

Tetrahedron Letters 39 (1998) 4129-4132

Synthesis of 3,4,5-Trimethoxyphenyl 5''-O-caffeoyl- β -D-erythro-apiofuranosyl- $(1\rightarrow 6)$ - β -D-glucopyranoside: Kelampayoside B

Howard I. Duynstee, Martijn C. de Koning, Gijs A. van der Marel and Jacques H. van Boom*

Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands Received 27 February 1998; accepted 27 March 1998

Abstract. Chemoselective NIS/ cat. TfOH-mediated glycosylation of ethyl 2,3,4-tri-O-benzoyl-1-thio- β -D-glucopyranoside (4) with ethyl 2,3-di-O-acetyl-5-O-benzyl-1-thio- α/β -D-erythro-apiofuranoside (3) gave dimer 5 in an excellent yield. BF₃Et₂O-catalysed condensation of the α -trichloroacetimidate 18, accessible in two steps from 5, with 3,4,5-trimethoxyphenol gave β -linked derivative 19 which could be transformed in five steps into the title compound. © 1998 Elsevier Science Ltd. All rights reserved.

Ten years ago, Shiraga *et al.*¹ showed that 3,4,5-trimethoxyphenyl β -D-*erythro*-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside (1), isolated earlier² from the dried stem bark of *Cinnamomum cassia* Blume, exhibits antiulcerogenic activity in rats. Recently, Kitagawa *et al.*³ isolated the same active compound as well as its 5"-O-caffeoyl derivative 2 (so-called Kelampayoside A and B, respectively) from the bark of *Anthocephalus chinensis*. Both compounds are characterised by the presence of the rare apiofuranose sugar and the rather electron-rich aryl moiety. Thus far, only scarce information⁴ on the glycosylating properties of apiofuranose, the occurrence of which is restricted⁵ to the plant kingdom, is available. Moreover, it was anticipated that Fries-type rearrangement⁶ of the initially formed *O*-3,4,5-trimethoxyphenyl moiety would give rise to the formation of the unwanted *C*-aryl derivative. The aforementioned chemical and, to a lesser extent, pharmacological aspects seemed to us a justifiable objective in preparing Kelampayosides A (1) and B (2).

In line with the retrosynthetic analysis of target compounds 1-2, we first explored (see Scheme 1) the feasibility of preparing the functionalized dimer 5 via a chemoselective glycosylation of the partially benzoylated ("disarmed")⁷ thioethyl glucosyl acceptor 4^8 with the also in principle "disarmed" ethyl 2,3-di-*O*-acetyl-5-*O*-benzyl-1-thio- α/β -D-erythro-apiofuranoside (3). Donor 3 is readily available by treatment of 1,2,3-tri-*O*-acetyl-5-*O*-benzyl- α/β -D-erythro-apiofuranoside^{4a} with ethanethiol in the presence of SnCl₄. It was established that NIS/catalytic triflic acid (TfOH) mediated⁷ glycosylation of the glycosyl acceptor 4 with donor 3 proceeds with a high degree of chemoselectivity to give the β -linked dimer 5 in 92% yield. The outcome of this experiment indicates that de deactivating effect of the 2-*O*-acetyl group in donor 3 is more than fully compensated by the intrinsically higher reactivity of a glycosylating species derived from a furanosyl than a pyranosyl donor. The latter effect may also explain the unexpected high chemoselectivity in the NIS / cat. TfOH-assisted glycosylation of the partially benzylated ("armed") acceptor 6^9 with 3. The

0040-4039/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(98)00673-X general nature of the furanosyl effect was also demonstrated (see Scheme 1) in the high chemoselective glycosylation of the ethylthic ribofuranosyl donor 8 with 4 and to a lesser extent with 6, as evidenced by the relatively low yield of 10 as well as the formation of the 1,6-anhydro derivative 11.

Scheme 1

Attention was now focused on the introduction of the requisite β -linked trimethoxyphenyl moiety in the target compounds 1-2. To this end, the glucopyranose derivatives 12-14 were condensed with commercially available 3,4,5-trimethoxyphenol (antiarol) under Mitsunobu¹⁰ and mild Lewis acid conditions⁶. The results of these pilot experiments are summarised in Table 1. It can be seen (entry 1) that Mitsunobu glycosidation of antiarol with anomerically pure 12 (α) proceeds as expected¹⁰ with inversion of configuration to give the *O*- β -glycoside 15. It is also evident (entry 2) that the β -directing effect of the 2-*O*-benzoyl group in the anomerically impure donor 13 is reflected in the predominant formation of the β -*O*-glucoside 16. On the other hand, condensation of the corresponding α -trichloracetimidate 14 with antiarol under the influence of a

