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C�F bonds on a-fluorohydrazones can be substituted with a wide range of nucleophiles with the aid of
mild bases. The present reaction shows that a-fluorohydrazones can be useful building blocks in syn-
thetic chemistry.
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Introducing fluorine atoms to organic molecules often causes
dramatic changes in the physical and biological properties, and
the benefit is maximally utilized in medicinal chemistry.1 Strong
C�F bonds (BDE: 109.9 kcal mol�1 for CH3F) contribute to the sta-
bility of fluorine organic compounds, implying, on the other hand,
that decomposition of fluorine compounds is difficult.2 Tradition-
ally, C�F bonds have been recognized to be useless for chemical
transformation due to their extremely high bond energy, except
for a few examples such as aromatic nucleophilic substitution reac-
tions (SNAr reactions).3 Recently, however, development of meth-
ods for activation of unreactive C�F bonds is a hot topic in
organic chemistry.4,5 Although these reactions often require transi-
tion metal catalysts, Lewis acids, or harsh conditions, compounds
bearing C�F bonds can now work as sufficiently useful synthetic
precursors.

a-Haloketones (halogen: chloro, bromo, and iodo) are impor-
tant building blocks to install ketone moieties in organic molecules
in synthetic chemistry because they are highly reactive electro-
philes in the SN2 substitution reaction.6 On the other hand, a-flu-
oroketones are seldom used for this purpose owing to the poor
reactivity of C�F bonds, though a,a,a-trifluorocarbonyl com-
pounds can be activated by electroreduction.4c They are usually
useful precursors for the synthesis of fluorine compounds.7

In this Letter, we report that C�F bonds on a-fluorohydrazones,
which are derivatives of a-fluoroketones, are readily substituted
with various nucleophiles under mild basic conditions. In this reac-
tion, C�F bond cleavage is likely to be triggered by electron-push-
ing from a nitrogen atom of the hydrazone moiety to form the
corresponding azoalkene intermediate. Since this intermediate
works as an excellent Michael acceptor, substituted products are
formally provided by addition reactions of nucleophiles (Scheme 1).
Such a formal nucleophilic substitution of a-halohydrazones is a
synthetically useful method as with the usual SN2 reaction of a-
halocarbonyl compounds, though these two reactions cannot be
bracketed together due to the difference in the mechanism (elim-
ination-addition process versus stereospecific substitution) and
reaction conditions. For instance, efficient C–C bond formation
reactions of a-chloro- or bromo hydrazones using this methodol-
ogy are known.8 In addition, C�F cleavage reactions of a,a-di-
fluoro- and a,a,a-trifluorohydrazones based on the similar
mechanism have been reported.9 However, there are not many
practical applications of this concept involving the C�F cleavage
to general synthetic methods. We herein demonstrate synthetic
usefulness of a-fluorohydrazones by showing results of reactions
with a variety of nucleophiles.

a-Fluorohydrazone 1 (mixture of two isomers; ca. 85:15),
which was easily prepared by condensation of the corresponding
a-fluoroketone10 with methyl hydrazinecarboxylate, was designed
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Table 1
Scope of nucleophiles

Nucleophile (1.5 equiv)
K2CO3 (3 equiv)

THF, rt1 (1.0 equiv)
Ph

F
N

Ph
Nu

N

2a−jg

NHCO2Me NHCO2Me 

Entry Nucleophile Nu Time Yield (%)

1a MeOHb MeO 2a 15 min 68
2a CF3CH2OHb CF3CH2O 2b 3 h 91
3c AcONa AcO 2c 4 h 49
4d Me2NH�HCle Me2N 2d 2 h 81

5 O NH O N 2e 7 h 95

6f TMSN3 N3 2f 5 min 89
7 PhSH PhS 2g 3 h 95

8 p-TolSO2Na S
O

O
p-Tol 2h 2.5 h 69

9 (CO2Me)2CH2 (CO2Me)2CH 2i 24 h 82

10d CO2Et
O

CO2Et
O

2j 4 h 64

gIsomer ratios (approximately estimated by 1H NMR): 2a (65:35), 2b (78:22), 2c
(>95:5), 2d (>95:5), 2e (76:24), 2f (80:20), 2g (58:42), 2h (55:45), 2i (75:25), 2j
(>95:5).

