McEachern, E. J.; Skerlj, R. T.; Bridger, G. J. J. Org. Chem. 2002, 67, 7890–7893.
- SADABS Area-Detector Absorption Correction Program, B. A. I. M., WI, USA. 2000.
- Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115–119.
- 31. Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112-122.
- 32. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837-838.