Entry	Donor	Activator	Solvent	<i>O</i> -aryl	C-aryl
1	12	DEAD, Ph ₃ P	THF	62% (15: α/β, 0/1)	-
2	13	DEAD, Ph ₃ P	THF	55% (16: α/β, 1/7)	-
3	14	BF3 Et2O (0.25 equiv.)	CH_2Cl_2	41% (16 : α/β, 0/1)	18% (17)
4	14	BF3 Et2O (0.25 equiv.)	CH ₂ Cl ₂ /THF, (10/1)	64% (16 : α/β, 0/1)	5% (17)

Reagents and conditions: i) a) NIS / cat. TfOH, wet CH_2Cl_2 (89%); b) Cs_2CO_3 , CCl_3CN , CH_2Cl_2 (81%); ii) antiarol, 0.25 equiv. BF₃:Et₂O, CH_2Cl_2 / THF (10/1, v/v), (19: 63%, 20: 4%); iii) NaOMe, MeOH / CH_2Cl_2 (5/1, v/v), (88%); iv) H₂, 10% Pd/C, *i*-PrOH / H₂O (10/1, v/v), (91%); v) PhOAccl, CH_2Cl_2 , 3 equiv. pyridine (88%); vi) H₂, 10% Pd/C, *i*-PrOH / H₂O (12/8/1, v/v/v), (86%); vii) di-*O*-acety/caffeoyl chloride, CH_2Cl_2 , 3 equiv. pyridine (77%); viii) 0.005 M K₂CO₃, MeOH / CH_2Cl_2 (1/1, v/v), (49%).

small amount¹¹ of the weak Lewis acid catalyst BF₃Et₂O gave apart from the β -O-glucoside 16 an unacceptable quantity of the β -C-glucoside 17 (entry 3). It was therefore gratifying to find that 16 was the main product (entry 4) by executing the same glycosidation in the solvent CH₂Cl₂ containing a small amount of THF¹². Moreover, β -O-glucoside 16 could be readily separated by silica gel chromatography from the undesired β -C-glycoside 17. On the basis of the latter results, dimer 5 seemed to be a convenient starting compound for the synthesis of Kelampayoside A (1) and B (2). Thus, condensation (see Scheme 2) of the α trichloroacetimidate 18, easily accessible in two steps from 5, with antiarol in the presence of cat. BF₃:Et₂O in CH₂Cl₂ / THF (10/1, v/v) gave, after purification by silica gel chromatography, the β -antiaryl glycoside 19¹³ and the corresponding β -C-aryl derivative 20¹³ in a yield of 63 and 4%, respectively. Zémplen deacetylation of 19 and subsequent hydrogenolysis of 21 gave homogeneous Kelampayoside A (1), the physical data of which were in full accord with those reported³ by Kitagawa *et al.* It was expected that Kelampayoside B (2) could be prepared by regioselective acylation of Kelampayoside A (1) with 3,4-di-O-acetylcaffeoyl chloride¹⁴. However, the latter possibility was thwarted by the poor solubility of 1 and impelled us to adopt the following four-step approach. Acylation of 21 with phenoxyacetyl chloride followed by debenzylation of 22 gave 23. Treatment of the latter compound with excess 3,4-di-O-acetylcaffeoyl chloride, and then mild deesterification of the phenoxyacetyl and acetyl groups of 24, gave Kelampayoside B (2) in a yield of 29% over four steps. The ¹H- and ¹³C-NMR data of the target compound 2 were in excellent agreement with those reported³ for Kelampayoside B (2).

The results described in this paper clearly show that apiofuranoide 3 is an effective and highly potent glycosylating agent. In addition, BF₃:Et₂O catalysed Fries-type rearrangement ($O \rightarrow C$ -aryl migration) of an electron-rich aryl group at the anomeric centre of sugars can be attenuated by the addition of THF to the reaction mixture. The implementation of these findings in the design and synthesis of other biologically interesting oligosaccharides will be published in due course.