a 1.5 equiv of K2CO3 was used.
b Used as a solvent instead of THF.
c DMF was used as a solvent instead of THF.
d 65 �C.
e 3 equiv.
f DBU was used instead of K2CO3.
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Figure 1. Scope of substrates. Same conditions are used for each nucleophile.
aStarting materials were used as mixtures of two isomers (ca. 80:20�95:5) unless
otherwise noted. bIsomer ratios (approximately estimated by 1H NMR): 3 (>95:5), 4
(>95:5), 5 (91:9), 6 (>95:5), 7 (>95:5), 8 (>95:5), 9 (82:18), 10 (94:6), 11 (70:30), 12
(83:17), 13 (75:25), 14 (>95:5), 15 (91:9), 16 (>95:5), 17 (95:5). cSingle isomers of
starting materials were used.

NNHCO2Me

OMe19: 92%
Ph

OMe
NNHCO2Me

F
Ph

F MeOK (5 equiv)

MeOH, rt

NNHCO2Me

OMe21: 80%
Ph

OMe
NNHCO2Me

F
Ph

F MeOK (5 equiv)

MeOH, refluxF OMe

18

20

30 min

72 h

Scheme 2. Reactions of di- and trifluorohydrazone derivatives.
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as a model substrate to test nucleophiles. Results of reactions of 1
with a variety of nucleophiles are summarized in Table 1. Treat-
ment of 1 with potassium carbonate (1.5 equiv) in methanol
(0.2 M) at room temperature caused methanolysis to afford a-
methoxyhydrazone 2a in 68% yield (entry 1).11 The reaction with
2,2,2-trifluoroethanol gave the corresponding substituted product
2b in excellent yield under similar conditions (entry 2). Acetoxyla-
tion of 1 with sodium acetate proceeded in N,N-dimethylformam-
ide (DMF) to give compound 2c in moderate yield (entry 3).
Reactions of 1 with amines such as dimethylamine and morpholine
were fast and afforded the corresponding amine compounds 2d
and 2c in 81% and 95% yields (entries 4 and 5).12 When sodium
azide was used for azidation of 1, azide compound 2f was obtained,
but the yield was moderate (46%, not shown in Table 1). We soon
found that a combination of trimethylsilylazide (TMSN3) and 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) gave 2f in improved yield
(89%) (entry 6). Sulfur nucleophiles such as benzenethiol and so-
dium p-toluenesufinate readily reacted with 1 to provide the corre-
sponding sulfide 2g and sulfone 2h in good yields (entries 7 and 8).
When dimethylmalonate and ethyl 2-oxocyclohexanecarboxylate
were employed as nucleophiles, C�C bond formation on the C�F
bond of 1 occurred to give compounds 2i and 2j (entries 9 and 10).

Examples of reactions between various a-fluorohydrazones and
nucleophiles are shown in Figure 1. a-Fluorohydrazones bearing
tert-butoxycarbonyl or p-toluenesulfonyl groups gave the corre-
sponding substituted products 3�5 in good yields, whereas prod-
uct 6 was obtained in only 32% yield from an acetylated
hydrazone material. This might be due to the difference in the elec-
tronic properties of carbamates and amides. Substitution reactions
of hydrazones possessing other side chains, such as phenyl, benzyl,
benzyloxybutyl, heptenyl, and isopropyl, smoothly produced vari-
ous substituted derivatives 7�13 in good yields. Secondary and
tertiary fluoro derivatives also caused substitution reactions with
oxygen and nitrogen nucleophiles and afforded products 14�17.
a,a-Difluorohydrazone 18 (single isomer) reacted with methox-
ide anions to give dimethylacetal 19 (single isomer) (Scheme 2).9

In this reaction, replacement of potassium carbonate by potassium
methoxide (5 equiv) gave a better result. Interestingly, a,a,a-trif-
luorohydrazone 20 (single isomer) also underwent a substitution
reaction of all fluorine atoms to give a,a,a-trimethoxyhydrazone
21 (single isomer) in high yield, though a high temperature (reflux
in methanol) and long reaction time (72 h) were required
(Scheme 2).9,13

Exposure of a-fluoroketone 22 to the methanolysis conditions
complicated the result, and no substituted product was isolated
from the reaction mixture. In addition, a,a,a-trifluoroketone 23
did not react with potassium methoxide at all (Scheme 3). Com-
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Scheme 3. Exposure of fluoroketones to the methanolysis conditions.
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Scheme 4. Reactions of a-chloro- and bromohydrazones.
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bined with the production of 16 and 17, these results support the
mechanism shown in Scheme 1.

Interestingly, reactivity of a-chloro- and bromohydrazones was
clearly different from that of a-fluorohydrazones (Scheme 4).
When chloro- and bromohydrazones 24 (mixture of two isomers:
ca. 55:45 and 85:15) were subjected to the methanolysis condi-
tions, product 7 was obtained in only low yield along with multiple
unidentified products. Likewise, reactions with dimethylmalonate
gave product 8 in low yield. Although we did not test other reac-
tion conditions such as a low temperature, it seems to be difficult
to control substitution reactions of a-chloro- and bromohydraz-
ones by the simple procedure used in the reactions of a-fluorohyd-
razones because of their high reactivity.14 These contrasting results
proved that a-fluorohydrazones were excellent precursors in sub-
stitution reactions.

In conclusion, we revealed that a-fluorohydrazone derivatives
were good precursors in nucleophilic substitution reactions, which
could be conducted under mild basic conditions to give various
substituted products. No expensive and toxic reagent is required,
and the experimental procedure is very simple. Since hydrazones
can be used as masked ketones or amine precursors, a-fluorohyd-
razones are promising as useful building blocks. Furthermore, the
original stability of a-fluorohydrazones would be advantageous
when they are used as building blocks. This work has illustrated
a good example of the positive use of C�F bonds in synthetic
chemistry. Further studies such as studies on C�C bond formation
reactions with organometallic reagents are currently underway.
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for major and minor), 5.08–5.04 (2H, m, for major), 5.01 (1H, dq, J = 17.0.
1.7 Hz, for minor), 4.98–4.95 (1H, m, for minor), 3.97 (1H, br, for major), 3.70
and 3.76 (total 9H and 9H, both s, for major and minor), 3.62 (1H, t, J = 7.0 Hz,
for minor), 2.89 (2H, d, J = 7.6 Hz, for major), 2.78 (2H, d, J = 7.8 Hz, for minor),
2.27 (2H, t-like, J = 7.9 Hz, for minor), 2.18 (2H, t-like, J = 7.9 Hz, for major),
2.12–2.07 (2H, m, for major and minor), 1.69–1.61 (2H, m, for major and
minor) ppm ; 13C NMR (150 MHz, CDCl3): d = 169.7, 137.9, 137.1, 116.2, 115.1,
53.3, 52.6, 48.1, 48.0, 35.7, 34.9, 33.23, 33.17, 28.5, 25.9, 24.0 ppm; IR (CDCl3):
1749, 1731, 1504, 1460, 1230 cm�1; HRMS (DART): calcd for C14H23N2O6

[M+H+]: 315.1556; found: 315.1539.
13. Examples of nitrogen atom-assisted elimination of fluorine atoms on
trifluoromethyl groups: (a) Wydra, R. L.; Patterson, S. E.; Strekowski, L. J.
Heterocycl. Chem. 1990, 27, 803–805; (b) O’Mahony, G.; Pitts, A. K. Org. Lett.
2010, 12, 2024–2027; (c) Chen, Z.; Zhu, J.; Xie, H.; Li, S.; Wu, Y.; Gong, Y. Org.
Lett. 2010, 12, 4376–4379.

14. Although we did not identify all byproducts, a dimerization-like compound
produced by a self-reaction was tentatively identified as a main byproduct.
This would be because a-chloro- and bromohydrazones can be usual
electrophiles like a-chloro- and bromoketones.
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