References and Notes

- Shiraga, Y.; Okana, K.; Akira, T.; Fukaya, C.; Yokayama, K.; Tanaka, S.; Fukui, H.; Tubata, M. Tetrahedron, 1988, 44, 4703.
- 2. Miyamura, M.; Nohara, T.; Tomimatsu, T.; Nishioka, I. Phytochemistry, 1983, 22, 215.
- Kitagawa, H.; Wei, H.; Nagao S.; Mahmud, T.; Hori, K.; Kobayashi, M.; Uji, T.; Shibuya H. Chem. Pharm. Bull., 1996, 44, 1162.
- a) Mbaïraroua, O.; Ton-That, T.; Tapiéro, C. Carbohydrate Research, 253, 1994, 79. b) Suzuki, Y.; Yamaguchi, I.; Morofushi, N.; Takahashi, N.; Sugawara, F.; Yoshita, S.; Nukada, T.; Ogawa, T. Agric. Biol. Chem., 1988, 52, 1261. c) Hettinger, P.; Schildknecht, H. Liebigs Ann. Chem., 1984, 1230.
- 5. Watson, R.R.; Orenstein, N.S. Adv. Carbohydr. Chem. Biochem., 1975, 31, 135.
- a) Mahling, J-A.; Schmidt, R.R. Synthesis, 1993, 325. b) Mahling, J-A.; Jung, K-H.; Schmidt, R.R. Liebigs Ann., 1995, 461. c) Schmidt, R.R.; Hoffmann, M. Tetrahedron Lett., 1982, 23, 409. d) Matsumoto, T.; Hosoya, T.; Suzuki, K. Tetrahedron Lett., 1990, 32, 4629. e) Matsumoto, T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett., 1988, 29, 6935.
- 7. Veeneman, G.H.; Van Leeuwen, S.H.; Van Boom, J.H. Tetrahedron Lett., 1990, 31, 1331.
- 8. Bochkov, A.F; Snuatkova, V.I.; Voznyi Ya, V.; Kochetkov, N.K. J. Gen. Chem. USSR, 1971, 41, 2808.
- 9. Ray, A.K.; Roy, N. Carbohydr. Res., 1990, 196, 95.
- a) Roush, W.R.; Lin, X-L. J. Am. Chem. Soc., 1995, 117, 2236. b) Roush, W.R.; Lin, X-L. J. Org. Chem., 1991, 56, 5740. c) Kometani, T.; Kondo, H.; Fujimori, Y. Synthesis, 1988, 1005.
- Glycosidation of 3,4,5-trimethoxyphenol with 14 using excess (*i.e.* 1.0 equiv.) BF₃Et₂O resulted, as evidenced by ¹H NMR and ¹³C NMR, in the exclusive formation of the C-aryl derivative 17 (84%).
- 12. In an attempt to completely suppress $O \rightarrow C$ migration, the glycosidation was also carried out at -20° C. However, under these conditions no reaction of 14 with antiarol was observed.
- 13. Relevant data for compound 19 and 20.

19: ¹H NMR (CDCl₃): δ 3.70 (s, 6H, 3-OMe, 5-OMe), 3.77 (s, 3H, 4-OMe), 5.00 (d, 2H, H-2"), 5.26 (d, 1H, H-1" J_{1',2'} 7.8 Hz), 5.28 (d, 1H, H-1" J_{1',2'} 0.8 Hz), 6.26 (s, 2H, H-2, H-6). ¹³C{¹H} NMR (CDCl₃): δ 55.9 (3-OMe, 5-OMe), 60.7 (4-OMe), 65.9, 69.0, 73.1 (C-4", C-5", C-6', CH₂, Bn), 69.1, 71.6, 72.5, 73.7, 76.2 (C-2', C-3', C-4', C-5', C-2"), 85.0 (C-3"), 95.5 (C-2, C-6), 100.4 (C-1'), 105.8 (C-1"), 133.6 (C-4), 152.7 (C-1), 153.4 (C-3, C-5).

20: ¹H NMR (CDCl₃): δ 2.91 (s, 3H, 5-OMe), 3.72, 3.80 (2 x s, 6H, 4-OMe, 6-OMe), 4.35 (d, 1H, H-1' J_{1'2'} 9.7 Hz), 4.84 (d, 2H, H-2"), 5.60 (d, 1H, H-3 or H-5 J_{3,5} 1.4 Hz), 5.63 (d, 1H, H-3 or H-5). ¹³C{¹H} NMR (CDCl₃): δ 52.1 (5-OMe), 55.9, 56.5 (4-OMe, 6-OMe), 66.6, 69.1, (C-4", C-5", C-6', CH₂, Bn), 73.0, 73.1, 75.1, 75.8, 78.3, 78.4 (C-1', C-2', C-3', C-4', C-5', C-2"), 79.8 (C-1), 85.3 (C-3"), 104.5, 105.4, 106.3 (C-1", C-3, C-5), 128.0-133.4 (CH, Bz), 128.7 129.0, 130.1 (Cq, Bz), 165.7, 165.1, 165.7 (C=O, Bz), 166.6, 167.7 (C-4, C-6), 186.7 (C-2).

14. Li, Z.; Huang, H.; Cai, M. Chem. Abstr. 1993, 119, 95041b.